1
|
Sun X, Yu X, Cheng F, He W. Cationic polymeric template-mediated preparation of silica nanocomposites. SOFT MATTER 2021; 17:8995-9007. [PMID: 34611687 DOI: 10.1039/d1sm00773d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biosilicification allows the formation of complex and delicate biogenic silica in near-neutral solutions under ambient conditions. Studies have revealed that, during biosilicification, basic amino acid residues and long-chain polyamines of organic substrates interact electrostatically with negatively charged silicate precursors in solution, catalyzing the polycondensation of silicic acid and accelerating the formation of silica. This mechanism has inspired researchers to explore polymers bearing chemical similarity with these organic matrices as cationic templates for biomimetic silicification. Such templates can be classified into two general categories based on the physical forms applied. One is a solution of water-soluble cationic polymers, either natural or synthetic, used as is for silicification. The other category includes various microscopically shaped entities made of cationic polymer-containing molecules, in the form of micelles, vesicles, crystalline aggregates, latex particles, and microgels. Combined with controlled polymerization and other techniques, these preorganized templates can be tailor designed in terms of sizes and morphologies to allow further expansion of properties and functions. In this review, notable research progress for both categories of silicification under biomimetic conditions is discussed. With the merits of silica and cationic polymers seamlessly integrated, the potential of such versatile nanocomposites in biomedical as well as energy and environmental applications is also briefly highlighted.
Collapse
Affiliation(s)
- Xiaoning Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning, 116023, China.
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116023, China
| | - Xueying Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning, 116023, China.
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116023, China
| | - Fang Cheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning, 116023, China.
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116023, China
| | - Wei He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning, 116023, China.
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116023, China
| |
Collapse
|
2
|
Kong H, Zhao R, Zhang Q, Iqbal MZ, Lu J, Zhao Q, Luo D, Feng C, Zhang K, Liu X, Kong X. Biosilicified oncolytic adenovirus for cancer viral gene therapy. Biomater Sci 2020; 8:5317-5328. [PMID: 32779647 DOI: 10.1039/d0bm00681e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oncolytic adenoviruses (OAs) have shown great potential for cancer viral gene therapy in clinical studies. To date, clinical trials have shown that the curative efficacy of OAs is still limited by hepatic sequestration and preexisting neutralizing antibodies (nAbs), which decrease the accumulation of the OAs in tumors. Herein, with the biosilicification method, we encapsulated an OA encoding the anticancer gene Trail (OA-Trail) with silica, which significantly improved virus distribution and tumor inhibition. In vitro and in vivo results indicated that compared with the native OA, biosilicified OA-Trail (OA-Trail@SiO2) showed significantly reduced viral clearance in the liver and evaded nAb degradation, inducing an efficacious anticancer effect under the premise of biocompatibility. These achievements present an alternative strategy involving biosilicification for enhanced OA-based cancer gene therapy.
Collapse
Affiliation(s)
- Hao Kong
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Hosseini L, Moreno-Atanasio R, Neville F. Synthesis of Hollow Silica Nanoparticle Aggregates from Asymmetric Methyltrimethoxysilane Using a Modified SBA-15 Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7896-7904. [PMID: 31117728 DOI: 10.1021/acs.langmuir.9b00639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This work presents the synthesis and characterization of hollow silica particles that were fabricated with the asymmetric methyltrimethoxysilane (MTMS) as the only silica precursor, by using a modified SBA-15 synthesis method, for the first time. The MTMS concentration was varied in the range from 0.300 to 0.900 M. The hollow silica nanoparticulate material characteristics were compared to those of SBA-15 silica made by using tetraethyl orthosilicate. The hollow silica nanoparticle aggregates (named as MS-Asym) showed varied nanoparticle shapes from irregular to close to spherical, with multiple hollow pores as characterized by SEM and TEM. This result is very different from SBA-15, which has a ropelike shape. X-ray diffraction data showed that the MS-Asym silica samples were disordered compared to the ordered SBA-15. Nitrogen sorption measurements suggested that the SBA-15 is mainly mesoporous, whereas MS-Asym has a combined microporous and mesoporous structure. Furthermore, attenuated total reflectance-Fourier transform infrared spectroscopy spectra infer a different polymerization mechanism occurs for MS-Asym compared to that of SBA-15 silica.
