1
|
Lv X, Zheng Y, Pan J, Chen L, Lin K, Ye D, Zhou W. Assignment of NMR data and Conformational analysis of larotrectinib and its precursors. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
2
|
Zhou X, Li J, Wang W, Yang F, Fan B, Zhang C, Ren X, Liang F, Cheng R, Jiang F, Zhou H, Yang J, Tan G, Lyu J, Wang W. Removal of Chromium (VI) by Escherichia coli Cells Expressing Cytoplasmic or Surface-Displayed ChrB: a Comparative Study. J Microbiol Biotechnol 2020; 30:996-1004. [PMID: 32238765 PMCID: PMC9728187 DOI: 10.4014/jmb.1912.12030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/18/2020] [Indexed: 12/15/2022]
Abstract
Various genetically engineered microorganisms have been developed for the removal of heavy metal contaminants. Metal biosorption by whole-cell biosorbents can be enhanced by overproduction of metal-binding proteins/peptides in the cytoplasm or on the cell surface. However, few studies have compared the biosorption capacity of whole cells expressing intracellular or surface-displayed metal-adsorbing proteins. In this study, several constructs were prepared for expressing intracellular and surface-displayed Ochrobactrum tritici 5bvl1 ChrB in Escherichia coli BL21(DE3) cells. E. coli cells expressing surface-displayed ChrB removed more Cr(VI) from aqueous solutions than cells with cytoplasmic ChrB under the same conditions. However, intracellular ChrB was less susceptible to variation in extracellular conditions (pH and ionic strength), and more effectively removed Cr(VI) from industrial wastewater than the surface-displayed ChrB at low pH (<3). An adsorptiondesorption experiment demonstrated that compared with intracellular accumulation, cell-surface adsorption is reversible, which allows easy desorption of the adsorbed metal ions and regeneration of the bioadsorbent. In addition, an intrinsic ChrB protein fluorescence assay suggested that pH and salinity may influence the Cr(VI) adsorption capacity of ChrB-expressing E. coli cells by modulating the ChrB protein conformation. Although the characteristics of ChrB may not be universal for all metal-binding proteins, our study provides new insights into different engineering strategies for whole-cell biosorbents for removing heavy metals from industrial effluents.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P.R. China
| | - Jianghui Li
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P.R. China
| | - Weilong Wang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P.R. China
| | - Fan Yang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P.R. China
| | - Bingqian Fan
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P.R. China
| | - Chenlu Zhang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P.R. China
| | - Xiaojun Ren
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P.R. China
| | - Feng Liang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P.R. China
| | - Rong Cheng
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P.R. China
| | - Fengying Jiang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P.R. China
| | - Huaibin Zhou
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P.R. China
| | - Juanjuan Yang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P.R. China
| | - Guoqiang Tan
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P.R. China,Corresponding authors W.W. Phone: +86-57786699659 Fax: +86-57786689771 E-mail:
| | - Jianxin Lyu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P.R. China,Corresponding authors W.W. Phone: +86-57786699659 Fax: +86-57786689771 E-mail:
| | - Wu Wang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P.R. China,Corresponding authors W.W. Phone: +86-57786699659 Fax: +86-57786689771 E-mail:
| |
Collapse
|
3
|
Basu AK, Basu A, Bhattacharya S. Micro/Nano fabricated cantilever based biosensor platform: A review and recent progress. Enzyme Microb Technol 2020; 139:109558. [PMID: 32732024 DOI: 10.1016/j.enzmictec.2020.109558] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 12/24/2022]
Abstract
Recent trends in biosensing research have motivated scientists and research professionals to investigate the development of miniaturized bioanalytical devices to make them portable, label-free and smaller in size. The performance of the cantilever-based devices which is one of the very important domains of sensitive field level detection has improved significantly with the development of new micro/nanofabrication technologies and surface functionalization techniques. The cantilevers have scaled down to Nano from micro-level and have become exceptionally sensitive and also have some anomalous associated properties due to the scale. In this review we have discussed about fundamental principles of cantilever operation, detection methods, and previous, present and future approaches of study through cantilever-based sensing platform. Other than that, we have also discussed the past major bio-sensing efforts through micro/nano cantilevers and about recent progress in the field.
