1
|
Wang Y, Wang Z, Yang L, Zhang W, Ma G. Unravelling the non-classical nucleation mechanism of an amyloid nanosheet through atomic force microscopy and an infrared probe technique. Phys Chem Chem Phys 2024; 26:7855-7864. [PMID: 38376417 DOI: 10.1039/d3cp05345h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Understanding the amyloid nucleation mechanism is fundamentally important for the development of diagnostics and therapeutics of amyloid-related diseases and for the design and application of amyloid-based materials. To this end, we here explore the use of atomic force microscopy (AFM) and a side-chain-based infrared (IR) probe technique to investigate the amyloid nanosheet formation mechanism of an Aβ16-22 variant, KLVFXAK, where X is p-cyanophenylalanine with its side-chain cyano group being an infrared probe. Using AFM, we reveal that the formation of KLVFXAK amyloid nanosheets follows a two-step non-classical nucleation mechanism. The first step is the rapid formation of a metastable fibrillar intermediate and the second step is slow transformation to the final nanosheet. Using the side-chain-based IR probe technique, we obtain spectroscopic evidence for the proposed nucleation mechanism of the amyloid nanosheet as well as the structural details for the intermediate and amyloid nanosheet. By using the structural constraints set by the two techniques, we propose the structural models for both the fibrillar intermediate and the amyloid nanosheet. In addition, we further investigated the amyloid nanosheet formation mechanism of a similar Aβ16-22 variant, KLVFXAE, and showed the impact of mutation on the amyloid nucleation mechanism. Our work also provides a nice example of how to use the combined approach of AFM and a side-chain-based IR probe technique to unravel the complex nucleation mechanism of amyloid formation.
Collapse
Affiliation(s)
- Yao Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| | - Ziqi Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| | - Lujuan Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| | - Wenkai Zhang
- Department of Physics, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China.
| | - Gang Ma
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
2
|
Lin D, Qian Z, Bagnani M, Hernández-Rodríguez MA, Corredoira-Vázquez J, Wei G, Carlos LD, Mezzenga R. Probing the Protein Folding Energy Landscape: Dissociation of Amyloid-β Fibrils by Laser-Induced Plasmonic Heating. ACS NANO 2023; 17:9429-9441. [PMID: 37134221 DOI: 10.1021/acsnano.3c01489] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Insoluble amyloid fibrils made from proteins and peptides are difficult to be degraded in both living and artificial systems. The importance of studying their physical stability lies primarily with their association with human neurodegenerative diseases, but also owing to their potential role in multiple bio-nanomaterial applications. Here, gold nanorods (AuNRs) were utilized to investigate the plasmonic heating properties and dissociation of amyloid-β fibrils formed by different peptide fragments (Aβ16-22/Aβ25-35/Aβ1-42) related to the Alzheimer's disease. It is demonstrated that AuNRs were able to break mature amyloid-β fibrils from both the full length (Aβ1-42) and peptide fragments (Aβ16-22/Aβ25-35) within minutes by triggering ultrahigh localized surface plasmon resonance (LSPR) heating. The LSPR energy absorbed by the amyloids to unfold and move to higher levels in the protein folding energy landscape can be measured directly and in situ by luminescence thermometry using lanthanide-based upconverting nanoparticles. We also show that Aβ16-22 fibrils, with the largest persistence length, displayed the highest resistance to breakage, resulting in a transition from rigid fibrils to short flexible fibrils. These findings are consistent with molecular dynamics simulations indicating that Aβ16-22 fibrils possess the highest thermostability due to their highly ordered hydrogen bond networks and antiparallel β-sheet orientation, hence affected by an LSPR-induced remodeling rather than melting. The present results introduce original strategies for disassembling amyloid fibrils noninvasively in liquid environment; they also introduce a methodology to probe the positioning of amyloids on the protein folding and aggregation energy landscape via nanoparticle-enabled plasmonic and upconversion nanothermometry.