Collapse
|
4
|
Nuruzzaman M, Liu Y, Rahman MM, Naidu R, Dharmarajan R, Shon HK, Woo YC. Core-Shell Interface-Oriented Synthesis of Bowl-Structured Hollow Silica Nanospheres Using Self-Assembled ABC Triblock Copolymeric Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13584-13596. [PMID: 30352161 DOI: 10.1021/acs.langmuir.8b00792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hollow porous silica nanospheres (HSNs) are emerging classes of cutting-edge nanostructured materials. They have elicited much interest as carriers of active molecule delivery due to their amorphous chemical structure, nontoxic nature, and biocompatibility. Structural development with hierarchical morphology is mostly required to obtain the desired performance. In this context, large through-holes or pore openings on shells are desired so that the postsynthesis loading of active-molecule onto HSNs via a simple immersion method can be facilitated. This study reports the synthesis of HSNs with large through-holes or pore openings on shells, which are subsequently termed bowl-structured hollow porous silica nanospheres (BHSNs). The synthesis of BHSNs was mediated by the core-shell interfaces of the core-shell corona-structured micelles obtained from a commercially available ABC triblock copolymer (polystyrene- b-poly(2-vinylpyridine)- b-poly(ethylene oxide) (PS-P2VP-PEO)). In this synthesis process, polymer@SiO2 composite structure was formed because of the deposition of silica (SiO2) on the micelles' core. The P2VP block played a significant role in the hydrolysis and condensation of the silica precursor, i.e., tetraethylorthosilicate (TEOS) and then maintaining the shell's growth. The PS core of the micelles built the void spaces. Transmission electron microscopy (TEM) images revealed a spherical hollow structure with an average particle size of 41.87 ± 3.28 nm. The average diameter of void spaces was 21.71 ± 1.22 nm, and the shell thickness was 10.17 ± 1.68 nm. According to the TEM image analysis, the average large pore was determined to be 15.95 nm. Scanning electron microscopy (SEM) images further confirmed the presence of large single pores or openings in shells. These were formed as a result of the accumulated ethanol on the PS core acting to prevent the growth of silica.
Collapse
Affiliation(s)
- Md Nuruzzaman
- Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , NSW 2308 , Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building , The University of Newcastle , Callaghan , NSW 2308 , Australia
| | - Yanju Liu
- Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , NSW 2308 , Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building , The University of Newcastle , Callaghan , NSW 2308 , Australia
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , NSW 2308 , Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building , The University of Newcastle , Callaghan , NSW 2308 , Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , NSW 2308 , Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building , The University of Newcastle , Callaghan , NSW 2308 , Australia
| | - Rajarathnam Dharmarajan
- Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , NSW 2308 , Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building , The University of Newcastle , Callaghan , NSW 2308 , Australia
| | - Ho Kyong Shon
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building , The University of Newcastle , Callaghan , NSW 2308 , Australia
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering , University of Technology Sydney (UTS) , P.O. Box 123, 15 Broadway , Sydney , NSW 2007 , Australia
| | - Yun Chul Woo
- Department of Land, Water and Environment Research , Korea Institute of Civil Engineering and Building Technology (KICT) , 283, Goyangdae-Ro, Ilsanseo-Gu , Goyang-Si , Gyeonggi-Do 411-712 , Republic of Korea
| |
Collapse
|
5
|
