1
|
Wang Y, Zhang L, Mao L, Yuan F, Liu J, Gao Y. Insight into the composite assembly process, nanofibril structure and stability of undenatured type II collagen in the presence of different types of nanocelluloses. Int J Biol Macromol 2023; 240:124521. [PMID: 37085069 DOI: 10.1016/j.ijbiomac.2023.124521] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/23/2023]
Abstract
Four types of nanocelluloses (CNs), including cellulose nanocrystals (CNC), cellulose nanofibrils (CNF), cationic etherified nanocellulose (CCNF) and TEMPO-oxidized nanocellulose (TOCNF), were incorporated into the assembly process of undenatured type II collagen (UC-II). In the presence of CNs, the kinetics of UC-II composite assembly slightly fluctuated and the magnitude of UC-II assembly increased (from 59.93 to 66.83-85.06 %). CNC and CNF disrupted the triple helix structure of UC-II while CCNF and TOCNF had weak impact on it. Hydrogen bonding and hydrophobic interactions were dominant driving forces of UC-II/CNs, and electrostatic interactions were also involved in the fabrication of UC-II/CCNF and UC-II/TOCNF. UC-II/CNs exhibited distinct nanostructures due to the differences in shape, level, and surface group of CNs. CCNF and TOCNF contributed to the enhanced physical stability due to the increased surface charge. In addition, the thermal stability and rheological properties of UC-II/CNs were also improved. The composite assembly process, nanofibril structure and stability of UC-II in the presence of different types and levels of CNs, which was useful to develop the novel composite nanofibrils for the application in functional foods.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Liang Zhang
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Like Mao
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Fang Yuan
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jinfang Liu
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yanxiang Gao
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
2
|
Development and mechanical properties of soy protein isolate-chitin nanofibers complex gel: The role of high-pressure homogenization. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Functionalization of Cellulose-Based Hydrogels with Bi-Functional Fusion Proteins Containing Carbohydrate-Binding Modules. MATERIALS 2021; 14:ma14123175. [PMID: 34207652 PMCID: PMC8227779 DOI: 10.3390/ma14123175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 01/14/2023]
Abstract
Materials with novel and enhanced functionalities can be obtained by modifying cellulose with a range of biomolecules. This functionalization can deliver tailored cellulose-based materials with enhanced physical and chemical properties and control of biological interactions that match specific applications. One of the foundations for the success of such biomaterials is to efficiently control the capacity to combine relevant biomolecules into cellulose materials in such a way that the desired functionality is attained. In this context, our main goal was to develop bi-functional biomolecular constructs for the precise modification of cellulose hydrogels with bioactive molecules of interest. The main idea was to use biomolecular engineering techniques to generate and purify different recombinant fusions of carbohydrate binding modules (CBMs) with significant biological entities. Specifically, CBM-based fusions were designed to enable the bridging of proteins or oligonucleotides with cellulose hydrogels. The work focused on constructs that combine a family 3 CBM derived from the cellulosomal-scaffolding protein A from Clostridium thermocellum (CBM3) with the following: (i) an N-terminal green fluorescent protein (GFP) domain (GFP-CBM3); (ii) a double Z domain that recognizes IgG antibodies; and (iii) a C-terminal cysteine (CBM3C). The ability of the CBM fusions to bind and/or anchor their counterparts onto the surface of cellulose hydrogels was evaluated with pull-down assays. Capture of GFP-CBM3 by cellulose was first demonstrated qualitatively by fluorescence microscopy. The binding of the fusion proteins, the capture of antibodies (by ZZ-CBM3), and the grafting of an oligonucleotide (to CBM3C) were successfully demonstrated. The bioactive cellulose platform described here enables the precise anchoring of different biomolecules onto cellulose hydrogels and could contribute significatively to the development of advanced medical diagnostic sensors or specialized biomaterials, among others.
