1
|
Kameta N. Stimuli-Responsive Transformable Supramolecular Nanotubes. CHEM REC 2022; 22:e202200025. [PMID: 35244334 DOI: 10.1002/tcr.202200025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 12/11/2022]
Abstract
Supramolecular nanotubes produced by self-assembly of organic molecules can have unique structural features such as a one-dimensional morphology with no branching, distinguishable inner and outer surfaces and membrane walls, or a structure that is hollow and has a high aspect ratio. Incorporation of functional groups that respond to external chemical or physical stimuli into the constituent organic molecules of supramolecular nanotubes allows us to drastically change the structure of the nanotubes by applying such stimuli. This ability affords an array of controllable approaches for the encapsulation, storage, and release of guest compounds, which is expected to be useful in the fields of physics, chemistry, biology, and medicine. In this article, I review the supramolecular nanotubes developed by our group that exhibit morphological transformations in response to pH, chemical reaction, light, temperature, or moisture.
Collapse
Affiliation(s)
- Naohiro Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| |
Collapse
|
2
|
Garget TA, Kiefel MJ, Houston TA. A remarkable divergent fluorescence response to epimeric monosaccharides by an isoquinoline-derived diboronate. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Baccile N, Ben Messaoud G, Le Griel P, Cowieson N, Perez J, Geys R, De Graeve M, Roelants SLKW, Soetaert W. Palmitic acid sophorolipid biosurfactant: from self-assembled fibrillar network (SAFiN) to hydrogels with fast recovery. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200343. [PMID: 34334020 DOI: 10.1098/rsta.2020.0343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/18/2021] [Indexed: 06/13/2023]
Abstract
Nanofibres are an interesting phase into which amphiphilic molecules can self-assemble. Described for a large number of synthetic lipids, they were seldom reported for natural lipids like microbial amphiphiles, known as biosurfactants. In this work, we show that the palmitic acid congener of sophorolipids (SLC16:0), one of the most studied families of biosurfactants, spontaneously forms a self-assembled fibre network (SAFiN) at pH below 6 through a pH jump process. pH-resolved in situ small-angle X-ray scattering (SAXS) shows a continuous micelle-to-fibre transition, characterized by an enhanced core-shell contrast between pH 9 and pH 7 and micellar fusion into a flat membrane between pH 7 and pH 6, approximately. Below pH 6, homogeneous, infinitely long nanofibres form by peeling off the membranes. Eventually, the nanofibre network spontaneously forms a thixotropic hydrogel with fast recovery rates after applying an oscillatory strain amplitude out of the linear viscoelastic regime: after being submitted to strain amplitudes during 5 min, the hydrogel recovers about 80% and 100% of its initial elastic modulus after, respectively, 20 s and 10 min. Finally, the strength of the hydrogel depends on the medium's final pH, with an elastic modulus fivefold higher at pH 3 than at pH 6. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.
Collapse
Affiliation(s)
- Niki Baccile
- Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, F-75005 Paris, France
| | - Ghazi Ben Messaoud
- Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, F-75005 Paris, France
| | - Patrick Le Griel
- Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, F-75005 Paris, France
| | - Nathan Cowieson
- Harwell Science and Innovation Campus, Diamond Light Source, Didcot, Oxfordshire, OX11 0DE, UK
| | - Javier Perez
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, BP48,91192 Gif-sur-Yvette Cedex, France
| | - Robin Geys
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Ghent University, Coupure Links 653, Ghent, Oost-Vlaanderen BE 9000, Belgium
| | - Marilyn De Graeve
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Ghent University, Coupure Links 653, Ghent, Oost-Vlaanderen BE 9000, Belgium
| | - Sophie L K W Roelants
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Ghent University, Coupure Links 653, Ghent, Oost-Vlaanderen BE 9000, Belgium
- Bio Base Europe Pilot Plant, Rodenhuizekaai 1, Ghent, Oost-Vlaanderen BE 9000, Belgium
| | - Wim Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Ghent University, Coupure Links 653, Ghent, Oost-Vlaanderen BE 9000, Belgium
- Bio Base Europe Pilot Plant, Rodenhuizekaai 1, Ghent, Oost-Vlaanderen BE 9000, Belgium
| |
Collapse
|
4
|
Kameta N. Stimuli-Responsive Supramolecular Nanotube Capsules. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Naohiro Kameta
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology
| |
Collapse
|
5
|
Kameta N, Ding W, Masuda M. Effect of Glycine Position on the Inner Diameter of Supramolecular Nanotubes Consisting of Glycolipid Monolayer Membranes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Naohiro Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Wuxiao Ding
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Mitsutoshi Masuda
- Research Institute for Sustainable Chemistry, Department of Materials and Chemistry, AIST, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
6
|
Ludwig AD, Saint-Jalmes A, Mériadec C, Artzner F, Tasseau O, Berrée F, Lemiègre L. Boron Effect on Sugar-Based Organogelators. Chemistry 2020; 26:13927-13934. [PMID: 32579731 DOI: 10.1002/chem.202001970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/10/2020] [Indexed: 01/03/2023]
Abstract
The reaction of several alkylglucosides with phenyl boronic acid permitted easy access to a series of alkylglucoside phenyl boronate derivatives. This type of compound has structures similar to those of known benzylidene glucoside organogelators except for the presence of a boronate function in place of the acetal one. Low to very low concentrations of these amphiphilic molecules produced gelation of several organic solvents. The rheological properties of the corresponding soft materials characterized them as elastic solids. They were further characterized by SEM to obtain more information on their morphologies and by SAXS to determine the type of self-assembly involved within the gels. The sensitivity of the boronate function towards hydrolysis was also investigated. We demonstrated that a small amount of water (5 % v/v) was sufficient to disrupt the organogels leading to the original alkylglucoside and phenyl boronic acid; an important difference with the stable benzylidene-based organogelators. Such water-sensitive boronated organogelators could be suitable substances for the preparation of smart soft material for topical drug delivery.
