1
|
Jarin Z, Agolini O, Pastor RW. Finite-Size Effects in Simulations of Peptide/Lipid Assembly. J Membr Biol 2022; 255:437-449. [PMID: 35854128 PMCID: PMC9581812 DOI: 10.1007/s00232-022-00255-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/17/2022] [Indexed: 11/29/2022]
Abstract
Molecular dynamics simulations are an attractive tool for understanding lipid/peptide self-assembly but can be plagued by inaccuracies when the system sizes are too small. The general guidance from self-assembly simulations of homogeneous micelles is that the total number of surfactants should be three to five times greater than the equilibrium aggregate number of surfactants per micelle. Herein, the heuristic is tested on the more complicated self-assembly of lipids and amphipathic peptides using the Cooke and Martini 3 coarse-grained models. Cooke model simulations with 50 to 1000 lipids and no peptide are dominated by finite-size effects, with usually one aggregate (micelle or nanodisc) containing most of the lipids forming at each system size. Approximately 200 systems of different peptide/lipid (P/L) ratios and sizes of up to 1000 lipids yield a "finite-size phase diagram" for peptide driven self-assembly, including a coexistence region of micelles and discs. Insights from the Cooke model are applied to the assembly of dimyristoylphosphatidylcholine and the ELK-neutral peptide using the Martini 3 model. Systems of 150, 450, and 900 lipids with P/L = 1/6.25 form mixtures of lipid-rich discs that agree in size with experiment and peptide-rich micelles. Only the 150-lipid system shows finite-size effects, which arise from the long-tailed distribution of aggregate sizes. The general rule of three to five times the equilibrium aggregate size remains a practical heuristic for the Cooke and Martini 3 systems investigated here.
Collapse
Affiliation(s)
- Zack Jarin
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Olivia Agolini
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Langmuir Monolayer Techniques for the Investigation of Model Bacterial Membranes and Antibiotic Biodegradation Mechanisms. MEMBRANES 2021; 11:membranes11090707. [PMID: 34564524 PMCID: PMC8471293 DOI: 10.3390/membranes11090707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 11/29/2022]
Abstract
The amounts of antibiotics of anthropogenic origin released and accumulated in the environment are known to have a negative impact on local communities of microorganisms, which leads to disturbances in the course of the biodegradation process and to growing antimicrobial resistance. This mini-review covers up-to-date information regarding problems related to the omnipresence of antibiotics and their consequences for the world of bacteria. In order to understand the interaction of antibiotics with bacterial membranes, it is necessary to explain their interaction mechanism at the molecular level. Such molecular-level interactions can be probed with Langmuir monolayers representing the cell membrane. This mini-review describes monolayer experiments undertaken to investigate the impact of selected antibiotics on components of biomembranes, with particular emphasis on the role and content of individual phospholipids and lipopolysaccharides (LPS). It is shown that the Langmuir technique may provide information about the interactions between antibiotics and lipids at the mixed film surface (π–A isotherm) and about the penetration of the active substances into the phospholipid monolayer model membranes (relaxation of the monolayer). Effects induced by antibiotics on the bacterial membrane may be correlated with their bactericidal activity, which may be vital for the selection of appropriate bacterial consortia that would ensure a high degradation efficiency of pharmaceuticals in the environment.