Collapse
Affiliation(s)
- Aviru Kumar Basu
- Design Programme, Indian Institute of Technology, Kanpur, U.P. 208016, India; Microsystems Fabrication Laboratory, Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, U.P. 208016, India; Singapore University of Technology and Design, 487372 Singapore
| | - Adreeja Basu
- Department of Biological Sciences, St. John's University, New York, N.Y 11439, USA
| | - Shantanu Bhattacharya
- Design Programme, Indian Institute of Technology, Kanpur, U.P. 208016, India; Microsystems Fabrication Laboratory, Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, U.P. 208016, India.
| |
Collapse
|
4
|
Müller F, Graziadei A, Rappsilber J. Quantitative Photo-crosslinking Mass Spectrometry Revealing Protein Structure Response to Environmental Changes. Anal Chem 2019; 91:9041-9048. [PMID: 31274288 PMCID: PMC6639777 DOI: 10.1021/acs.analchem.9b01339] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022]
Abstract
Protein structures respond to changes in their chemical and physical environment. However, studying such conformational changes is notoriously difficult, as many structural biology techniques are also affected by these parameters. Here, the use of photo-crosslinking, coupled with quantitative crosslinking mass spectrometry (QCLMS), offers an opportunity, since the reactivity of photo-crosslinkers is unaffected by changes in environmental parameters. In this study, we introduce a workflow combining photo-crosslinking using sulfosuccinimidyl 4,4'-azipentanoate (sulfo-SDA) with our recently developed data-independent acquisition (DIA)-QCLMS. This novel photo-DIA-QCLMS approach is then used to quantify pH-dependent conformational changes in human serum albumin (HSA) and cytochrome C by monitoring crosslink abundances as a function of pH. Both proteins show pH-dependent conformational changes resulting in acidic and alkaline transitions. 93% and 95% of unique residue pairs (URP) were quantifiable across triplicates for HSA and cytochrome C, respectively. Abundance changes of URPs and hence conformational changes of both proteins were visualized using hierarchical clustering. For HSA we distinguished the N-F and the N-B form from the native conformation. In addition, we observed for cytochrome C acidic and basic conformations. In conclusion, our photo-DIA-QCLMS approach distinguished pH-dependent conformers of both proteins.
Collapse
Affiliation(s)
- Fränze Müller
- Bioanalytics,
Institute of Biotechnology, Technische Universität
Berlin, 13355 Berlin, Germany
| | - Andrea Graziadei
- Bioanalytics,
Institute of Biotechnology, Technische Universität
Berlin, 13355 Berlin, Germany
| | - Juri Rappsilber
- Bioanalytics,
Institute of Biotechnology, Technische Universität
Berlin, 13355 Berlin, Germany
- Wellcome
Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, United Kingdom
| |
Collapse
|
5
|
Dionne ER, Dip C, Toader V, Badia A. Micromechanical Redox Actuation by Self-Assembled Monolayers of Ferrocenylalkanethiolates: Evens Push More Than Odds. J Am Chem Soc 2018; 140:10063-10066. [PMID: 30070479 DOI: 10.1021/jacs.8b04054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microcantilever transducers can be valuable tools for the investigation of physicochemical processes in organized molecular films. Gold-coated cantilevers are used here to investigate the electrochemomechanics of redox-active self-assembled monolayers (SAMs) of ferrocenylalkanethiolates (Fc(CH2) nS) of different alkyl chain lengths. A significant odd-even effect is observed in the surface stress and cantilever movement generated by the oxidation of the SAM-confined ferrocenes as the number of methylene units n in the SAM backbone is varied. We demonstrate that stronger alkyl chain-chain interactions are at the origin of the larger surface stresses generated by SAMs with an even versus odd n. The findings highlight the impact of subtle structural effects and weak van der Waals interactions on the mechanical actuation produced by redox reactions in self-assembled systems.
