1
|
Romaní-Cubells E, Martínez-Erro S, Morales V, Chocarro-Calvo A, García-Martínez JM, Sanz R, García-Jiménez C, García-Muñoz RA. Magnetically modified-mitoxantrone mesoporous organosilica drugs: an emergent multimodal nanochemotherapy for breast cancer. J Nanobiotechnology 2024; 22:249. [PMID: 38745193 PMCID: PMC11092073 DOI: 10.1186/s12951-024-02522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Chemotherapy, the mainstay treatment for metastatic cancer, presents serious side effects due to off-target exposure. In addition to the negative impact on patients' quality of life, side effects limit the dose that can be administered and thus the efficacy of the drug. Encapsulation of chemotherapeutic drugs in nanocarriers is a promising strategy to mitigate these issues. However, avoiding premature drug release from the nanocarriers and selectively targeting the tumour remains a challenge. RESULTS In this study, we present a pioneering method for drug integration into nanoparticles known as mesoporous organosilica drugs (MODs), a distinctive variant of periodic mesoporous organosilica nanoparticles (PMOs) in which the drug is an inherent component of the silica nanoparticle structure. This groundbreaking approach involves the chemical modification of drugs to produce bis-organosilane prodrugs, which act as silica precursors for MOD synthesis. Mitoxantrone (MTO), a drug used to treat metastatic breast cancer, was selected for the development of MTO@MOD nanomedicines, which demonstrated a significant reduction in breast cancer cell viability. Several MODs with different amounts of MTO were synthesised and found to be efficient nanoplatforms for the sustained delivery of MTO after biodegradation. In addition, Fe3O4 NPs were incorporated into the MODs to generate magnetic MODs to actively target the tumour and further enhance drug efficacy. Importantly, magnetic MTO@MODs underwent a Fenton reaction, which increased cancer cell death twofold compared to non-magnetic MODs. CONCLUSIONS A new PMO-based material, MOD nanomedicines, was synthesised using the chemotherapeutic drug MTO as a silica precursor. MTO@MOD nanomedicines demonstrated their efficacy in significantly reducing the viability of breast cancer cells. In addition, we incorporated Fe3O4 into MODs to generate magnetic MODs for active tumour targeting and enhanced drug efficacy by ROS generation. These findings pave the way for the designing of silica-based multitherapeutic nanomedicines for cancer treatment with improved drug delivery, reduced side effects and enhanced efficacy.
Collapse
Affiliation(s)
- Eva Romaní-Cubells
- Department of Chemical and Environmental Technology, Rey Juan Carlos University (URJC), C/Tulipán s/n, Móstoles, Madrid, 28933, Spain
| | - Samuel Martínez-Erro
- Department of Chemical and Environmental Technology, Rey Juan Carlos University (URJC), C/Tulipán s/n, Móstoles, Madrid, 28933, Spain
| | - Victoria Morales
- Department of Chemical and Environmental Technology, Rey Juan Carlos University (URJC), C/Tulipán s/n, Móstoles, Madrid, 28933, Spain
| | - Ana Chocarro-Calvo
- Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Avda. Atenas s/n, Alcorcón, Madrid, 28922, Spain
| | - José M García-Martínez
- Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Avda. Atenas s/n, Alcorcón, Madrid, 28922, Spain
| | - Raúl Sanz
- Department of Chemical and Environmental Technology, Rey Juan Carlos University (URJC), C/Tulipán s/n, Móstoles, Madrid, 28933, Spain
| | - Custodia García-Jiménez
- Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Avda. Atenas s/n, Alcorcón, Madrid, 28922, Spain.
| | - Rafael A García-Muñoz
- Department of Chemical and Environmental Technology, Rey Juan Carlos University (URJC), C/Tulipán s/n, Móstoles, Madrid, 28933, Spain.