Collapse
|
3
|
Kabelka I, Vácha R. Advances in Molecular Understanding of α-Helical Membrane-Active Peptides. Acc Chem Res 2021; 54:2196-2204. [PMID: 33844916 DOI: 10.1021/acs.accounts.1c00047] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biological membranes separate the interior of cells or cellular compartments from their outer environments. This barrier function of membranes can be disrupted by membrane-active peptides, some of which can spontaneously penetrate through the membranes or open leaky transmembrane pores. However, the origin of their activity/toxicity is not sufficiently understood for the development of more potent peptides. To this day, there are no design rules that would be generally valid, and the role of individual amino acids tends to be sequence-specific.In this Account, we describe recent progress in understanding the design principles that govern the activity of membrane-active peptides. We focus on α-helical amphiphilic peptides and their ability to (1) translocate across phospholipid bilayers, (2) form transmembrane pores, or (3) act synergistically, i.e., to produce a significantly more potent effect in a mixture than the individual components.We refined the description of peptide translocation using computer simulations and demonstrated the effect of selected residues. Our simulations showed the necessity to explicitly include charged residues in the translocation description to correctly sample the membrane perturbations they can cause. Using this description, we calculated the translocation of helical peptides with and without the kink induced by the proline/glycine residue. The presence of the kink had no effect on the translocation barrier, but it decreased the peptide affinity to the membrane and reduced the peptide stability inside the membrane. Interestingly, the effects were mainly caused by the peptide's increased polarity, not the higher flexibility of the kink.Flexibility plays a crucial role in pore formation and affects distinct pore structures in different ways. The presence of a kink destabilizes barrel-stave pores, because the kink prevents the tight packing of peptides in the bundle, which is characteristic of the barrel-stave structure. In contrast, the kink facilitates the formation of toroidal pores, where the peptides are only loosely arranged and do not need to closely assemble. The exact position of the kink in the sequence further determines the preferred arrangement of peptides in the pore, i.e., an hourglass or U-shaped structure. In addition, we demonstrated that two self-associated (via termini) helical peptides could mimic the behavior of peptides with a helix-kink-helix motif.Finally, we review the recent findings on the peptide synergism of the archetypal mixture of Magainin 2 and PGLa peptides. We focused on a bacterial plasma membrane mimic that contains negatively charged lipids and lipids with negative intrinsic curvature. We showed that the synergistic action of peptides was highly dependent on the lipid composition. When the lipid composition and peptide/lipid ratios were changed, the systems exhibited more complex behavior than just the previously reported pore formation. We observed membrane adhesion, fusion, and even the formation of the sponge phase in this regime. Furthermore, enhanced adhesion/partitioning to the membrane was reported to be caused by lipid-induced peptide aggregation.In conclusion, the provided molecular insight into the complex behavior of membrane-active peptides provides clues for the design and modification of antimicrobial peptides or toxins.
Collapse
Affiliation(s)
- Ivo Kabelka
- CEITEC − Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University Kamenice 5, 625 00 Brno, Czech Republic
| | - Robert Vácha
- CEITEC − Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University Kamenice 5, 625 00 Brno, Czech Republic
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic
| |
Collapse
|
4
|
Vargas LD, Chapela GA, Guzmán O, Díaz Leyva P, Sánchez R, del Río F. Self-assembling and phase coexistence of SW trimers as complex amphiphile analogues. I. Simulations. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1726519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Luis D. Vargas
- Depto de Física, Universidad Autonónoma Metropolitana, México, México
| | | | - Orlando Guzmán
- Depto de Física, Universidad Autonónoma Metropolitana, México, México
| | - Pedro Díaz Leyva
- Depto de Física, Universidad Autonónoma Metropolitana, México, México
| | - Rodrigo Sánchez
- Depto de Física, Universidad Autonónoma Metropolitana, México, México
| | - Fernando del Río
- Depto de Física, Universidad Autonónoma Metropolitana, México, México
| |
Collapse
|
5
|
Tuerkova A, Kabelka I, Králová T, Sukeník L, Pokorná Š, Hof M, Vácha R. Effect of helical kink in antimicrobial peptides on membrane pore formation. eLife 2020; 9:47946. [PMID: 32167466 PMCID: PMC7069690 DOI: 10.7554/elife.47946] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 02/18/2020] [Indexed: 12/19/2022] Open
Abstract
Every cell is protected by a semipermeable membrane. Peptides with the right properties, for example Antimicrobial peptides (AMPs), can disrupt this protective barrier by formation of leaky pores. Unfortunately, matching peptide properties with their ability to selectively form pores in bacterial membranes remains elusive. In particular, the proline/glycine kink in helical peptides was reported to both increase and decrease antimicrobial activity. We used computer simulations and fluorescence experiments to show that a kink in helices affects the formation of membrane pores by stabilizing toroidal pores but disrupting barrel-stave pores. The position of the proline/glycine kink in the sequence further controls the specific structure of toroidal pore. Moreover, we demonstrate that two helical peptides can form a kink-like connection with similar behavior as one long helical peptide with a kink. The provided molecular-level insight can be utilized for design and modification of pore-forming antibacterial peptides or toxins.