Collapse
Affiliation(s)
- Eric R Dionne
- Département de chimie , Université de Montréal , C.P. 6128, succursale Centre-ville , Montréal , QC H3C 3J7 , Canada.,Quebec Center for Advanced Materials , FRQNT , Canada
| | - Christopher Dip
- Département de chimie , Université de Montréal , C.P. 6128, succursale Centre-ville , Montréal , QC H3C 3J7 , Canada.,Quebec Center for Advanced Materials , FRQNT , Canada
| | - Violeta Toader
- Department of Chemistry , McGill University , 801 rue Sherbrooke Ouest , Montréal , QC H3A 2K6 , Canada.,Quebec Center for Advanced Materials , FRQNT , Canada
| | - Antonella Badia
- Département de chimie , Université de Montréal , C.P. 6128, succursale Centre-ville , Montréal , QC H3C 3J7 , Canada.,Quebec Center for Advanced Materials , FRQNT , Canada
| |
Collapse
|
6
|
Lopes-Rodrigues M, Puiggalí-Jou A, Martí-Balleste D, del Valle LJ, Michaux C, Perpète EA, Alemán C. Thermomechanical Response of a Representative Porin for Biomimetics. ACS OMEGA 2018; 3:7856-7867. [PMID: 31458928 PMCID: PMC6644815 DOI: 10.1021/acsomega.8b00463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/02/2018] [Indexed: 06/09/2023]
Abstract
The thermomechanical response of Omp2a, a representative porin used for the fabrication of smart biomimetic nanomembranes, has been characterized using microcantilever technology and compared with standard proteins. For this purpose, thermally induced transitions involving the conversion of stable trimers to bigger aggregates, local reorganizations based on the strengthening or weakening of intermolecular interactions, and protein denaturation have been detected by the microcantilever resonance frequency and deflection as a function of the temperature. Measurements have been carried out on arrays of 8-microcantilevers functionalized with proteins (Omp2a, lysozyme and bovine serum albumin). To interpret the measured nanofeatures, the response of proteins to temperature has been also examined using other characterization techniques, including real time wide angle X-ray diffraction. Results not only demonstrate the complex behavior of porins, which exhibit multiple local thermal transitions before undergoing denaturation at temperatures higher than 105 °C, but also suggest a posttreatment to control the orientation of immobilized Omp2a molecules in functionalized biomimetic nanomembranes and, thus, increase their efficacy in ion transport.
Collapse
Affiliation(s)
- Maximilien Lopes-Rodrigues
- Departament
d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Ed.
I2, 08019 Barcelona, Spain
- Barcelona
Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany, 10-14, 08019 Barcelona, Spain
- Laboratoire
de Chimie Physique des Biomolécules, Unité de Chimie
Physique Théorique et Structurale (UCPTS), University of Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Anna Puiggalí-Jou
- Departament
d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Ed.
I2, 08019 Barcelona, Spain
- Barcelona
Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany, 10-14, 08019 Barcelona, Spain
| | - Didac Martí-Balleste
- Departament
d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Ed.
I2, 08019 Barcelona, Spain
- Barcelona
Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany, 10-14, 08019 Barcelona, Spain
| | - Luis J. del Valle
- Departament
d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Ed.
I2, 08019 Barcelona, Spain
- Barcelona
Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany, 10-14, 08019 Barcelona, Spain
| | - Catherine Michaux
- Laboratoire
de Chimie Physique des Biomolécules, Unité de Chimie
Physique Théorique et Structurale (UCPTS), University of Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Eric A. Perpète
- Laboratoire
de Chimie Physique des Biomolécules, Unité de Chimie
Physique Théorique et Structurale (UCPTS), University of Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Carlos Alemán
- Departament
d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Ed.
