1
|
Besleaga A, Apetrei A, Sirghi L. Atomic force spectroscopy with magainin 1 functionalized tips and biomimetic supported lipid membranes. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:29-40. [PMID: 35031815 DOI: 10.1007/s00249-021-01580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/11/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Antimicrobial peptides are molecules synthesized by living organisms as the first line of defense against bacteria, fungi, parasites, or viruses. Since their biological activity is based on destabilization of the microbial membranes, a study of direct interaction forces between antimicrobial peptides and biomimetic membranes is very important for understanding the molecular mechanisms of their action. Herein, we use atomic force spectroscopy to probe the interaction between atomic force microscopy (AFM) tips functionalized with magainin 1 and supported lipid bilayers (SLBs) mimicking electrically uncharged membranes of normal eukaryotic cells and negatively charged membranes of bacterial cells. The investigations performed on negatively charged SLBs showed that the magainin 1 functionalized AFM tips are quickly adsorbed into the SLBs when they approach, while they adhere strongly to the lipid membrane when retracted. On contrary, same investigations performed on neutral SLBs showed mechanical resistance of the lipid membrane to the tip breakthrough and negligible adhesion force at detachment.
Collapse
Affiliation(s)
- Alexandra Besleaga
- Iasi Plasma Advanced Research Center (IPARC), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Blvd. Carol I nr. 11, 700506, Iasi, Romania
| | - Aurelia Apetrei
- Department of Physics, Laboratory of Molecular Biophysics and Medical Physics, Alexandru I. Cuza University, 700506, Iasi, Romania
| | - Lucel Sirghi
- Iasi Plasma Advanced Research Center (IPARC), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Blvd. Carol I nr. 11, 700506, Iasi, Romania.
| |
Collapse
|
2
|
Liu H, Fang C, Gong Z, Chang RCC, Qian J, Gao H, Lin Y. Fundamental Characteristics of Neuron Adhesion Revealed by Forced Peeling and Time-Dependent Healing. Biophys J 2020; 118:1811-1819. [PMID: 32197062 DOI: 10.1016/j.bpj.2020.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/17/2020] [Accepted: 03/02/2020] [Indexed: 01/19/2023] Open
Abstract
A current bottleneck in the advance of neurophysics is the lack of reliable methods to quantitatively measure the interactions between neural cells and their microenvironment. Here, we present an experimental technique to probe the fundamental characteristics of neuron adhesion through repeated peeling of well-developed neurite branches on a substrate with an atomic force microscopy cantilever. At the same time, a total internal reflection fluorescence microscope is also used to monitor the activities of neural cell adhesion molecules (NCAMs) during detaching. It was found that NCAMs aggregate into clusters at the neurite-substrate interface, resulting in strong local attachment with an adhesion energy of ∼0.1 mJ/m2 and sudden force jumps in the recorded force-displacement curve. Furthermore, by introducing a healing period between two forced peelings, we showed that stable neurite-substrate attachment can be re-established in 2-5 min. These findings are rationalized by a stochastic model, accounting for the breakage and rebinding of NCAM-based molecular bonds along the interface, and provide new insights into the mechanics of neuron adhesion as well as many related biological processes including axon outgrowth and nerve regeneration.
Collapse
Affiliation(s)
- Haipei Liu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Chao Fang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Ze Gong
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Jin Qian
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huajian Gao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
3
|
Demeter A, Tiron V, Lupu N, Stoian G, Sirghi L. Plasma sputtering depositions with colloidal masks for fabrication of nanostructured surfaces with enhanced photocatalytic activity. NANOTECHNOLOGY 2017; 28:255302. [PMID: 28471756 DOI: 10.1088/1361-6528/aa712a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Titanium oxide/silicon oxide (TiO2/SiO2) 2D patterns were obtained by magnetron sputtering depositions of Ti on close-packed and size-reduced colloidal masks on Si and quartz substrates, followed by mask lift-off and ending with thermal oxidation. The physical processes involved in growing 2D Ti patterns and their oxidation are analyzed. For the magnetron sputtering deposition, two regimes are considered: the low-pressure regime when the flux of sputtered atoms is anisotropic, and the high-pressure regime, when the flux of sputtered atoms is isotropic due to frequent collisions. Moreover, magnetron sputtering operation modes, such as dc sputtering and high power impulse sputtering, are compared. The changes in pattern size and morphology determined by the oxidation of the Ti patterns and Si substrate are analyzed. The hydrophilicity induced by UV-light irradiation and the visible-light photocatalytic activity towards the degradation of the methylene blue of the fabricated TiO2/SiO2 patterns were considerably higher when compared to the performances of uniform TiO2 films.