Collapse
Affiliation(s)
- Alzbeta Tuerkova
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice, Czech Republic
| | - Ivo Kabelka
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice, Czech Republic
| | - Tereza Králová
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice, Czech Republic
| | - Lukáš Sukeník
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice, Czech Republic.,Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská, Czech Republic
| | - Šárka Pokorná
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Hof
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Robert Vácha
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice, Czech Republic.,Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská, Czech Republic
| |
Collapse
|
6
|
de Souza RM, Ratochinski RH, Karttunen M, Dias LG. Self-Assembly of Phosphocholine Derivatives Using the ELBA Coarse-Grained Model: Micelles, Bicelles, and Reverse Micelles. J Chem Inf Model 2020; 60:522-536. [PMID: 31714768 DOI: 10.1021/acs.jcim.9b00790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The ELBA coarse-grained force field was originally developed for lipids, and its water model is described as a single-site Lennard-Jones particle with electrostatics modeled by an embedded point-dipole, while other molecules in this force field have a three (or four)-to-one mapping scheme. Here, ELBA was applied to investigate the self-assembly processes of dodecyl-phosphocholine (DPC) micelle, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1,2-dihexaoyl-sn-glycero-3-phosphocholine (DPPC/DHPC) bicelles, and DPPC/cyclohexane/water reverse micelles through coarse-grained molecular dynamics (MD) simulations. New parameters were obtained using a simplex algorithm-based calibration procedure to determine the Lennard-Jones parameters for cyclohexane, dodecane, and cyclohexane-dodecane cross-interactions. Density, self-diffusion coefficient, surface tension, and mixture excess volume were found to be in fair agreement with experimental data. These new parameters were used in the simulations, and the obtained structures were analyzed for shape, size, volume, and surface area. Except for the shape of DPC micelles, all other properties match well with available experimental data and all-atom simulations. Remarkably, in agreement with experiments the rodlike shape of the DPPC reverse micelle is well described by ELBA, while all-atom data in the literature predicts a disclike shape. To further check the consistency of the force field in reproducing the correct shapes of reverse micelles, additional simulations were performed doubling the system size. Two distinct reverse micelles were obtained both presenting the rodlike shape and correct aggregation number.
Collapse
Affiliation(s)
- R M de Souza
- Department of Chemistry , The University of Western Ontario , London , Ontario , Canada N6A 3K7.,Departamento de Química, FFCLRP , Universidade de São Paulo , Avenida Bandeirantes 3900 , 14040-901 Ribeirão Preto , SP , Brazil.,The Center for Advanced Materials and Biomaterials Research , The University of Western Ontario , London , Ontario , Canada N6K 3K7
| | - R H Ratochinski
- Departamento de Química, FFCLRP , Universidade de São Paulo , Avenida Bandeirantes 3900 , 14040-901 Ribeirão Preto , SP , Brazil
| | - Mikko Karttunen
- Department of Chemistry , The University of Western Ontario , London , Ontario , Canada N6A 3K7.,The Center for Advanced Materials and Biomaterials Research , The University of Western Ontario , London , Ontario , Canada N6K 3K7.,Department of Applied Mathematics , The University of Western Ontario , London , Ontario , Canada N6A 5B7
| | - L G Dias
- Departamento de Química, FFCLRP , Universidade de São Paulo , Avenida Bandeirantes 3900 , 14040-901 Ribeirão Preto , SP , Brazil
| |
Collapse
|
7
|
Dos Santos Morais R, Delalande O, Pérez J, Mias-Lucquin D, Lagarrigue M, Martel A, Molza AE, Chéron A, Raguénès-Nicol C, Chenuel T, Bondon A, Appavou MS, Le Rumeur E, Combet S, Hubert JF. Human Dystrophin Structural Changes upon Binding to Anionic Membrane Lipids. Biophys J 2018; 115:1231-1239. [PMID: 30197181 DOI: 10.1016/j.bpj.2018.07.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/16/2018] [Accepted: 07/31/2018] [Indexed: 11/19/2022] Open