Collapse
Affiliation(s)
- Dongdong Lin
- School of Physical Science and Technology, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
- ETH Zurich Department of Health Sciences & Technology and Department of Materials, ETH Zurich, Zurich 8093, Switzerland
| | - Zhenyu Qian
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Massimo Bagnani
- ETH Zurich Department of Health Sciences & Technology and Department of Materials, ETH Zurich, Zurich 8093, Switzerland
| | - Miguel A Hernández-Rodríguez
- Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Julio Corredoira-Vázquez
- Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
- Departamento de Química Inorgánica, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China
| | - Luís D Carlos
- Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Raffaele Mezzenga
- ETH Zurich Department of Health Sciences & Technology and Department of Materials, ETH Zurich, Zurich 8093, Switzerland
- ETH Zurich, Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 10, Zurich 8093, Switzerland
| |
Collapse
|
3
|
Yamazaki M, Ikeda K, Kameda T, Nakao H, Nakano M. Kinetic Mechanism of Amyloid-β-(16-22) Peptide Fibrillation. J Phys Chem Lett 2022; 13:6031-6036. [PMID: 35748616 DOI: 10.1021/acs.jpclett.2c01065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The kinetic mechanism of amyloid fibril formation by a peptide fragment containing seven residues of the amyloid-β protein Aβ-(16-22) was investigated. We found that the N- and C-terminal unprotected Aβ-(16-22), containing no aggregation nuclei, showed rapid fibrillation within seconds to minutes in a neutral aqueous buffer solution. The fibrillation kinetics were well described by the nucleation-elongation model, suggesting that primary nucleation was the rate-limiting step. On the basis of both experimental and theoretical analyses, the aggregated nucleus was estimated to be composed of 6-7 peptide molecules, wherein the two β-sheets were associated with their hydrophobic surfaces. Thin fibers with widths of 10-20 nm were formed, which increased their length and thickness, attaining a width of >20 nm over several tens of minutes, probably owing to the lateral association of the fibers. Electrostatic and hydrophobic interactions play important roles in aggregation. These results provide a basis for understanding the fibrillation of short peptides.
Collapse
Affiliation(s)
- Moe Yamazaki
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Keisuke Ikeda
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Hiroyuki Nakao
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Minoru Nakano
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| |
Collapse
|
4
|
Sahoo A, Lee PY, Matysiak S. Transferable and Polarizable Coarse Grained Model for Proteins─ProMPT. J Chem Theory Comput 2022; 18:5046-5055. [PMID: 35793442 DOI: 10.1021/acs.jctc.2c00269] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The application of classical molecular dynamics (MD) simulations at atomic resolution (fine-grained level, FG), to most biomolecular processes, remains limited because of the associated computational complexity of representing all the atoms. This problem is magnified in the presence of protein-based biomolecular systems that have a very large conformational space, and MD simulations with fine-grained resolution have slow dynamics to explore this space. Current transferable coarse grained (CG) force fields in literature are either limited to only peptides with the environment encoded in an implicit form or cannot capture transitions into secondary/tertiary peptide structures from a primary sequence of amino acids. In this work, we present a transferable CG force field with an explicit representation of the environment for accurate simulations with proteins. The force field consists of a set of pseudoatoms representing different chemical groups that can be joined/associated together to create different biomolecular systems. This preserves the transferability of the force field to multiple environments and simulation conditions. We have added electronic polarization that can respond to environmental heterogeneity/fluctuations and couple it to protein's structural transitions. The nonbonded interactions are parametrized with physics-based features such as solvation and partitioning free energies determined by thermodynamic calculations and matched with experiments and/or atomistic simulations. The bonded potentials are inferred from corresponding distributions in nonredundant protein structure databases. We present validations of the CG model with simulations of well-studied aqueous protein systems with specific protein fold types─Trp-cage, Trpzip4, villin, WW-domain, and β-α-β. We also explore the applications of the force field to study aqueous aggregation of Aβ 16-22 peptides.