Collapse
|
4
|
Zhai X, Lin D, Li W, Yang X. Improved characterization of nanofibers from bacterial cellulose and its potential application in fresh-cut apples. Int J Biol Macromol 2020; 149:178-186. [DOI: 10.1016/j.ijbiomac.2020.01.230] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 11/26/2022]
|
5
|
Matsumoto Y, Shundo A, Hayashi H, Tsuruzoe N, Tanaka K. Effect of the Heterogeneous Structure on Mechanical Properties for a Nanocellulose-Reinforced Polymer Composite. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01866] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
6
|
Cellulose microfibril networks in hydrolysed soy protein isolate solutions. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.02.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Peng J, Calabrese V, Geurtz J, Velikov KP, Venema P, van der Linden E. Composite Gels Containing Whey Protein Fibrils and Bacterial Cellulose Microfibrils. J Food Sci 2019; 84:1094-1103. [PMID: 31038744 PMCID: PMC6593742 DOI: 10.1111/1750-3841.14509] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/18/2018] [Accepted: 02/18/2019] [Indexed: 11/29/2022]
Abstract
In this study, we investigated the gelation of WPI fibrils in the presence of bacterial cellulose (BC) microfibrils at pH 2 upon prolonged heating. Rheology and microstructure were investigated as a function of BC microfibril concentration. The presence of BC microfibrils did not influence the gelation dynamics and resulting overall structure of the WPI fibrillar gel. The storage modulus and loss modulus of the mixed WPI‐BC microfibril gels increased with increasing BC microfibril concentration, whereas the ratio between loss modulus and storage modulus remained constant. The WPI fibrils and BC microfibrils independently form two coexisting gel networks. Interestingly, near to the BC microfibrils more aligned WPI fibrils seemed to be formed, with individual WPI fibrils clearly distinguishable. The level of alignment of the WPI fibrils seemed to be dependent on the distance between BC microfibrils and WPI fibrils. This also is in line with our observation that with more BC microfibrils present, WPI fibrils are more aligned than in a WPI fibrillar gel without BC microfibrils. The large deformation response of the gels at different BC microfibril concentration and NaCl concentration is mainly influenced by the concentration of NaCl, which affects the WPI fibrillar gel structures, changing form linear fibrillar to a particulate gel. The WPI fibrillar gel yields the dominant contribution to the gel strength.
Collapse
Affiliation(s)
- Jinfeng Peng
- Physics and Physical Chemistry of Foods, Dept. of Agrotechnology and Food Sciences, Wageningen Univ., P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| | - Vincenzo Calabrese
- Physics and Physical Chemistry of Foods, Dept. of Agrotechnology and Food Sciences, Wageningen Univ., P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| | - Julia Geurtz
- Physics and Physical Chemistry of Foods, Dept. of Agrotechnology and Food Sciences, Wageningen Univ., P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| | - Krassimir P Velikov
- Unilever R&D Vlaardingen, Olivier van Noortlaan, 120, 3133 AT, Vlaardingen, The Netherlands.,Inst. of Physics, Univ. of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.,Soft Condensed Matter, Debye Institute for NanoMaterials Science, Utrecht Univ., Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Paul Venema
- Physics and Physical Chemistry of Foods, Dept. of Agrotechnology and Food Sciences, Wageningen Univ., P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| | - Erik van der Linden
- Physics and Physical Chemistry of Foods, Dept. of Agrotechnology and Food Sciences, Wageningen Univ., P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
8
|
Peng J, Calabrese V, Ainis WN, Scager R, Velikov KP, Venema P, van der Linden E. Mixed gels from whey protein isolate and cellulose microfibrils. Int J Biol Macromol 2018; 124:1094-1105. [PMID: 30476515 DOI: 10.1016/j.ijbiomac.2018.11.210] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 11/18/2022]
Abstract
Whey proteins can form different gel structures ranging from fine-stranded to particulate when appropriate conditions are applied. By incorporating polysaccharides, the gelation of WPI can be influenced. We investigated the heat-induced gelation of whey protein isolate (WPI) in the presence of bacterial cellulose (BC) microfibrils at pH 7 at different concentrations of NaCl. Our results showed that WPI and BC microfibrils form a homogeneous dispersion at pH 7. Upon heating, the WPI gel was formed independently in the presence of the BC microfibril gel, resulting in the formation of a composite gel. The gel structure and gelation dynamics of WPI was not influenced by the presence of BC microfibrils. However, the presence of BC microfibrils increased the storage modulus of the WPI gel, with an increase being negligible when the strength of the WPI gel is above a certain value. With an increase of NaCl concentration, the WPI gel structure changes from fine-stranded to a particulate gel, while the BC microfibril gel structure remains unchanged. No macroscopic phase separation could be observed in the WPI-BC microfibril gels. Our results showed that the rheological properties and water holding capacity of the WPI-BC microfibril mixed gels are mainly dominated by the WPI.