I2, 08019 Barcelona, Spain
- Barcelona
Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany, 10-14, 08019 Barcelona, Spain
| |
Collapse
|
7
|
Kerch G. Polymer hydration and stiffness at biointerfaces and related cellular processes. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:13-25. [DOI: 10.1016/j.nano.2017.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 01/15/2023]
|
8
|
Zhao F, Matt SM, Bu J, Rehrauer OG, Ben-Amotz D, McLuckey SA. Joule Heating and Thermal Denaturation of Proteins in Nano-ESI Theta Tips. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2001-2010. [PMID: 28699064 PMCID: PMC5693742 DOI: 10.1007/s13361-017-1732-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 05/29/2017] [Accepted: 06/01/2017] [Indexed: 05/21/2023]
Abstract
Electro-osmotically induced Joule heating in theta tips and its effect on protein denaturation were investigated. Myoglobin, equine cytochrome c, bovine cytochrome c, and carbonic anhydrase II solutions were subjected to electro-osmosis in a theta tip and all of the proteins were denatured during the process. The extent of protein denaturation was found to increase with the applied square wave voltage and electrolyte concentration. The solution temperature at the end of a theta tip was measured directly by Raman spectroscopy and shown to increase with the square wave voltage, thereby demonstrating the effect of Joule heating through an independent method. The electro-osmosis of a solution comprised of myoglobin, bovine cytochrome c, and ubiquitin demonstrated that the magnitude of Joule heating that causes protein denaturation is positively correlated with protein melting temperature. This allows for a quick determination of a protein's relative thermal stability. This work establishes a fast, novel method for protein conformation manipulation prior to MS analysis and provides a temperature-controllable platform for the study of processes that take place in solution with direct coupling to mass spectrometry. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Feifei Zhao
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| | - Sarah M Matt
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| | - Jiexun Bu
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| | - Owen G Rehrauer
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| | - Dor Ben-Amotz
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA.
| |
Collapse
|
9
|
Hu Y, Jin J, Liang H, Ji X, Yin J, Jiang W. pH Dependence of Adsorbed Fibrinogen Conformation and Its Effect on Platelet Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4086-4094. [PMID: 27035056 DOI: 10.1021/acs.langmuir.5b04238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Quartz crystal microbalance with dissipation (QCM-D) and dual polarization interferometry (DPI) were used to investigate fibrinogen (Fib) adsorption behavior on different surfaces by changing the pH value. Moreover, integrin adhesion to the adsorbed Fibs was studied using DPI. Qualitative and quantitative studies of platelet adhesion to the adsorbed Fibs were performed using scanning electron microscopy (SEM), confocal laser scanning microscope (CLSM), and released lactate dehydrogenase (LDH) assay. Experimental results indicated that the conformation and orientation of the absorbed Fibs depended on surface property and pH cycling. For the hydrophilic surface, Fibs adsorbed at pH 7.4 and presented a αC-hidden orientation. As a result, no integrin adhesion was observed, and a small number of platelets were adhered because the αC-domains were hidden under the Fib molecule. By changing the rinsing solution pH from 7.4 to 3.2 and then back to 7.4, the adsorbed Fib orientation became αC-exposed via the transformation of Fib conformation during pH cycling. Therefore, integrin adhesion was more likely to occur, and more platelets were adhered and activated. For the hydrophobic surface, the adsorbed Fibs became more spread and stretched due to the strong interaction between the Fibs and surface. αC-exposed orientation remained unchanged when the rinsing solution pH changed from 7.4 to 3.2 and then back to 7.4. Therefore, a large number of integrins and platelets were adhered to the adsorbed Fibs, and almost all of the adhered platelets were activated.