| |
Collapse
|
2
|
Zaera F. Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts? Chem Rev 2022; 122:8594-8757. [PMID: 35240777 DOI: 10.1021/acs.chemrev.1c00905] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A critical review of different prominent nanotechnologies adapted to catalysis is provided, with focus on how they contribute to the improvement of selectivity in heterogeneous catalysis. Ways to modify catalytic sites range from the use of the reversible or irreversible adsorption of molecular modifiers to the immobilization or tethering of homogeneous catalysts and the development of well-defined catalytic sites on solid surfaces. The latter covers methods for the dispersion of single-atom sites within solid supports as well as the use of complex nanostructures, and it includes the post-modification of materials via processes such as silylation and atomic layer deposition. All these methodologies exhibit both advantages and limitations, but all offer new avenues for the design of catalysts for specific applications. Because of the high cost of most nanotechnologies and the fact that the resulting materials may exhibit limited thermal or chemical stability, they may be best aimed at improving the selective synthesis of high value-added chemicals, to be incorporated in organic synthesis schemes, but other applications are being explored as well to address problems in energy production, for instance, and to design greener chemical processes. The details of each of these approaches are discussed, and representative examples are provided. We conclude with some general remarks on the future of this field.
Collapse
Affiliation(s)
- Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
3
|
Zhong H, Zhang Y, Deng J. Optically active porous hybrid particles constructed by alkynylated cellulose nanocrystals, helical substituted polyacetylene, and inorganic silica for enantio-differentiating towards naproxen. Chirality 2021; 34:48-60. [PMID: 34725862 DOI: 10.1002/chir.23382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 10/15/2021] [Indexed: 11/08/2022]
Abstract
This article reports on a novel type of ternary chiral porous hybrid particles (TCPHPs) constructed by alkynylated cellulose nanocrystals (A-CNCs), helical substituted polyacetylene, and inorganic silica. The resulting TCPHPs combine the respective advantages of the three components. A-CNCs serve as stabilizer, co-monomer, and chiral source simultaneously and transfer their chirality to the resulting helical substituted polyacetylenes in the course of copolymerization with achiral acetylenic monomer following "sergeants and soldiers rule". Helical substituted polyacetylenes form chiral helical structures and thus endow TCPHPs with the anticipated optical activity. Inorganic silica constitutes the rigid framework and is covalently bonded with the organic components through hydrolysis of Si-O-Et groups. Phase separation between the organic and inorganic components renders TCPHPs with abundant pores. Scanning electron microscope (SEM) images confirm the formation of spherical particles with porous structures. Circular dichroism spectra demonstrate the optical activity of the chiral hybrid particles. The as-prepared TCPHPs exhibit capacity for enantio-differentiating performance towards chiral naproxen.
Collapse
Affiliation(s)
- Hai Zhong
- State Key Laboratory of Chemical Resource Engineering and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Yingjie Zhang
- State Key Laboratory of Chemical Resource Engineering and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
4
|
Cytostatic and Cytotoxic Effects of Hollow-Shell Mesoporous Silica Nanoparticles Containing Magnetic Iron Oxide. NANOMATERIALS 2021; 11:nano11092455. [PMID: 34578771 PMCID: PMC8467190 DOI: 10.3390/nano11092455] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022]
Abstract
Among the different types of nanoparticles used in biomedical applications, Fe nanoparticles and mesoporous siliceous materials have been extensively investigated because of their possible theranostic applications. Here, we present hollow-shell mesoporous silica nanoparticles that encapsulate iron oxide and that are prepared using a drug-structure-directing agent concept (DSDA), composed of the model drug tryptophan modified by carbon aliphatic hydrocarbon chains. The modified tryptophan can behave as an organic template that allows directing the hollow-shell mesoporous silica framework, as a result of its micellisation and subsequent assembly of the silica around it. The one-pot synthesis procedure facilitates the incorporation of hydrophobically stabilised iron oxide nanoparticles into the hollow internal silica cavities, with the model drug tryptophan in the shell pores, thus enabling the incorporation of different functionalities into the all-in-one nanoparticles named mesoporous silica nanoparticles containing magnetic iron oxide (Fe3O4@MSNs). Additionally, the drug loading capability and the release of tryptophan from the silica nanoparticles were examined, as well as the cytostaticity and cytotoxicity of the Fe3O4@MSNs in different colon cancer cell lines. The results indicate that Fe3O4@MSNs have great potential for drug loading and drug delivery into specific target cells, thereby overcoming the limitations associated with conventional drug formulations, which are unable to selectively reach the sites of interest.