Collapse
Affiliation(s)
- Abhilash Sahoo
- Biophysics Program, University of Maryland, College Park, Maryland 20742, United States
| | - Pei-Yin Lee
- Chemical Physics Program, University of Maryland, College Park, Maryland 20742, United States
| | - Silvina Matysiak
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
5
|
Rahman MU, Song K, Da LT, Chen HF. Early aggregation mechanism of Aβ 16-22 revealed by Markov state models. Int J Biol Macromol 2022; 204:606-616. [PMID: 35134456 DOI: 10.1016/j.ijbiomac.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 12/19/2022]
Abstract
Aβ16-22 is believed to have critical role in early aggregation of full length amyloids that are associated with the Alzheimer's disease and can aggregate to form amyloid fibrils. However, the early aggregation mechanism is still unsolved. Here, multiple long-term molecular dynamics simulations combining with Markov state model were used to probe the early oligomerization mechanism of Aβ16-22 peptides. The identified dimeric form adopted either globular random-coil or extended β-strand like conformations. The observed dimers of these variants shared many overall conformational characteristics but differed in several aspects at detailed level. In all cases, the most common type of secondary structure was intermolecular antiparallel β-sheets. The inter-state transitions were very frequent ranges from few to hundred nanoseconds. More strikingly, those states which contain fraction of β secondary structure and significant amount of extended coiled structures, therefore exposed to the solvent, were majorly participated in aggregation. The assembly of low-energy dimers, in which the peptides form antiparallel β sheets, occurred by multiple pathways with the formation of an obligatory intermediates. We proposed that these states might facilitate the Aβ16-22 aggregation through a significant component of the conformational selection mechanism, because they might increase the aggregates population by promoting the inter-chain hydrophobic and the hydrogen bond contacts. The formation of early stage antiparallel β sheet structures is critical for oligomerization, and at the same time provided a flat geometry to seed the ordered β-strand packing of the fibrils. Our findings hint at reorganization of this part of the molecule as a potentially critical step in Aβ aggregation and will insight into early oligomerization for large β amyloids.
Collapse
Affiliation(s)
- Mueed Ur Rahman
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kaiyuan Song
- Key Laboratory of System Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lin-Tai Da
- Key Laboratory of System Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Center for Bioinformation Technology, Shanghai, 200235, China.
| |
Collapse
|
6
|
Kour A, Dube T, Kumar A, Panda JJ. Anti-Amyloidogenic and Fibril-Disaggregating Potency of the Levodopa-Functionalized Gold Nanoroses as Exemplified in a Diphenylalanine-Based Amyloid Model. Bioconjug Chem 2022; 33:397-410. [PMID: 35120290 DOI: 10.1021/acs.bioconjchem.2c00007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The phenomenon of proteins/peptide assembly into amyloid fibrils is associated with various neurodegenerative and age-related human disorders. Inhibition of the aggregation behavior of amyloidogenic peptides/proteins or disruption of the pre-formed aggregates is a viable therapeutic option to control the progression of various protein aggregation-related disorders such as Alzheimer's disease (AD). In the current work, we investigated both the amyloid inhibition and disaggregation proclivity of levodopa-functionalized gold nanoroses (GNRs) against various peptide-based amyloid models, including the amyloid beta peptide [Aβ (1-42) and Aβ (1-40)] and the dipeptide phenylalanine-phenylalanine (FF). Our results depicted the anti-aggregation behavior of the GNR toward FF and both forms of Aβ-derived fibrils. The peptides demonstrated a variation in their fiber-like morphology and a decline in thioflavin T fluorescence after being co-incubated with the GNR. We further demonstrated the neuroprotective effects of the GNR in neuroblastoma cells against FF and Aβ (1-42) fiber-induced toxicity, exemplified both in terms of regaining cellular viability and reducing production of reactive oxygen species. Overall, these findings support the potency of the GNR as a promising platform for combating AD.
Collapse
Affiliation(s)
- Avneet Kour
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Taru Dube
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Ashwani Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Jiban Jyoti Panda
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| |
Collapse
|
7
|
Chen AB, Shao Q, Hall CK. Molecular simulation study of 3,4-dihydroxyphenylalanine in the context of underwater adhesive design. J Chem Phys 2021; 154:144702. [PMID: 33858170 DOI: 10.1063/5.0044173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Adhesives that can stick to multiple surface types in underwater and high moisture conditions are critical for various applications such as marine coatings, sealants, and medical devices. The analysis of natural underwater adhesives shows that L-3,4-dihydroxyphenylalanine (DOPA) and functional amyloid nanostructures are key components that contribute to the adhesive powers of these natural glues. The combination of DOPA and amyloid-forming peptides into DOPA-amyloid(-forming peptide) conjugates provides a new approach to design generic underwater adhesives. However, it remains unclear how the DOPA monomers may interact with amyloid-forming peptides and how these interactions may influence the adhesive ability of the conjugates. In this paper, we investigate the behavior of DOPA monomers, (glycine-DOPA)3 chains, and a KLVFFAE and DOPA-glycine chain conjugate in aqueous environments using molecular simulations. The DOPA monomers do not aggregate significantly at concentrations lower than 1.0M. Simulations of (glycine-DOPA)3 chains in water were done to examine the intra-molecular interactions of the chain, wherein we found that there were unlikely to be interactions detrimental to the adhesion process. After combining the alternating DOPA-glycine chain with the amyloid-forming peptide KLVFFAE into a single chain conjugate, we then simulated the conjugate in water and saw the possibility of both intra-chain folding and no chain folding in the conjugate.