Collapse
Affiliation(s)
- Yu Hu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jing Jin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Haojun Liang
- Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, Anhui 230026, P. R. China
| | - Xiangling Ji
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Wei Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| |
Collapse
|
10
|
Cai Y, Schwartz DK. Influence of Protein Surface Coverage on Anomalously Strong Adsorption Sites. ACS APPLIED MATERIALS & INTERFACES 2016; 8:511-520. [PMID: 26651508 DOI: 10.1021/acsami.5b09459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Serum albumin is commonly used as a blocking agent to reduce nonspecific protein adsorption in bioassays and biodevices; however, the details of this process remain poorly understood. Using single molecule techniques, we investigated the dynamics of human serum albumin (HSA) on four model surfaces as a function of protein concentration. By constructing super-resolution maps, identifying anomalously strong adsorption sites, and quantifying surface heterogeneity, we found that the concentration required for site blocking varied dramatically with surface chemistry. When expressed in terms of protein surface coverage, however, a more consistent picture emerged, where a significant fraction of strong sites were passivated at a fractional coverage of 10(-4). On fused silica (FS), "non-fouling" oligo (ethylene glycol) functionalized FS, and hydrophobically modified FS, a modest additional site blocking effect continued at higher coverage. However, on amine-functionalized surfaces, the surface heterogeneity exhibited a minimum at a coverage of ∼10(-4). Using intermolecular Förster resonance energy transfer (FRET), we determined that new anomalous strong sites were created at higher coverage on amine surfaces and that adsorption to these sites was associated with protein-protein interactions, i.e., surface-induced aggregation.
Collapse
Affiliation(s)
- Yu Cai
- Department of Chemical and Biological Engineering, University of Colorado Boulder , 596 UCB, Boulder, Colorado 80309-0596, United States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder , 596 UCB, Boulder, Colorado 80309-0596, United States
| |
Collapse
|
11
|
Das NK, Pawar L, Kumar N, Mukherjee S. Quenching interaction of BSA with DTAB is dynamic in nature: A spectroscopic insight. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.06.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Marlière C, Dhahri S. An in vivo study of electrical charge distribution on the bacterial cell wall by atomic force microscopy in vibrating force mode. NANOSCALE 2015; 7:8843-8857. [PMID: 25909392 DOI: 10.1039/c5nr00968e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report an in vivo electromechanical atomic force microscopy (AFM) study of charge distribution on the cell wall of Gram+ Rhodococcus wratislaviensis bacteria, naturally adherent to a glass substrate, under physiological conditions. The method presented in this paper relies on a detailed study of AFM approach/retract curves giving the variation of the interaction force versus distance between the tip and the sample. In addition to classical height and mechanical (as stiffness) data, mapping of local electrical properties, such as bacterial surface charge, was proved to be feasible at a spatial resolution better than a few tens of nanometers. This innovative method relies on the measurement of the cantilever's surface stress through its deflection far from (>10 nm) the repulsive contact zone: the variations of surface stress come from the modification of electrical surface charge of the cantilever (as in classical electrocapillary measurements) likely stemming from its charging during contact of both the tip and the sample electrical double layers. This method offers an important improvement in local electrical and electrochemical measurements at the solid/liquid interface, particularly in high-molarity electrolytes when compared to techniques focused on the direct use of electrostatic force. It thus opens a new way to directly investigate in situ biological electrical surface processes involved in numerous practical applications and fundamental problems such as bacterial adhesion, biofilm formation, microbial fuel cells, etc.
Collapse
Affiliation(s)
- Christian Marlière
- Institut des Sciences Moléculaires d'Orsay, ISMO, University Paris-Sud, CNRS, Orsay, France.
| | | |
Collapse
|
13
|
Wang XF, Zhang Y, Shu Y, Chen XW, Wang JH. Ionic liquid poly(3-n-dodecyl-1-vinylimidazolium) bromide as an adsorbent for the sorption of hemoglobin. RSC Adv 2015. [DOI: 10.1039/c5ra00036j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel polymeric ionic liquid, poly(1-vinylimidazolium-3-n-dodecyl) bromide, exhibits selective adsorption of hemoglobin from human whole blood.