Collapse
Affiliation(s)
- Jinfeng Peng
- Physics and Physical Chemistry of Foods, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Vincenzo Calabrese
- Physics and Physical Chemistry of Foods, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - William Nicholas Ainis
- Physics and Physical Chemistry of Foods, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Ruben Scager
- Physics and Physical Chemistry of Foods, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Krassimir P Velikov
- Unilever R&D Vlaardingen, Olivier van Noortlaan 120, 3133 AT Vlaardingen, the Netherlands; Soft Condensed Matter, Debye Institute for NanoMaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, the Netherlands
| | - Paul Venema
- Physics and Physical Chemistry of Foods, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| | - Erik van der Linden
- Physics and Physical Chemistry of Foods, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
9
|
Peng J, Calabrese V, Veen SJ, Versluis P, Velikov KP, Venema P, van der Linden E. Rheology and microstructure of dispersions of protein fibrils and cellulose microfibrils. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.03.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Mohan S, Koenderink GH, Velikov KP. Inelastic behaviour of cellulose microfibril networks. SOFT MATTER 2018; 14:6828-6834. [PMID: 30132493 DOI: 10.1039/c8sm00904j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cellulose microfibrils (CMF) are a unique class of shape anisotropic bio-nanomaterials, already finding many applications in diverse fields owing to their advantageous material properties and abundant availability. The rich non-linear mechanical behaviour of CMF networks has been under-studied due to the complex nature of this system, being influenced by many factors such as strong inter-fibril interactions, a heterogeneous microstructure, and process conditions. In this work, we systematically explore the non-linear rheological behaviour of these networks using a CMF model system with controlled process conditions and fibril interactions. The microfibrils were dispersed in dimethyl sulfoxide to minimise the attractive van der Waals interactions and thereby also the network heterogeneity. We show that the networks exhibit a transition with increasing shear stress from a predominantly elastic to a plastic deformation where they undergo softening. We find that the network stiffness and plasticity are dependent on the loading rate. Finally, we observed that the networks regain their original viscoelastic moduli on cessation of shear. These findings form a basis towards understanding and ultimately modelling the mechanics of CMF networks, which is a prerequisite for the rational design of novel bio-based materials.
Collapse
Affiliation(s)
- Srivatssan Mohan
- Soft Condensed Matter, Debye Institute for NanoMaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Gijsje H Koenderink
- AMOLF, Living Matter Department, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Krassimir P Velikov
- Soft Condensed Matter, Debye Institute for NanoMaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands and Unilever R&D Vlaardingen, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands. and Institute of Physics, University of Amsterdam, Science Park 904, 1018 XH Amsterdam, The Netherlands
| |
Collapse
|
11
|
Xu HN, Li YH. Decoupling Arrest Origins in Hydrogels of Cellulose Nanofibrils. ACS OMEGA 2018; 3:1564-1571. [PMID: 31458480 PMCID: PMC6641346 DOI: 10.1021/acsomega.7b01905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/26/2018] [Indexed: 06/08/2023]
Abstract
Colloidal gels with various architectures and different types of interactions provide a unique opportunity to shed light on the interplay between microscopic structures and mechanical properties of soft glassy materials. Here, we prepare acetylated cellulose nanofibrils with 2 degrees of substitution and make a structural and rheological characterization of their hydrogels. Two-step yielding processes are observed in the shear experiments, which allow us to deduce more precise knowledge regarding localized structural changes of the fibrils. We separate the viscoelastic response into two contributions: the establishment of cross-linked clusters on a fibril level and the arrested phase separation on a cluster level. We hypothesize that with the addition of salt, the hydrogels exhibit different arrested states that are identified as unable to access the thermodynamic equilibrium. Our results highlight that the coexistence of gelation and glass transitions are experimentally recognized in the hydrogels, with a global gelation driven by a local glasslike arrest during spinodal decomposition.
Collapse
Affiliation(s)
- Hua-Neng Xu
- State Key Laboratory
of Food Science and Technology and School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People’s Republic of China
| | - Ying-Hao Li
- State Key Laboratory
of Food Science and Technology and School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People’s Republic of China
| |
Collapse
|
12
|
de Kort DW, Veen SJ, Van As H, Bonn D, Velikov KP, van Duynhoven JPM. Yielding and flow of cellulose microfibril dispersions in the presence of a charged polymer. SOFT MATTER 2016; 12:4739-4744. [PMID: 27120969 DOI: 10.1039/c5sm02869h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The shear flow of microfibrillated cellulose dispersions is still not wholly understood as a consequence of their multi-length-scale heterogeneity. We added carboxymethyl cellulose, a charged polymer, that makes cellulose microfibril dispersions more homogeneous at the submicron and macro scales. We then compared the yielding and flow behavior of these dispersions to that of typical thixotropic yield-stress fluids. Despite the apparent homogeneity of the dispersions, their flow velocity profiles in cone-plate geometry, as measured by rheo-MRI velocimetry, differ strongly from those observed for typical thixotropic model systems: the viscosity across the gap is not uniform, despite a flat stress field across the gap. We describe these velocity profiles with a nonlocal model, and attribute the non-locality to persistent micron-scale structural heterogeneity.