Effect of physical conditioning of pH responsive polyamine nuclei and their subsequent silication. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.12.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Bauer CA, Chi G, Likens OQ, Brown SE. A convenient, bio-inspired approach to the synthesis of multi-functional, stable fluorescent silica nanoparticles using poly(ethylene-imine). NANOSCALE 2017; 9:6509-6520. [PMID: 28466935 DOI: 10.1039/c7nr00462a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Branched poly(ethylene-imine) can be tagged with luminescent dyes (e.g., fluorescein isothiocyanate and tetramethylrhodamine isothiocyanate) and used to precipitate spherical silica particles from 10s-to-100s of nm diameter size under mild conditions. These dye-PEI/SiO2 nanoparticles are highly compatible with polar solvents to give bright fluorescent suspensions, and detailed photophysical characterization reveals well-separated dye moieties with an approximately homogeneous dispersion of dye-PEI conjugate throughout the SiO2 matrix. Reaction of PEI amine groups incorporated at the particle surface affords a simple method for post-synthesis functionalization of these materials, and the formation of FITC/Eosin-Y fluorescence resonance energy transfer pair-tagged particles and SiO2@Au core-shell nanocomposites using this strategy is demonstrated. This bio-inspired approach to multi-functional SiO2 nanoparticles provides a range of potential advantages over traditional "inorganic" syntheses of similar materials, as it proceeds through a scalable, single-step reaction using inexpensive reagents, enables efficient incorporation of luminescent species into the resulting particles with very limited dye aggregation, and provides nanoparticles that do not require post-synthesis modification for further conjugation with species of interest. The method offers a simple means to generate complex nanocomposites, whereby a host of desired species can be incorporated both inside and on the surface of biocompatible SiO2 nanoparticles.
Collapse
|
7
|
Byun H, Hu J, Pakawanit P, Srisombat L, Kim JH. Polymer particles filled with multiple colloidal silica via in situ sol-gel process and their thermal property. NANOTECHNOLOGY 2017; 28:025601. [PMID: 27905318 DOI: 10.1088/0957-4484/28/2/025601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The in situ formation of dielectric silica (SiO2) particles was carried out in the presence of temperature-responsive poly(N-isopropylacrylamide) particles. Unlike the typical sol-gel method used to prepare various SiO2 particles, the highly uniform growth of SiO2 particles was achieved within the cross-linked polymer particles (i.e., the polymer particles were filled with the SiO2 particles) simply by utilizing interfacial interactions, including the van der Waals attractive force and hydrogen bonding in nanoscale environments. The structural and morphological features as well as the thermal behaviors of these composites were thoroughly examined by electron microscopes, dynamic light scattering, and thermal analyzers. In particular, the thermal properties of these composites were completely different from the bare polymer, SiO2 particles, and their mixtures, which clearly suggested the successful incorporation of multiple SiO2 particles within the cross-linked polymer particles. Similarly, titanium oxide (TiO2) particles were easily embedded within the polymer particle template which exhibited improved overall properties. As a whole, understanding in situ formation of nanoscale inorganic particles within polymer particle templates can allow for designing novel composite materials possessing enhanced chemical and physical properties.
Collapse
Affiliation(s)
- Hongsik Byun
- Department of Chemical Engineering, Keimyung University, Daegu, 704-701, Korea
| | | | | | | | | |
Collapse
|
8
|
|
9
|
Hyde EDER, Seyfaee A, Neville F, Moreno-Atanasio R. Colloidal Silica Particle Synthesis and Future Industrial Manufacturing Pathways: A Review. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b01839] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Emily D. E. R. Hyde
- School of Engineering, and ‡School of Environmental
and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ahmad Seyfaee
- School of Engineering, and ‡School of Environmental
and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Frances Neville
- School of Engineering, and ‡School of Environmental
and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Roberto Moreno-Atanasio
- School of Engineering, and ‡School of Environmental
and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
10
|
Hoshino T, Sato K, Oaki Y, Sugawara-Narutaki A, Shimizu K, Ozaki N, Imai H. Plant opal-mimetic bunching silica nanoparticles mediated by long-chain polyethyleneimine. RSC Adv 2016. [DOI: 10.1039/c5ra25742e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Plant opal-mimetic structures of bunching silica nanoparticles were produced through polymer-mediated polycondensation of hydrolyzed silicate species in a matrix of long-chain branched polyethyleneimine.