Abstract
Scaffolding proteins play important roles in supporting the plasma membrane (sarcolemma) of muscle cells. Among them, dystrophin strengthens the sarcolemma through protein-lipid interactions, and its absence due to gene mutations leads to the severe Duchenne muscular dystrophy. Most of the dystrophin protein consists of a central domain made of 24 spectrin-like coiled-coil repeats (R). Using small angle neutron scattering (SANS) and the contrast variation technique, we specifically probed the structure of the three first consecutive repeats 1-3 (R1-3), a part of dystrophin known to physiologically interact with membrane lipids. R1-3 free in solution was compared to its structure adopted in the presence of phospholipid-based bicelles. SANS data for the protein/lipid complexes were obtained with contrast-matched bicelles under various phospholipid compositions to probe the role of electrostatic interactions. When bound to anionic bicelles, large modifications of the protein three-dimensional structure were detected, as revealed by a significant increase of the protein gyration radius from 42 ± 1 to 60 ± 4 Å. R1-3/anionic bicelle complexes were further analyzed by coarse-grained molecular dynamics simulations. From these studies, we report an all-atom model of R1-3 that highlights the opening of the R1 coiled-coil repeat when bound to the membrane lipids. This model is totally in agreement with SANS and click chemistry/mass spectrometry data. We conclude that the sarcolemma membrane anchoring that occurs during the contraction/elongation process of muscles could be ensured by this coiled-coil opening. Therefore, understanding these structural changes may help in the design of rationalized shortened dystrophins for gene therapy. Finally, our strategy opens up new possibilities for structure determination of peripheral and integral membrane proteins not compatible with different high-resolution structural methods.
Collapse
Affiliation(s)
- Raphael Dos Santos Morais
- Université de Rennes, Rennes, France; Institut de Génétique et Développement de Rennes, CNRS UMR 6290, Rennes, France; Laboratoire Léon-Brillouin, UMR 12 CEA-CNRS, Université Paris-Saclay, CEA-Saclay, Gif-sur-Yvette, France; SWING Beamline, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, France
| | - Olivier Delalande
- Université de Rennes, Rennes, France; Institut de Génétique et Développement de Rennes, CNRS UMR 6290, Rennes, France
| | - Javier Pérez
- SWING Beamline, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, France
| | - Dominique Mias-Lucquin
- Université de Rennes, Rennes, France; Institut de Génétique et Développement de Rennes, CNRS UMR 6290, Rennes, France
| | - Mélanie Lagarrigue
- Université de Rennes, Rennes, France; Inserm U1085, Protim-Plate-forme Protéomique, Rennes, France
| | | | - Anne-Elisabeth Molza
- Université de Rennes, Rennes, France; Institut de Génétique et Développement de Rennes, CNRS UMR 6290, Rennes, France
| | - Angélique Chéron
- Université de Rennes, Rennes, France; Institut de Génétique et Développement de Rennes, CNRS UMR 6290, Rennes, France
| | - Céline Raguénès-Nicol
- Université de Rennes, Rennes, France; Institut de Génétique et Développement de Rennes, CNRS UMR 6290, Rennes, France
| | - Thomas Chenuel
- Université de Rennes, Rennes, France; Institut de Génétique et Développement de Rennes, CNRS UMR 6290, Rennes, France
| | - Arnaud Bondon
- CNRS 6226, Institut des Sciences Chimiques de Rennes, PRISM, Rennes, France
| | - Marie-Sousai Appavou
- Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, Garching, Germany
| | - Elisabeth Le Rumeur
- Université de Rennes, Rennes, France; Institut de Génétique et Développement de Rennes, CNRS UMR 6290, Rennes, France
| | - Sophie Combet
- Laboratoire Léon-Brillouin, UMR 12 CEA-CNRS, Université Paris-Saclay, CEA-Saclay, Gif-sur-Yvette, France.
| | - Jean-François Hubert
- Université de Rennes, Rennes, France; Institut de Génétique et Développement de Rennes, CNRS UMR 6290, Rennes, France.