Collapse
Affiliation(s)
- Amelia B Chen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, USA
| | - Qing Shao
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Carol K Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, USA
| |
Collapse
|
8
|
Tan J, Zhang L, Hsieh MC, Goodwin JT, Grover MA, Lynn DG. Chemical control of peptide material phase transitions. Chem Sci 2021; 12:3025-3031. [PMID: 34164071 PMCID: PMC8179288 DOI: 10.1039/d0sc03666h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Progressive solute-rich polymer phase transitions provide pathways for achieving ordered supramolecular assemblies. Intrinsically disordered protein domains specifically regulate information in biological networks via conformational ordering. Here we consider a molecular tagging strategy to control ordering transitions in polymeric materials and provide a proof-of-principle minimal peptide phase network captured with a dynamic chemical network. Substrate initiated assembly of a dynamic chemical network.![]()
Collapse
Affiliation(s)
- Junjun Tan
- Department of Chemistry and Biology, Emory University Atlanta Georgia 30322 USA
| | - Li Zhang
- Department of Chemistry and Biology, Emory University Atlanta Georgia 30322 USA
| | - Ming-Chien Hsieh
- Department of Chemistry and Biology, Emory University Atlanta Georgia 30322 USA .,School of Chemical and Biomolecular Engineering, Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Jay T Goodwin
- Department of Chemistry and Biology, Emory University Atlanta Georgia 30322 USA
| | - Martha A Grover
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - David G Lynn
- Department of Chemistry and Biology, Emory University Atlanta Georgia 30322 USA
| |
Collapse
|
9
|
Lin D, Lei J, Li S, Zhou X, Wei G, Yang X. Investigation of the Dissociation Mechanism of Single-Walled Carbon Nanotube on Mature Amyloid-β Fibrils at Single Nanotube Level. J Phys Chem B 2020; 124:3459-3468. [PMID: 32283926 DOI: 10.1021/acs.jpcb.0c00916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Amyloid fibrils originating from the fibrillogenesis of misfolded amyloid proteins are associated with the pathogenesis of many neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases. Carbon nanotubes have been extensively applied in our life and industry due to their unique chemical and physical properties. Nonetheless, the details between carbon nanotubes and mature amyloid fibrils remain elusive. In this study, we explored the interplay between single-walled carbon nanotubes (SWCNTs) and preformed amyloid-β (Aβ) fibrils by atomic force microscopy at the single SWCNT level, together with ThT fluorescence, cellular viability assays, infrared spectroscopy, and molecular dynamics (MD) simulations. The results demonstrated that SWCNTs could partially destroy the preformed Aβ fibrils and form the Aβ-surrounded-SWCNTs conjugates, as well as reduce the β-sheet structures. Peak force quantitative nanomechanical measurements revealed that the conjugates have lower Young's modulus than fibrils. Furthermore, our MD simulation demonstrated that the dissociation ability was dependent on the binding sites of Aβ fibrils. Overall, this study provides an insight into the dissociation mechanism between SWCNT and Aβ fibrils, which could be beneficial for the study of bionanomaterials and the development of other potential drug candidates for amyloidosis.