Collapse
Affiliation(s)
- Daan W de Kort
- Laboratory of Biophysics, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands. and TI-COAST, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Sandra J Veen
- Unilever R&D, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands
| | - Henk Van As
- Laboratory of Biophysics, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands. and TI-COAST, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Daniel Bonn
- Van der Waals-Zeeman Institute, IoP, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Krassimir P Velikov
- Unilever R&D, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands and Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - John P M van Duynhoven
- Laboratory of Biophysics, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands. and TI-COAST, Science Park 904, 1098 XH Amsterdam, The Netherlands and Unilever R&D, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands
| |
Collapse
|
13
|
Paximada P, Dimitrakopoulou EA, Tsouko E, Koutinas AA, Fasseas C, Mandala IG. Structural modification of bacterial cellulose fibrils under ultrasonic irradiation. Carbohydr Polym 2016; 150:5-12. [PMID: 27312607 DOI: 10.1016/j.carbpol.2016.04.125] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/24/2016] [Accepted: 04/28/2016] [Indexed: 11/19/2022]
Abstract
Ιn the present study we investigated ultrasounds as a pretreatment process for bacterial cellulose (BC) aqueous suspensions. BC suspensions (0.1-1% wt) subjected to an ultrasonic treatment for different time intervals. Untreated BC presented an extensively entangled fibril network. When a sonication time of 1min was applied BC fibrils appeared less bundled and dropped in width from 110nm to 60nm. For a longer treatment (3-5min) the width of the fibrils increased again to 100nm attributed to an entanglement of their structure. The water holding capacity (WHC) and ζ-potnential of the suspensions was proportional to the sonication time. Their viscosity and stability were also affected; an increase could be seen at short treatments, while a decrease was obvious at longer ones. Concluding, a long ultrasonic irradiation led to similar BC characteristics as the untreated, but a short treatment may be a pre-handling method for improving BC properties.
Collapse
Affiliation(s)
- Paraskevi Paximada
- Food Science & Nutrition, Agricultural University of Athens, IeraOdos 75, 11855 Athens, Greece
| | | | - Erminda Tsouko
- Food Science & Nutrition, Agricultural University of Athens, IeraOdos 75, 11855 Athens, Greece
| | - Apostolos A Koutinas
- Food Science & Nutrition, Agricultural University of Athens, IeraOdos 75, 11855 Athens, Greece
| | - C Fasseas
- Laboratory of Cell Biology, Faculty of Crop Science, Agricultural University of Athens, Greece
| | - Ioanna G Mandala
- Food Science & Nutrition, Agricultural University of Athens, IeraOdos 75, 11855 Athens, Greece.
| |
Collapse
|
14
|
Veen SJ, Versluis P, Kuijk A, Velikov KP. Microstructure and rheology of microfibril-polymer networks. SOFT MATTER 2015; 11:8907-8912. [PMID: 26434637 DOI: 10.1039/c5sm02086g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
By using an adsorbing polymer in combination with mechanical de-agglomeration, the microstructure and rheological properties of networks of microfibrils could be controlled. By the addition of sodium carboxymethyl cellulose during de-agglomeration of networks of bacterial cellulose, the microstructure could be changed from an inhomogeneous network with bundles of microfibrils and voids to a more homogeneous spread and alignment of the particles. As a result the macroscopic rheological properties were altered. Although still elastic and gel-like in nature, the elasticity and viscous behavior of the network as a function of microfibril concentration is altered. The microstructure is thus changed by changing the surface properties of the building blocks leading to a direct influence on the materials macroscopic behavior.
Collapse
Affiliation(s)
- Sandra J Veen
- Unilever R&D Vlaardingen, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands.