| |
Collapse
|
8
|
Sharma H, Dormidontova EE. Lipid Nanodisc-Templated Self-Assembly of Gold Nanoparticles into Strings and Rings. ACS NANO 2017; 11:3651-3661. [PMID: 28291322 DOI: 10.1021/acsnano.6b08043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Gold nanoparticles (AuNPs) exhibit strong fluorescent and electromagnetic properties, which can be enhanced upon clustering and used in therapeutic, imaging, and sensing applications. A combination of gold nanoparticles with lipid nanodiscs can be attractive for AuNP self-assembly and useful in biomedical applications. Using molecular dynamics simulations we show that lipid nanodiscs can serve as templates for AuNP clustering into rings and string-like structures. We demonstrate that equilibrium encapsulation of 1 nm hydrophobically modified AuNPs into lipid nanodiscs composed of a mixture of dipalmitoylphosphatidylcholine (DPPC) and dihexanoylphosphatidylcholine (DHPC) lipids occurs at the rim and results in formation of a ring of gold. The interior of the nanodisc is inaccessible to AuNPs due to the DPPC liquid crystalline order. With temperature increase the lipid order diminishes, initiating the nanodisc transformation into a vesicle, upon which encapsulated AuNPs cluster into a close-packed string or nanoring, thereby stalling the vesiculation process at a "round vase" or cup-like stage depending on the AuNP concentration. In contrast, encapsulation of AuNPs by an equilibrium lipid vesicle results in its deformation with randomly clustered AuNPs, in agreement with experimental observations. We characterize the AuNP cluster size and surface-to-surface pair distribution, both of which impact the AuNP luminescent properties. We investigate the effect of alkane tether length on the nanodisc stability and AuNP clustering inside the nanodiscs and vesicles. Our results show that lipid nanodiscs can enhance gold cluster formation, which can be further exploited in imaging applications.
Collapse
Affiliation(s)
- Hari Sharma
- Polymer Program, Institute of Materials Science and Physics Department, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Elena E Dormidontova
- Polymer Program, Institute of Materials Science and Physics Department, University of Connecticut , Storrs, Connecticut 06269, United States
| |
Collapse
|
9
|
Affiliation(s)
- M. J. Greenall
- Institute of Mathematics,
Physics and Computer Science, Physical Sciences Building, Aberystwyth University, Aberystwyth SY23 3BZ, United Kingdom
| |
Collapse
|
10
|
Vestergaard M, Kraft JF, Vosegaard T, Thøgersen L, Schiøtt B. Bicelles and Other Membrane Mimics: Comparison of Structure, Properties, and Dynamics from MD Simulations. J Phys Chem B 2015; 119:15831-43. [PMID: 26610232 DOI: 10.1021/acs.jpcb.5b08463] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The increased interest in studying membrane proteins has led to the development of new membrane mimics such as bicelles and nanodiscs. However, only limited knowledge is available of how these membrane mimics are affected by embedded proteins and how well they mimic a lipid bilayer. Herein, we present molecular dynamics simulations to elucidate structural and dynamic properties of small bicelles and compare them to a large alignable bicelle, a small nanodisc, and a lipid bilayer. Properties such as lipid packing and properties related to embedding both an α-helical peptide and a transmembrane protein are investigated. The small bicelles are found to be very dynamic and mainly assume a prolate shape substantiating that small bicelles cannot be regarded as well-defined disclike structures. However, addition of a peptide results in an increased tendency to form disc-shaped bicelles. The small bicelles and the nanodiscs show increased peptide solvation and difference in peptide orientation compared to embedding in a bilayer. The large bicelle imitated a bilayer well with respect to both curvature and peptide solvation, although peripheral binding of short tailed lipids to the embedded proteins is observed, which could hinder ligand binding or multimer formation.