Collapse
|
5
|
Pérez-Garnes M, Gutiérrez-Salmerón M, Morales V, Chocarro-Calvo A, Sanz R, García-Jiménez C, García-Muñoz RA. Engineering hollow mesoporous silica nanoparticles to increase cytotoxicity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110935. [PMID: 32409082 DOI: 10.1016/j.msec.2020.110935] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/15/2020] [Accepted: 04/04/2020] [Indexed: 01/22/2023]
Abstract
Hollow mesoporous silica nanoparticles (HMSNs) consist of a network of cavities confined by mesoporous shells that have emerged as promising tools for drug delivery or diagnostic. The physicochemical properties of HMSNs are dictated by the synthesis conditions but which conditions affect which property and how it impacts on biological interactions is unclear. Here by changing the concentration of the structure-directing agent (SDA), the pH and the ratio between SDA and added salt (NaCl) we determine the effects in size, morphology, surface charge and density or degree of compaction (physicochemical properties) of HMSNs and define their impact on their biological interactions with human colon cancer or healthy cells at the level of cellular uptake and viability. Increased size or density/degree of compaction of HMSNs increases their cytotoxicity. Strikingly, high salt concentrations in the synthesis medium leads to a spiky-shell morphology that provokes nuclear fragmentation and irreversible cell damage turning HMSNs lethal and unveiling intrinsic therapeutic potential. This strategy may open new avenues to design HMSNs nanoarchitectures with intrinsic therapeutic properties without incorporation of external pharmaceutical ingredients.
Collapse
Affiliation(s)
- Manuel Pérez-Garnes
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - María Gutiérrez-Salmerón
- Department of Basic Health Sciences, Rey Juan Carlos University, Avda. Atenas s/n, 28922 Alcorcón, Madrid, Spain
| | - Victoria Morales
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Ana Chocarro-Calvo
- Department of Basic Health Sciences, Rey Juan Carlos University, Avda. Atenas s/n, 28922 Alcorcón, Madrid, Spain
| | - Raúl Sanz
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Custodia García-Jiménez
- Department of Basic Health Sciences, Rey Juan Carlos University, Avda. Atenas s/n, 28922 Alcorcón, Madrid, Spain.
| | - Rafael A García-Muñoz
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain.
| |
Collapse
|
6
|
Shen C, Qiao J, Zhao L, Zheng K, Jin J, Zhang P. An efficient silica supported Chitosan@vanadium catalyst for asymmetric sulfoxidation and its application in the synthesis of esomeprazole. CATAL COMMUN 2017. [DOI: 10.1016/j.catcom.2017.01.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
7
|
|
8
|
Liang J, Deng J. Chiral porous hybrid particles constructed by helical substituted polyacetylene covalently bonded organosilica for enantioselective release. J Mater Chem B 2016; 4:6437-6445. [DOI: 10.1039/c6tb01757f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new type of chiral porous hybrid particle was successfully prepared and applied in enantioselective release.
Collapse
Affiliation(s)
- Junya Liang
- State Key Laboratory of Chemical Resource Engineering and College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering and College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
9
|
Fernandes CI, Stenning GBG, Taylor JD, Nunes CD, D. Vaz P. Helical Channel Mesoporous Materials with Embedded Magnetic Iron Nanoparticles: Chiral Recognition and Implications in Asymmetric Olefin Epoxidation. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500441] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Mao JN, Du L, Li ZZ, Wang Q, Wang KM, Zhao JS, Zhou J, Yan T, Li SH, Zhao QH. A pair of novel helical Zn(II) enantiomers constructed from l- and d-threonine Schiff bases: Synthesis, crystal structures and properties. INORG CHEM COMMUN 2015. [DOI: 10.1016/j.inoche.2015.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Wahab MA, Beltramini JN. Recent advances in hybrid periodic mesostructured organosilica materials: opportunities from fundamental to biomedical applications. RSC Adv 2015. [DOI: 10.1039/c5ra10062c] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Periodic mesoporous organosilica nanostructures functionalized with various active functional groups: from design to biomedical applications.
Collapse
Affiliation(s)
- Mohammad A. Wahab
- Nanomaterials Centre
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Jorge N. Beltramini
- Nanomaterials Centre
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| |
Collapse
|