Collapse
Affiliation(s)
- Alexandra Demeter
- Iasi Plasma Advanced Research Center (IPARC), Faculty of Physics, 'Alexandru Ioan Cuza' University of Iasi, Iasi-700506, Romania
| | | | | | | | | |
Collapse
|
4
|
Samoila F, Sirghi L. Disjoining Pressure in Partial Wetting on the Nanoscale. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5188-5196. [PMID: 28485609 DOI: 10.1021/acs.langmuir.7b01156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Partial wetting on the nanoscale may result in the formation of sessile liquid nanodroplets on flat substrates. In this case, the molecular forces generate a strong interaction between nanodroplet interfaces. This interaction is expressed in the mean-field approximation by the disjoining pressure and determines an important deviation from the spherical cap shape of the nanodroplets. This deviation is observed on the atomic force microscopy images of sessile nanodroplets of oleic acid on glass. The disjoining pressure was manipulated by hydroxylation of the glass surface. This surface modification generated a strong negative disjoining pressure due to structural forces arising from the orientation of oleic acid molecules with their polar heads toward the substrate. As a result, the shape of oleic acid nanodroplets showed large deviations from the spherical cap shape, with the liquid-vapor interface tilting angle with respect to the plane substrate having a maximum (herein considered to be the contact angle) a certain distance from the substrate, followed by its decrease to zero at the droplet edge. The integration of the augmented Young-Laplace equation, where the dependence of the negative structural disjoining pressure on the interface separation distance was assumed to be an exponential decay, yielded height profiles of droplets in good agreement with the experiment.
Collapse
Affiliation(s)
- Florentina Samoila
- Iasi Plasma Advanced Research Center (IPARC), Faculty of Physics, "Alexandru Ioan Cuza", University of Iasi , Iasi-700506, Romania
| | - Lucel Sirghi
- Iasi Plasma Advanced Research Center (IPARC), Faculty of Physics, "Alexandru Ioan Cuza", University of Iasi , Iasi-700506, Romania
| |
Collapse
|
5
|
Ma CD, Acevedo-Vélez C, Wang C, Gellman SH, Abbott NL. Interaction of the Hydrophobic Tip of an Atomic Force Microscope with Oligopeptides Immobilized Using Short and Long Tethers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:2985-2995. [PMID: 26895750 DOI: 10.1021/acs.langmuir.5b04618] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report an investigation of the adhesive force generated between the hydrophobic tip of an atomic force microscope (AFM) and surfaces presenting oligopeptides immobilized using either short (∼1 nm) or long (∼60 nm) tethers. Specifically, we used either sulfosuccinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SSMCC) or 10 kDa polyethylene glycol (PEG) end-functionalized with maleimide and N-hydroxysuccinimide groups to immobilize helical oligomers of β-amino acids (β-peptides) to mixed monolayers presenting tetraethylene glycol (EG4) and amine-terminated EG4 (EG4N) groups. When SSMCC was used to immobilize the β-peptides, we measured the adhesive interaction between the AFM tip and surface to rupture through a single event with magnitude consistent with the interaction of a single β-peptide with the AFM tip. Surprisingly, this occurred even when, on average, multiple β-peptides were located within the interaction area between the AFM tip and surface. In contrast, when using the long 10 kDa PEG tether, we observed the magnitude of the adhesive interaction as well as the dynamics of the rupture events to unmask the presence of the multiple β-peptides within the interaction area. To provide insight into these observations, we formulated a simple mechanical model of the interaction of the AFM tip with the immobilized β-peptides and used the model to demonstrate that adhesion measurements performed using short tethers (but not long tethers) are dominated by the interaction of single β-peptides because (i) the mechanical properties of the short tether are highly nonlinear, thus causing one β-peptide to dominate the adhesion force at the point of rupture, and (ii) the AFM cantilever is mechanically unstable following the rupture of the adhesive interaction with a single β-peptide. Overall, our study reveals that short tethers offer the basis of an approach that facilitates measurement of adhesive interactions with single molecules presented at surfaces.
Collapse
Affiliation(s)
- C Derek Ma
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison , 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Claribel Acevedo-Vélez
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison , 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Chenxuan Wang
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison , 1415 Engineering Drive, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Nicholas L Abbott
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison , 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|