Collapse
Affiliation(s)
- Tomomi Hoshino
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama
- Japan
| | - Kanako Sato
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama
- Japan
| | - Yuya Oaki
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama
- Japan
| | - Ayae Sugawara-Narutaki
- Department of Crystalline Materials Science
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Katsuhiko Shimizu
- Organization for Regional Industrial Academic Cooperation
- Tottori University
- Japan
- Japan Organization for Regional Industrial Academic Cooperation
- Tottori University
| | - Noriaki Ozaki
- Department of Biotechnology
- Faculty of Bioresource Sciences
- Akita Prefectural University
- Japan
| | - Hiroaki Imai
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama
- Japan
| |
Collapse
|
11
|
Rownaghi AA, Rezaei F, Labreche Y, Brennan PJ, Johnson JR, Li FS, Koros WJ. In situ Formation of a Monodispersed Spherical Mesoporous Nanosilica-Torlon Hollow-Fiber Composite for Carbon Dioxide Capture. CHEMSUSCHEM 2015; 8:3439-3450. [PMID: 26355795 DOI: 10.1002/cssc.201500906] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Indexed: 06/05/2023]
Abstract
We describe a new template-free method for the in situ formation of a monodispersed spherical mesoporous nanosilica-Torlon hollow-fiber composite. A thin layer of Torlon hollow fiber that comprises silica nanoparticles was created by the in situ extrusion of a tetraethyl orthosilicate/N-methyl-2-pyrrolidone solution in a sheath layer and a Torlon polymer dope in a core support layer. This new method can be integrated easily into current hollow-fiber composite fabrication processes. The hollow-fiber composites were then functionalized with 3-aminopropyltrimethoxy silane (APS) and evaluated for their CO2 -capture performance. The resulting APS-functionalized mesoporous silica nanoparticles/Torlon hollow fibers exhibited a high CO2 equilibrium capacity of 1.5 and 1.9 mmol g(-1) at 35 and 60 °C, respectively, which is significantly higher than values for fiber sorbents without nanoparticles reported previously.
Collapse
Affiliation(s)
- Ali A Rownaghi
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 110 N State, St. Rolla, MO, 65409, USA.
| | - Fateme Rezaei
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 110 N State, St. Rolla, MO, 65409, USA
| | - Ying Labreche
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, GA, 30332, USA
| | - Patrick J Brennan
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 110 N State, St. Rolla, MO, 65409, USA
| | - Justin R Johnson
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, GA, 30332, USA
| | - Fuyue Stephanie Li
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, GA, 30332, USA
| | - William J Koros
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, GA, 30332, USA.
| |
Collapse
|
12
|
Ternary Phase-Separation Investigation of Sol-Gel Derived Silica from Ethyl Silicate 40. Sci Rep 2015; 5:14560. [PMID: 26411484 PMCID: PMC4585945 DOI: 10.1038/srep14560] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/28/2015] [Indexed: 11/12/2022] Open
Abstract
A ternary phase-separation investigation of the ethyl silicate 40 (ES40) sol-gel process was conducted using ethanol and water as the solvent and hydrolysing agent, respectively. This oligomeric silica precursor underwent various degrees of phase separation behaviour in solution during the sol-gel reactions as a function of temperature and H2O/Si ratios. The solution composition within the immiscible region of the ES40 phase-separated system shows that the hydrolysis and condensation reactions decreased with decreasing reaction temperature. A mesoporous structure was obtained at low temperature due to weak drying forces from slow solvent evaporation on one hand and formation of unreacted ES40 cages in the other, which reduced network shrinkage and produced larger pores. This was attributed to the concentration of the reactive sites around the phase-separated interface, which enhanced the condensation and crosslinking. Contrary to dense silica structures obtained from sol-gel reactions in the miscible region, higher microporosity was produced via a phase-separated sol-gel system by using high H2O/Si ratios. This tailoring process facilitated further condensation reactions and crosslinking of silica chains, which coupled with stiffening of the network, made it more resistant to compression and densification.