Collapse
Affiliation(s)
- Mikkel Vestergaard
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University , Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Johan F Kraft
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University , Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Thomas Vosegaard
- Danish Center for Ultrahigh-Field NMR Spectroscopy and Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Lea Thøgersen
- Center for Membrane Pumps in Cells and Disease (PUMPKIN), Bioinformatics Research Centre, Aarhus University , C.F. Møllers Alle 8, DK-8000 Aarhus C, Denmark
| | - Birgit Schiøtt
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University , Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
11
|
Analysing DHPC/DMPC bicelles by diffusion NMR and multivariate decomposition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2910-7. [DOI: 10.1016/j.bbamem.2015.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/06/2015] [Accepted: 09/01/2015] [Indexed: 12/16/2022]
|
12
|
Pluhackova K, Böckmann RA. Biomembranes in atomistic and coarse-grained simulations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015. [PMID: 26194872 DOI: 10.1088/0953-8984/27/32/323103] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The architecture of biological membranes is tightly coupled to the localization, organization, and function of membrane proteins. The organelle-specific distribution of lipids allows for the formation of functional microdomains (also called rafts) that facilitate the segregation and aggregation of membrane proteins and thus shape their function. Molecular dynamics simulations enable to directly access the formation, structure, and dynamics of membrane microdomains at the molecular scale and the specific interactions among lipids and proteins on timescales from picoseconds to microseconds. This review focuses on the latest developments of biomembrane force fields for both atomistic and coarse-grained molecular dynamics (MD) simulations, and the different levels of coarsening of biomolecular structures. It also briefly introduces scale-bridging methods applicable to biomembrane studies, and highlights selected recent applications.
Collapse
Affiliation(s)
- Kristyna Pluhackova
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | | |
Collapse
|
13
|
Beaugrand M, Arnold A, Hénin J, Warschawski DE, Williamson PTF, Marcotte I. Lipid concentration and molar ratio boundaries for the use of isotropic bicelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:6162-70. [PMID: 24797658 PMCID: PMC4072726 DOI: 10.1021/la5004353] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/02/2014] [Indexed: 05/27/2023]
Abstract
Bicelles are model membranes generally made of long-chain dimyristoylphosphatidylcholine (DMPC) and short-chain dihexanoyl-PC (DHPC). They are extensively used in the study of membrane interactions and structure determination of membrane-associated peptides, since their composition and morphology mimic the widespread PC-rich natural eukaryotic membranes. At low DMPC/DHPC (q) molar ratios, fast-tumbling bicelles are formed in which the DMPC bilayer is stabilized by DHPC molecules in the high-curvature rim region. Experimental constraints imposed by techniques such as circular dichroism, dynamic light scattering, or microscopy may require the use of bicelles at high dilutions. Studies have shown that such conditions induce the formation of small aggregates and alter the lipid-to-detergent ratio of the bicelle assemblies. The objectives of this work were to determine the exact composition of those DMPC/DHPC isotropic bicelles and study the lipid miscibility. This was done using (31)P nuclear magnetic resonance (NMR) and exploring a wide range of lipid concentrations (2-400 mM) and q ratios (0.15-2). Our data demonstrate how dilution modifies the actual DMPC/DHPC molar ratio in the bicelles. Care must be taken for samples with a total lipid concentration ≤250 mM and especially at q ∼ 1.5-2, since moderate dilutions could lead to the formation of large and slow-tumbling lipid structures that could hinder the use of solution NMR methods, circular dichroism or dynamic light scattering studies. Our results, supported by infrared spectroscopy and molecular dynamics simulations, also show that phospholipids in bicelles are largely segregated only when q > 1. Boundaries are presented within which control of the bicelles' q ratio is possible. This work, thus, intends to guide the choice of q ratio and total phospholipid concentration when using isotropic bicelles.
Collapse
Affiliation(s)
- Maïwenn Beaugrand
- Department
of Chemistry, Université du Québec
à Montréal and Centre Québécois sur les
Matériaux Fonctionnels, P.O. Box 8888, Downtown Station, Montreal, Canada H3C 3P8
| | - Alexandre
A. Arnold
- Department
of Chemistry, Université du Québec
à Montréal and Centre Québécois sur les
Matériaux Fonctionnels, P.O. Box 8888, Downtown Station, Montreal, Canada H3C 3P8
| | - Jérôme Hénin
- Laboratoire
de Biochimie Théorique, CNRS, Université
Paris Diderot and Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie-Curie, 75005 Paris, France
| | - Dror E. Warschawski
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS, Université Paris Diderot and Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie-Curie, 75005 Paris, France
| | - Philip T. F. Williamson
- School
of Biological Sciences, Highfield Campus,
University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Isabelle Marcotte
- Department
of Chemistry, Université du Québec
à Montréal and Centre Québécois sur les
Matériaux Fonctionnels, P.O. Box 8888, Downtown Station, Montreal, Canada H3C 3P8
| |
Collapse
|