Collapse
Affiliation(s)
- Dongdong Lin
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
| | - Jiangtao Lei
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 220 Handan Road, Shanghai 200433, China.,Institute of Space Science and Technology, Nanchang University, Nanchang, Jiangxi Province 330031, China
| | - Shujie Li
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Xingfei Zhou
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, 818 Fenghua Road, Ningbo 315211, China.,Department of Physics, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
| | - Gaunghong Wei
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Xinju Yang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 220 Handan Road, Shanghai 200433, China
| |
Collapse
|
10
|
Liang C, Hsieh MC, Li NX, Lynn DG. Conformational evolution of polymorphic amyloid assemblies. Curr Opin Struct Biol 2018; 51:135-140. [DOI: 10.1016/j.sbi.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/02/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
|
11
|
Jia B, Sun Y, Yang L, Yu Y, Fan H, Ma G. A structural model of the hierarchical assembly of an amyloid nanosheet by an infrared probe technique. Phys Chem Chem Phys 2018; 20:27261-27271. [DOI: 10.1039/c8cp03003k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A hierarchical structural model of an amyloid nanosheet by IR probe technique.
Collapse
Affiliation(s)
- Baohuan Jia
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education
- Key Laboratory of Analytical Science and Technology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Ying Sun
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education
- Key Laboratory of Analytical Science and Technology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Lujuan Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education
- Key Laboratory of Analytical Science and Technology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Yang Yu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education
- Key Laboratory of Analytical Science and Technology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Haoran Fan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education
- Key Laboratory of Analytical Science and Technology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Gang Ma
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education
- Key Laboratory of Analytical Science and Technology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| |
Collapse
|
12
|
Hsieh MC, Liang C, Mehta AK, Lynn DG, Grover MA. Multistep Conformation Selection in Amyloid Assembly. J Am Chem Soc 2017; 139:17007-17010. [PMID: 29111722 PMCID: PMC5709775 DOI: 10.1021/jacs.7b09362] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
![]()
Defining pathways
for amyloid assembly could impact therapeutic
strategies for as many as 50 disease states. Here we show that amyloid
assembly is subject to different forces regulating nucleation and
propagation steps and provide evidence that the more global β-sheet/β-sheet
facial complementarity is a critical determinant for amyloid nucleation
and structural selection.
Collapse
Affiliation(s)
- Ming-Chien Hsieh
- Georgia Institute of Technology , 311 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Chen Liang
- Emory University , 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Anil K Mehta
- Emory University , 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - David G Lynn
- Emory University , 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Martha A Grover
- Georgia Institute of Technology , 311 Ferst Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
13
|
Abstract
Living systems contain remarkable functional capability built within sophisticated self-organizing frameworks. Defining the assembly codes that coordinate these systems could greatly extend nanobiotechnology. To that end, we have highlighted the self-assembling architecture of the chlorosome antenna arrays and report the emulation and extension of their features for the development of cell-compatible photoredox materials. We specifically review work on amyloid peptide scaffolds able to (1) organize light-harvesting chromophores, (2) break peptide bilayer symmetry for directional energy and electron transfer, and (3) incorporate redox active metal ions at high density for energy storage.
Collapse
Affiliation(s)
- Rolando F Rengifo
- Emory University, Departments of Biology and Chemistry, 1515 Dickey Dr. NE, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
14
|
Hsieh MC, Lynn DG, Grover MA. Kinetic Model for Two-Step Nucleation of Peptide Assembly. J Phys Chem B 2017; 121:7401-7411. [DOI: 10.1021/acs.jpcb.7b03085] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ming-Chien Hsieh
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - David G. Lynn
- Departments
of Chemistry and Biology, Emory University, Atlanta, Georgia 30322, United States
| | - Martha A. Grover
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
15
|
Lin YC, Repollet-Pedrosa MH, Ferrie JJ, Petersson EJ, Fakhraai Z. Potential Artifacts in Sample Preparation Methods Used for Imaging Amyloid Oligomers and Protofibrils due to Surface-Mediated Fibril Formation. J Phys Chem B 2017; 121:2534-2542. [PMID: 28266853 DOI: 10.1021/acs.jpcb.6b12560] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Accurate imaging of nanometer-sized structures and morphologies is essential to characterizing amyloid species formed at various stages of amyloid aggregation. In this article, we examine the effect of different drying procedures on the final morphology of surface-mediated fibrils formed during the incubation period, which may then be mistaken as oligomers or protofibrils intentionally formed in solution for a particular study. Atomic force microscopy results show that some artifacts, such as globules, flakelike structures, and even micrometer-long fibrils, can be produced under various drying conditions. We also demonstrate that one can prevent drying artifacts by using an appropriate spin-coating procedure to dry amyloid samples. This procedure can bypass the wetting/dewetting transition of the liquid layer during the drying process and preserve the structure of interest on the substrate without generating drying artifacts.