Collapse
|
13
|
Seyfaee A, Neville F, Moreno-Atanasio R. Experimental Results and Theoretical Modeling of the Growth Kinetics of Polyamine-Derived Silica Particles. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b00093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ahmad Seyfaee
- School
of Engineering, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Frances Neville
- School
of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Roberto Moreno-Atanasio
- School
of Engineering, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
14
|
Hyde EDE, Moreno-Atanasio R, Millner PA, Neville F. Surface Charge Control through the Reversible Adsorption of a Biomimetic Polymer on Silica Particles. J Phys Chem B 2015; 119:1726-35. [DOI: 10.1021/jp5100439] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | - Paul A. Millner
- Faculty
of Biological Sciences, The University of Leeds, Leeds, LS2 9JT, U.K
| | | |
Collapse
|
15
|
Simon LL, Pataki H, Marosi G, Meemken F, Hungerbühler K, Baiker A, Tummala S, Glennon B, Kuentz M, Steele G, Kramer HJM, Rydzak JW, Chen Z, Morris J, Kjell F, Singh R, Gani R, Gernaey KV, Louhi-Kultanen M, O’Reilly J, Sandler N, Antikainen O, Yliruusi J, Frohberg P, Ulrich J, Braatz RD, Leyssens T, von Stosch M, Oliveira R, Tan RBH, Wu H, Khan M, O’Grady D, Pandey A, Westra R, Delle-Case E, Pape D, Angelosante D, Maret Y, Steiger O, Lenner M, Abbou-Oucherif K, Nagy ZK, Litster JD, Kamaraju VK, Chiu MS. Assessment of Recent Process Analytical Technology (PAT) Trends: A Multiauthor Review. Org Process Res Dev 2015. [DOI: 10.1021/op500261y] [Citation(s) in RCA: 269] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Hajnalka Pataki
- Department
of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - György Marosi
- Department
of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Fabian Meemken
- Department
of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg
1, 8093 Zürich, Switzerland
| | - Konrad Hungerbühler
- Department
of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg
1, 8093 Zürich, Switzerland
| | - Alfons Baiker
- Department
of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg
1, 8093 Zürich, Switzerland
| | - Srinivas Tummala
- Chemical
Development, Bristol-Myers Squibb Company, One Squibb Dr, New Brunswick, New Jersey 08903, United States
| | - Brian Glennon
- Synthesis
and Solid State Pharmaceutical Centre, School of Chemical and Bioprocess
Engineering, University College Dublin, Belfield, Dublin 4, Ireland
- APC Ltd, Belfield Innovation
Park, Dublin 4, Ireland
| | - Martin Kuentz
- School of Life
Sciences, Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, 4132 Muttenz, Switzerland
| | - Gerry Steele
- PharmaCryst Consulting
Ltd., Loughborough, Leicestershire LE11 3HN, U.K
| | - Herman J. M. Kramer
- Intensified Reaction & Separation Systems, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - James W. Rydzak
- GlaxoSmithKline Pharmaceuticals, 709 Swedeland Rd, King of
Prussia, Pennsylvania 19406, United States
| | - Zengping Chen
- State Key
Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China
| | - Julian Morris
- Centre for Process Analytics & Control Technology, School of Chemical Engineering & Advanced Materials, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE17RU, U.K
| | - Francois Kjell
- Siemens nv/sa,
Industry
Automation − SIPAT Industry Software, Marie Curie Square 30, 1070 Brussels, Belgium
| | - Ravendra Singh
- CAPEC-PROCESS,
Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), Building 229, DK-2800 Lyngby, Denmark
| | - Rafiqul Gani
- CAPEC-PROCESS,
Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), Building 229, DK-2800 Lyngby, Denmark
| | - Krist V. Gernaey