| | | | | | | |
Collapse
|
15
|
Panagopoulou E, Tsouko E, Kopsahelis N, Koutinas A, Mandala I, Evageliou V. Olive oil emulsions formed by catastrophic phase inversion using bacterial cellulose and whey protein isolate. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.09.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Lin D, Li R, Lopez-Sanchez P, Li Z. Physical properties of bacterial cellulose aqueous suspensions treated by high pressure homogenizer. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2014.10.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Veen SJ, Kuijk A, Versluis P, Husken H, Velikov KP. Phase transitions in cellulose microfibril dispersions by high-energy mechanical deagglomeration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:13362-13368. [PMID: 25314626 DOI: 10.1021/la502790n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
It is shown that dispersions of cellulose microfibrils display gel-sol and direct gel-colloidal liquid crystalline structure transitions. This is achieved by applying high-energy mechanical deagglomeration to bacterial cellulose (BC) networks in the presence of sodium carboxymethyl cellulose (CMC). At high CMC content adsorption of the polymer leads to a significant increase in the ζ potential. The resulting apparent phase diagram shows transitions from aggregates to single microfibril dispersions with increasing the CMC/BC weight ratio at low microfibril concentrations. At higher concentrations, liquid crystalline ordering was observed and the microstructure becomes more homogeneous with increasing the CMC content. The observed liquid crystalline ordering was found to be reminiscent of nematic gels. Applying deagglomeration in the presence of CMC, thus, transitions the system from aggregates and gels to dispersions of single microfibrils and nematic gel-type structures.
Collapse
Affiliation(s)
- Sandra J Veen
- Unilever Research Vlaardingen , Olivier van Noortlaan 120, 3133 AT Vlaardingen, Netherlands
| | | | | | | | | |
Collapse
|
18
|
Lam S, Velikov KP, Velev OD. Pickering stabilization of foams and emulsions with particles of biological origin. Curr Opin Colloid Interface Sci 2014. [DOI: 10.1016/j.cocis.2014.07.003] [Citation(s) in RCA: 338] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Jalak J, Väljamäe P. Multi-mode binding of Cellobiohydrolase Cel7A from Trichoderma reesei to cellulose. PLoS One 2014; 9:e108181. [PMID: 25265511 PMCID: PMC4180464 DOI: 10.1371/journal.pone.0108181] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/19/2014] [Indexed: 01/26/2023] Open
Abstract
Enzymatic hydrolysis of recalcitrant polysaccharides like cellulose takes place on the solid-liquid interface. Therefore the adsorption of enzymes to the solid surface is a pre-requisite for catalysis. Here we used enzymatic activity measurements with fluorescent model-substrate 4-methyl-umbelliferyl-β-D-lactoside for sensitive monitoring of the binding of cellobiohydrolase TrCel7A from Trichoderma reesei to bacterial cellulose (BC). The binding at low nanomolar free TrCel7A concentrations was exclusively active site mediated and was consistent with Langmuir's one binding site model with Kd and Amax values of 2.9 nM and 126 nmol/g BC, respectively. This is the strongest binding observed with non-complexed cellulases and apparently represents the productive binding of TrCel7A to cellulose chain ends on the hydrophobic face of BC microfibril. With increasing free TrCel7A concentrations the isotherm gradually deviated from the Langmuir's one binding site model. This was caused by the increasing contribution of lower affinity binding modes that included both active site mediated binding and non-productive binding with active site free from cellulose chain. The binding of TrCel7A to BC was found to be only partially reversible. Furthermore, the isotherm was dependent on the concentration of BC with more efficient binding observed at lower BC concentrations. The phenomenon can be ascribed to the BC concentration dependent aggregation of BC microfibrils with concomitant reduction of specific surface area.
Collapse
Affiliation(s)
- Jürgen Jalak
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Priit Väljamäe
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- * E-mail:
| |
Collapse
|
20
|
Yuan Y, Sun YE, Wan ZL, Yang XQ, Wu JF, Yin SW, Wang JM, Guo J. Chitin microfibers reinforce soy protein gels cross-linked by transglutaminase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:4434-4442. [PMID: 24766388 DOI: 10.1021/jf500922n] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
To improve the gel strength, we attempt to introduce the microcomposite concept into the food gel system. A stable positively charged chitin microfibers (CMFs) suspension was fabricated by a facile microfluidizer approach without changing its chemical structure. The obtained CMFs bearing width of about 0.5-5 μm and length of more than 500 μm were then developed in a transglutaminase cross-linked β-conglycinin (7S) gel. The morphological and rheological characterizations of the 7S-CMF composited gels were done as a function of the protein and CMFs concentrations. Results showed that the presence of the CMFs network improved the gel strength significantly. This effect was CMFs content dependent and was related to the formation of a sponge-like porous microstructure. We inferred that the CMFs provided an initial framework for gel formation and added structural rigidity to the protein gel. The role of protein was to participate in network development as an electrostatic coating and gelation component.
Collapse
Affiliation(s)
- Yang Yuan
- Research and Development Center of Food Proteins, College of Light Industry and Food, South China University of Technology , Guangzhou 510640, PR China
| | | | | | | | | | | | | | | |
Collapse
|