Collapse
Affiliation(s)
- Yi-Chih Lin
- Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Milton H Repollet-Pedrosa
- Department of Chemistry, University of Wisconsin at Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - John J Ferrie
- Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Zahra Fakhraai
- Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
16
|
Lin D, He R, Li S, Xu Y, Wang J, Wei G, Ji M, Yang X. Highly Efficient Destruction of Amyloid-β Fibrils by Femtosecond Laser-Induced Nanoexplosion of Gold Nanorods. ACS Chem Neurosci 2016; 7:1728-1736. [PMID: 27619416 DOI: 10.1021/acschemneuro.6b00244] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) is associated with the aggregation of the amyloid-beta (Aβ) peptides into toxic aggregates. How to inhibit the aggregation of Aβ peptides has been extensively studied over recent decades. The investigation on eliminating preformed fibrils, however, has rarely been reported. In this paper, near-infrared femtosecond (fs) laser is applied for the destruction of preformed Aβ fibrils in conjunction with gold nanorods (AuNRs). Our results demonstrate that the 800 nm fs-laser irradiation can locally trigger the explosion of AuNRs due to the strong localized surface plasmon resonance effect. As a result, the majority of Aβ fibrils are efficiently destroyed into small fragments by the irradiation of fs-laser with a light dose less than 75 J·cm-2. Meanwhile, significant reduction of β-sheet structures is observed by thioflavin T (ThT) fluorescence measurements. In contrast, the destruction effect by continuous wave (cw) laser irradiation is much weaker with equivalent power density and irradiation time. Furthermore, the laser-induced destruction of fibrils by Au nanoparticles (AuNPs) is also investigated, which reveals that most of the Aβ fibrils remain well under the surface explosion of spherical AuNPs. Overall, our results provide a novel design for the fast destruction of amyloid fibrils locally and biocompatibly, which may have remarkable potentials in the therapy of AD.
Collapse
Affiliation(s)
- Dongdong Lin
- State Key Laboratory of Surface
Physics, Fudan University, Shanghai 200433, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Ruoyu He
- State Key Laboratory of Surface
Physics, Fudan University, Shanghai 200433, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Shujie Li
- State Key Laboratory of Surface
Physics, Fudan University, Shanghai 200433, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Yongkui Xu
- State Key Laboratory of Surface
Physics, Fudan University, Shanghai 200433, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Jie Wang
- State Key Laboratory of Surface
Physics, Fudan University, Shanghai 200433, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Guanghong Wei
- State Key Laboratory of Surface
Physics, Fudan University, Shanghai 200433, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Minbiao Ji
- State Key Laboratory of Surface
Physics, Fudan University, Shanghai 200433, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Xinju Yang
- State Key Laboratory of Surface
Physics, Fudan University, Shanghai 200433, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| |
Collapse
|
17
|
Kumar V, Sami N, Kashav T, Islam A, Ahmad F, Hassan MI. Protein aggregation and neurodegenerative diseases: From theory to therapy. Eur J Med Chem 2016; 124:1105-1120. [DOI: 10.1016/j.ejmech.2016.07.054] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/23/2022]
|
18
|
Lin D, Qi R, Li S, He R, Li P, Wei G, Yang X. Interaction Dynamics in Inhibiting the Aggregation of Aβ Peptides by SWCNTs: A Combined Experimental and Coarse-Grained Molecular Dynamic Simulation Study. ACS Chem Neurosci 2016; 7:1232-40. [PMID: 27441457 DOI: 10.1021/acschemneuro.6b00101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The aggregation of amyloid-β peptides (Aβ) is considered as the main possible cause of Alzheimer's disease (AD). How to suppress the formation of toxic Aβ aggregates has been an intensive concern over the past several decades. Increasing evidence shows that whether carbon nanomaterials can suppress or promote the aggregation depends on their physicochemical properties. However, their interaction dynamics remains elusive as amyloid fibrillation is a complex multistep process. In this paper, we utilized atomic force microscopy (AFM), electrostatic force microscopy (EFM), ThT/fluorescence spectroscopy, and cell viability measurements, combined with coarse-grained molecular dynamic (MD) simulations to study the dynamic interaction of full length Aβ with single-walled carbon nanotubes (SWCNT). At the single SWCNTs scale, it is found that the presence of SWCNTs would result in rapid and spontaneous adsorption of Aβ1-40 peptides on their surface and stacking into nonfibrillar aggregates with reduced toxicity, which plays an important role in inhibiting the formation of toxic oligomers and mature fibrils. Our results provide new clues for studying the interaction in amyloid/SWCNTs system as well as for seeking amyloidosis inhibitors with carbon nanomaterials.