- CAPEC-PROCESS,
Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), Building 229, DK-2800 Lyngby, Denmark
| | - Marjatta Louhi-Kultanen
- Department
of Chemical Technology, Lappeenranta University of Technology, P.O. Box 20, FI-53851 Lappeenranta, Finland
| | - John O’Reilly
- Roche Ireland
Limited, Clarecastle, Co. Clare, Ireland
| | - Niklas Sandler
- Pharmaceutical
Sciences Laboratory, Department of Biosciences, Abo Akademi University, Artillerigatan 6, 20520 Turku, Finland
| | - Osmo Antikainen
- Division
of Pharmaceutical Technology, Faculty of Pharmacy, University of Helsinki, Yliopistonkatu 4, 00100 Helsinki, Finland
| | - Jouko Yliruusi
- Division
of Pharmaceutical Technology, Faculty of Pharmacy, University of Helsinki, Yliopistonkatu 4, 00100 Helsinki, Finland
| | - Patrick Frohberg
- Center of
Engineering Science, Thermal Process Engineering, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Joachim Ulrich
- Center of
Engineering Science, Thermal Process Engineering, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Richard D. Braatz
- Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Tom Leyssens
- Institute
of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Moritz von Stosch
- REQUIMTE
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 1099-085 Caparica, Portugal
- HybPAT, Caparica, Portugal
| | - Rui Oliveira
- REQUIMTE
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 1099-085 Caparica, Portugal
- HybPAT, Caparica, Portugal
| | - Reginald B. H. Tan
- Institute
of Chemical and Engineering Sciences, A*Star, 1 Pesek Road, Singapore 627833
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576
| | - Huiquan Wu
- Division
of Product Quality Research, Office of Testing and Research, Office
of Pharmaceutical Science, Center for Drug Evaluation and Research, US Food and Drug Administration (FDA), Silver Spring, Maryland 20993, United States
| | - Mansoor Khan
- Division
of Product Quality Research, Office of Testing and Research, Office
of Pharmaceutical Science, Center for Drug Evaluation and Research, US Food and Drug Administration (FDA), Silver Spring, Maryland 20993, United States
| | - Des O’Grady
- Mettler Toledo
AutoChem, 7075 Samuel Morse Drive, Columbia, Maryland 20146, United States
| | - Anjan Pandey
- Mettler Toledo
AutoChem, 7075 Samuel Morse Drive, Columbia, Maryland 20146, United States
| | - Remko Westra
- FMC Technologies B.V., Delta 101, 6825 MN Arnhem, The Netherlands
| | - Emmanuel Delle-Case
- University of Tulsa, 800 South Tucker
Drive, Tulsa, Oklahoma 74104, United States
| | - Detlef Pape
- ABB Corporate Research Center, Segelhofstrasse
1K, 5405, Dättwil, Baden, Switzerland
| | - Daniele Angelosante
- ABB Corporate Research Center, Segelhofstrasse
1K, 5405, Dättwil, Baden, Switzerland
| | - Yannick Maret
- ABB Corporate Research Center, Segelhofstrasse
1K, 5405, Dättwil, Baden, Switzerland
| | - Olivier Steiger
- ABB Corporate Research Center, Segelhofstrasse
1K, 5405, Dättwil, Baden, Switzerland
| | - Miklós Lenner
- ABB Corporate Research Center, Segelhofstrasse
1K, 5405, Dättwil, Baden, Switzerland
| | - Kaoutar Abbou-Oucherif
- School of
Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Zoltan K. Nagy
- School of
Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
- Chemical
Engineering Department, Loughborough University, Loughborough, LE11 3TU, U.K
| | - James D. Litster
- School of
Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Vamsi Krishna Kamaraju
- Synthesis
and Solid State Pharmaceutical Centre, School of Chemical and Bioprocess
Engineering, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576
| | - Min-Sen Chiu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576
| |
Collapse
|