Collapse
Affiliation(s)
- Xiao-Feng Wang
- Research Center for Analytical Sciences
- Colleges of Sciences
- Northeastern University
- Shenyang
- China
| | - Yue Zhang
- Research Center for Analytical Sciences
- Colleges of Sciences
- Northeastern University
- Shenyang
- China
| | - Yang Shu
- College of Life and Health Science
- Northeastern University
- Shenyang 110189
- China
| | - Xu-Wei Chen
- Research Center for Analytical Sciences
- Colleges of Sciences
- Northeastern University
- Shenyang
- China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences
- Colleges of Sciences
- Northeastern University
- Shenyang
- China
| |
Collapse
|
14
|
Kosaka PM, Pini V, Ruz JJ, da Silva RA, González MU, Ramos D, Calleja M, Tamayo J. Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor. NATURE NANOTECHNOLOGY 2014; 9:1047-53. [PMID: 25362477 DOI: 10.1038/nnano.2014.250] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 09/30/2014] [Indexed: 05/24/2023]
Abstract
Blood contains a range of protein biomarkers that could be used in the early detection of disease. To achieve this, however, requires sensors capable of detecting (with high reproducibility) biomarkers at concentrations one million times lower than the concentration of the other blood proteins. Here, we show that a sandwich assay that combines mechanical and optoplasmonic transduction can detect cancer biomarkers in serum at ultralow concentrations. A biomarker is first recognized by a surface-anchored antibody and then by an antibody in solution that identifies a free region of the captured biomarker. This second antibody is tethered to a gold nanoparticle that acts as a mass and plasmonic label; the two signatures are detected by means of a silicon cantilever that serves as a mechanical resonator for 'weighing' the mass of the captured nanoparticles and as an optical cavity that boosts the plasmonic signal from the nanoparticles. The capabilities of the approach are illustrated with two cancer biomarkers: the carcinoembryonic antigen and the prostate specific antigen, which are currently in clinical use for the diagnosis, monitoring and prognosis of colon and prostate cancer, respectively. A detection limit of 1 × 10(-16) g ml(-1) in serum is achieved with both biomarkers, which is at least seven orders of magnitude lower than that achieved in routine clinical practice. Moreover, the rate of false positives and false negatives at this concentration is extremely low, ∼10(-4).
Collapse
Affiliation(s)
- P M Kosaka
- IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres Cantos, Madrid, Spain
| | - V Pini
- IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres Cantos, Madrid, Spain
| | - J J Ruz
- IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres Cantos, Madrid, Spain
| | - R A da Silva
- 1] IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres Cantos, Madrid, Spain [2] Instituto de Química, Universidade de Sao Paulo, Av. Prof. Lineu Prestes 748, 05508-900 Sao Paulo, Brazil
| | - M U González
- IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres Cantos, Madrid, Spain
| | - D Ramos
- IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres Cantos, Madrid, Spain
| | - M Calleja
- IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres Cantos, Madrid, Spain
| | - J Tamayo
- IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres Cantos, Madrid, Spain
| |
Collapse
|
15
|
Das NK, Ghosh N, Kale AP, Mondal R, Anand U, Ghosh S, Tiwari VK, Kapur M, Mukherjee S. Temperature Induced Morphological Transitions from Native to Unfolded Aggregated States of Human Serum Albumin. J Phys Chem B 2014; 118:7267-76. [DOI: 10.1021/jp5030944] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nirmal Kumar Das
- Department of Chemistry,
Indian Institute of Science Education and Research Bhopal Indore By-Pass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Narayani Ghosh
- Department of Chemistry,
Indian Institute of Science Education and Research Bhopal Indore By-Pass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Ajit Prabhakar Kale
- Department of Chemistry,
Indian Institute of Science Education and Research Bhopal Indore By-Pass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Ramakanta Mondal
- Department of Chemistry,
Indian Institute of Science Education and Research Bhopal Indore By-Pass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Uttam Anand
- Department of Chemistry,
Indian Institute of Science Education and Research Bhopal Indore By-Pass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Subhadip Ghosh
- Department of Chemistry,
Indian Institute of Science Education and Research Bhopal Indore By-Pass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Virendra Kumar Tiwari
- Department of Chemistry,
Indian Institute of Science Education and Research Bhopal Indore By-Pass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Manmohan Kapur
- Department of Chemistry,
Indian Institute of Science Education and Research Bhopal Indore By-Pass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of Chemistry,
Indian Institute of Science Education and Research Bhopal Indore By-Pass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| |
Collapse
|