Collapse
Affiliation(s)
- Dongdong Lin
- State Key Laboratory of Surface
Physics and Key Laboratory for Computational Physical, Fudan University, Shanghai 200433, China
| | - Ruxi Qi
- State Key Laboratory of Surface
Physics and Key Laboratory for Computational Physical, Fudan University, Shanghai 200433, China
| | - Shujie Li
- State Key Laboratory of Surface
Physics and Key Laboratory for Computational Physical, Fudan University, Shanghai 200433, China
| | - Ruoyu He
- State Key Laboratory of Surface
Physics and Key Laboratory for Computational Physical, Fudan University, Shanghai 200433, China
| | - Pei Li
- State Key Laboratory of Surface
Physics and Key Laboratory for Computational Physical, Fudan University, Shanghai 200433, China
| | - Guanghong Wei
- State Key Laboratory of Surface
Physics and Key Laboratory for Computational Physical, Fudan University, Shanghai 200433, China
| | - Xinju Yang
- State Key Laboratory of Surface
Physics and Key Laboratory for Computational Physical, Fudan University, Shanghai 200433, China
| |
Collapse
|
19
|
Wang J, Tao K, Zhou P, Pambou E, Li Z, Xu H, Rogers S, King S, Lu JR. Tuning self-assembled morphology of the Aβ(16-22) peptide by substitution of phenylalanine residues. Colloids Surf B Biointerfaces 2016; 147:116-123. [PMID: 27497075 DOI: 10.1016/j.colsurfb.2016.07.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 11/25/2022]
Abstract
The effects of the two phenylalanine (Phe) residues in the blocked Aβ(16-22) peptide on its self-assembly have been investigated by replacing both of them with two cyclohexylalanines (Chas) or two phenylglycines (Phgs). TEM and SANS studies revealed that the flat and wide nanoribbons of Aβ(16-22) were transformed into thin nanotubes when replaced with Chas, and thinner and twisted nanofibrils when replaced with Phgs. The red-shifting degree of characteristic CD peaks suggested an increased twisting in the self-assembly of the derivative peptides, especially in the case of Ac-KLV(Phg)(Phg)AE-NH2. Furthermore, molecular dynamics (MD) simulations also indicated the increasing trend in twisting when Chas or Phgs were substituted for Phes. These results demonstrated that the hydrophobic interactions and spatial conformation between Cha residues were sufficient to cause lateral association of β-sheets to twisted/helical nanoribbons, which finally developed into nanotubes, while for Phg residue, the loss of the rotational freedom of the aromatic ring induced much stronger steric hindrance for the lateral stacking of Ac-KLV(Phg)(Phg)AE-NH2 β-sheets, eventually leading to the nanofibril formation. This study thus demonstrates that both the aromatic structure and the steric conformation of Phe residues are crucial in Aβ(16-22) self-assembly, especially in the significant lateral association of β-sheets.