Collapse
Affiliation(s)
- Andreas D Ludwig
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR6226, Université de Rennes, 35000, Rennes, France
| | - Arnaud Saint-Jalmes
- CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, Université de Rennes, 35000, Rennes, France
| | - Cristelle Mériadec
- CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, Université de Rennes, 35000, Rennes, France
| | - Franck Artzner
- CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, Université de Rennes, 35000, Rennes, France
| | - Olivier Tasseau
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR6226, Université de Rennes, 35000, Rennes, France
| | - Fabienne Berrée
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR6226, Université de Rennes, 35000, Rennes, France
| | - Loïc Lemiègre
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR6226, Université de Rennes, 35000, Rennes, France
| |
Collapse
|
7
|
Kameta N, Ding W. Supramolecular Nanotube Reactors for Production of Imine Polymers with Controlled Conformation, Size, and Chirality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900682. [PMID: 30920781 DOI: 10.1002/smll.201900682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/05/2019] [Indexed: 06/09/2023]
Abstract
A series of supramolecular nanotubes with inner diameters of 1, 4, 9, 12, 16, and 29 nm are prepared from amino acid lipids. The hydrophobic channels of the nanotubes act as reactors for the formation of imine polymers by not only effectively encapsulating the benzaldehyde and diacetyleneamine precursors of the imine monomers but also markedly accelerating imine formation. The nanotube inner diameter determines whether the imine monomers self-assemble into nanoparticles, nanotapes, nanocoils, or twisted nanofibers in the channels. UV-induced polymerization of the diacetylene units in the imine nanostructures followed by decomposition of the nanotubes into molecular dispersions of the constituent amino acid lipids results in expulsion of the polymerized imine nanostructures with retained conformation. The isolated nanocoils and twisted nanofibers retain the helicity and circular dichroism induced by the nanotubes, which exhibits supramolecular chirality, even though the components of the imine monomers are achiral. These supramolecular nanotubes with tunable diameters and functionalizable surfaces can be expected to be useful for the production of polymers with controlled conformation, size, and chirality without the need for rational design or chemical modification of the monomers or optimization of the polymerization conditions.
Collapse
Affiliation(s)
- Naohiro Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Wuxiao Ding
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| |
Collapse
|
8
|
Shimizu T. Self-Assembly of Discrete Organic Nanotubes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20170424] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Toshimi Shimizu
- AIST Fellow, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
9
|
Dhasaiyan P, Prevost S, Baccile N, Prasad BLV. pH- and Time-Resolved in Situ SAXS Study of Self-Assembled Twisted Ribbons Formed by Elaidic Acid Sophorolipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2121-2131. [PMID: 29257893 DOI: 10.1021/acs.langmuir.7b03164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Conditions that favor the helical structure formation in structurally similar sophorolipids (SLs), that is, elaidic acid SLs (having a trans double bond between the C9 and C10 positions of the alkyl chain) and stearic acid SLs (no double bond), are presented here. The helical self-assembled structures formed by elaidic acid SLs were independent of pH and also were mediated by a micellar intermediate. On the other hand, the stearic acid SLs formed helical structures under low pH condition only. Astonishingly, the formation routes were found to be different, albeit the molecular geometry of both SLs is similar. Even if a conclusive mechanistic understanding must await further work, our studies strongly point out that the noncovalent weak interactions in elaidic acid SLs are able to overcome the electrostatic repulsions of the sophorolipid carboxylate groups at basic pH and facilitating the formation of helical structures. On the other hand, the hydrophobic interactions in stearic acid SLs endow the helical structures with extra stability, making them less vulnerable to dissolution upon heating.
Collapse
Affiliation(s)
- Prabhu Dhasaiyan
- Physical and Materials Chemistry Division, CSIR - National Chemical Laboratory , Pune - 411008, India
| | - Sylvain Prevost
- ESRF - The European Synchrotron , High Brilliance Beamline ID02, 38043 Grenoble, France
| | - Niki Baccile
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris , LCMCP, F-75005 Paris, France
| | - Bhagavatula L V Prasad
- Physical and Materials Chemistry Division, CSIR - National Chemical Laboratory , Pune - 411008, India
| |
Collapse
|
10
|
Zhang Y, Wang S, Liu Y, Jin Y, Xia Y, Song B. Bilayers directly scrolling up to form nanotubes via self-assembly of an achiral small molecule. NANOSCALE 2017; 9:1491-1495. [PMID: 28067401 DOI: 10.1039/c6nr09269a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The self-assembly behavior of a molecule composed of an azobenzene segment, carboxylic-acid group and flexible alkyl chains (denoted by ABA11) was studied as an extension of our proceeding work. We have previously reported that in DMSO solution ABA11 self-assembled into nanotubes starting from nanosheets and experiencing a meta-state of helical ribbons. Herein, we found that changing the solvent can also affect the self-assembly pathway of ABA11 to nanotubes. When DMSO was replaced by ethanol, the nanosheets formed by ABA11 bilayers either directly scrolled up to form nanotubes without a meta-state of helical ribbons at low concentrations, or stacked up to form nanobricks at higher concentrations. In addition, increasing the water content in ethanol can significantly facilitate the formation of the assembled nanostructures.
Collapse
Affiliation(s)
- Yajun Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Shuai Wang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Yanfeng Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Yingzhi Jin
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Yijun Xia
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Bo Song
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
11
|
Shimizu T, Kameta N, Ding W, Masuda M. Supramolecular Self-Assembly into Biofunctional Soft Nanotubes: From Bilayers to Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12242-12264. [PMID: 27248715 DOI: 10.1021/acs.langmuir.6b01632] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The inner and outer surfaces of bilayer-based lipid nanotubes can be hardly modified selectively by a favorite functional group. Monolayer-based nanotubes display a definitive difference in their inner and outer functionalities if bipolar wedge-shaped amphiphiles, so-called bolaamphiphiles, as a constituent of the monolayer membrane pack in a parallel fashion with a head-to-tail interface. To exclusively form unsymmetrical monolayer lipid membranes, we focus herein on the rational molecular design of bolaamphiphiles and a variety of self-assembly processes into tubular architectures. We first describe the importance of polymorph and polytype control and then discuss diverse methodologies utilizing a polymer template, multiple hydrogen bonds, binary and ternary coassembly, and two-step self-assembly. Novel biologically important functions of the obtained soft nanotubes, brought about only by completely unsymmetrical inner and outer surfaces, are discussed in terms of protein refolding, drug nanocarriers, lectin detection, a chiral inducer for achiral polymers, the tailored fabrication of polydopamine, and spontaneous nematic alignment.
Collapse
Affiliation(s)
- Toshimi Shimizu
- AIST Fellow, National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Naohiro Kameta
- Research Institute for Sustainable Chemistry, Department of Materials and Chemistry, AIST , Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Wuxiao Ding
- Research Institute for Sustainable Chemistry, Department of Materials and Chemistry, AIST , Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Mitsutoshi Masuda
- Research Institute for Sustainable Chemistry, Department of Materials and Chemistry, AIST , Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
12
|
Kameta N, Masuda M, Shimizu T. Soft nanotubes acting as confinement effecters and chirality inducers for achiral polythiophenes. Chem Commun (Camb) 2016; 52:1346-9. [PMID: 26611281 DOI: 10.1039/c5cc08035e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Depending on their nanochannel sizes, soft nanotubes were able to not only control the conformation and aggregation state of encapsulated achiral polythiophene boronic acids but also induce chirality in the polythiophene chains that exhibit chiral recognition abilities for D, L-sugars.
Collapse
Affiliation(s)
- Naohiro Kameta
- Research Institute for Sustainable Chemistry, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | | | | |
Collapse
|
13
|
Wang S, Zhang Y, Xia Y, Song B. Polymorphic transformation towards formation of nanotubes by self-assembly of an achiral molecule. NANOSCALE 2015; 7:17848-17854. [PMID: 26459964 DOI: 10.1039/c5nr05790f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this paper, nanotubes with a uniform diameter were prepared by self-assembly of an achiral azobenzene-containing fatty acid. The polymorphic transformation of the assemblies during the cooling process was systematically studied. By controlling the incubation temperature, different morphologies, such as membranes, stripes, helical ribbons and tubes, were all obtained in our experiment. These elements were all predicted by Selinger et al. in the theoretical model of the formation of nanotubes. To the best of our knowledge, this is the first experimental example to fully support their theory.
Collapse
Affiliation(s)
- Shuai Wang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Yajun Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Yijun Xia
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Bo Song
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
14
|
|
15
|
Kameta N. Soft nanotube hosts for capsulation and release of molecules, macromolecules, and nanomaterials. J INCL PHENOM MACRO 2014. [DOI: 10.1007/s10847-014-0397-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|