Collapse
Affiliation(s)
- Jiqian Wang
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China.
| | - Kai Tao
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Peng Zhou
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Elias Pambou
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Schuster Building, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Zongyi Li
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Schuster Building, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Hai Xu
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China.
| | - Sarah Rogers
- ISIS Pulsed Neutron Source, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QZ, United Kingdom
| | - Stephen King
- ISIS Pulsed Neutron Source, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QZ, United Kingdom
| | - Jian R Lu
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Schuster Building, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
20
|
Gao Y, Zou Y, Ma Y, Wang D, Sun Y, Ma G. Infrared Probe Technique Reveals a Millipede-like Structure for Aβ(8-28) Amyloid Fibril. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:937-946. [PMID: 26796491 DOI: 10.1021/acs.langmuir.5b03616] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Amyloid fibrils are unique fibrous polypeptide aggregates. They have been associated with more than 20 serious human diseases including Alzheimer's disease and Parkinson's disease. Besides their pathological significance, amyloid fibrils are also gaining increasing attention as emerging nanomaterials with novel functions. Structural characterization of amyloid fibril is no doubt fundamentally important for the development of therapeutics for amyloid-related diseases and for the rational design of amyloid-based materials. In this study, we explored to use side-chain-based infrared (IR) probe to gain detailed structural insights into the amyloid fibril by a 21-residue model amyloidogenic peptide, Aβ(8-28). We first proposed an approach to incorporate thiocyanate (SCN) IR probe in a site-specific manner into amyloidogenic peptide using 1-cyano-4-dimethylaminopyridinium tetrafluoroborate as cyanylating agent. Using this approach, we obtained three Aβ(8-28) variants, labeled with SCN probe at three different positions. We then showed with thioflavin T fluorescence assay, Congo red assay, and atomic force microscopy that the three labeled Aβ(8-28) peptides can quickly form amyloid fibrils under high concentration and high salt conditions. Finally, we performed a detailed IR spectral analysis of the Aβ(8-28) fibril in both amide I and probe regions and proposed a millipede-like structure for the Aβ(8-28) fibril.
Collapse
Affiliation(s)
- Yachao Gao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| | - Ye Zou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| | - Yan Ma
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| | - Dan Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| | - Ying Sun
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| | - Gang Ma
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| |
Collapse
|
21
|
Smith JE, Liang C, Tseng M, Li N, Li S, Mowles AK, Mehta AK, Lynn DG. Defining the Dynamic Conformational Networks of Cross-β Peptide Assembly. Isr J Chem 2015. [DOI: 10.1002/ijch.201500012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Tunable assembly of amyloid-forming peptides into nanosheets as a retrovirus carrier. Proc Natl Acad Sci U S A 2015; 112:2996-3001. [PMID: 25713359 DOI: 10.1073/pnas.1416690112] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using and engineering amyloid as nanomaterials are blossoming trends in bionanotechnology. Here, we show our discovery of an amyloid structure, termed "amyloid-like nanosheet," formed by a key amyloid-forming segment of Alzheimer's Aβ. Combining multiple biophysical and computational approaches, we proposed a structural model for the nanosheet that is formed by stacking the amyloid fibril spines perpendicular to the fibril axis. We further used the nanosheet for laboratorial retroviral transduction enhancement and directly visualized the presence of virus on the nanosheet surface by electron microscopy. Furthermore, based on our structural model, we designed nanosheet-forming peptides with different functionalities, elucidating the potential of rational design for amyloid-based materials with novel architecture and function.
Collapse
|
23
|
Smith JE, Mowles AK, Mehta AK, Lynn DG. Looked at life from both sides now. Life (Basel) 2014; 4:887-902. [PMID: 25513758 PMCID: PMC4284472 DOI: 10.3390/life4040887] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 01/25/2023] Open
Abstract
As the molecular top–down causality emerging through comparative genomics is combined with the bottom–up dynamic chemical networks of biochemistry, the molecular symbiotic relationships driving growth of the tree of life becomes strikingly apparent. These symbioses can be mutualistic or parasitic across many levels, but most foundational is the complex and intricate mutualism of nucleic acids and proteins known as the central dogma of biological information flow. This unification of digital and analog molecular information within a common chemical network enables processing of the vast amounts of information necessary for cellular life. Here we consider the molecular information pathways of these dynamic biopolymer networks from the perspective of their evolution and use that perspective to inform and constrain pathways for the construction of mutualistic polymers.
Collapse
Affiliation(s)
- Jillian E Smith
- Department of Chemistry and Biology, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA.
| | - Allisandra K Mowles
- Department of Chemistry and Biology, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA.
| | - Anil K Mehta
- Department of Chemistry and Biology, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA.
| | - David G Lynn
- Department of Chemistry and Biology, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA.
| |
Collapse
|