1
|
Zhang Z, Lefebvre C, Somerville SV, Tilley RD, Guénin E, Terrasson V. Pd nanoparticles embedded in nanolignin (Pd@LNP) as a water dispersible catalytic nanoreactor for Cr(VI), 4-nitrophenol reduction and CC coupling reactions. Int J Biol Macromol 2024; 254:127695. [PMID: 37913877 DOI: 10.1016/j.ijbiomac.2023.127695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
The use of water-dispersible and sustainable Pd nanocatalysts to reduce toxic heavy metal ions and catalyze important organic reactions has profound significance for the environmental remediation and the catalytic industry. In this work, a novel water-dispersible and recyclable Pd@LNPs nanoreactor composed of Pd nanoparticle cluster core and LNPs shell was developed in microwave reactor in aqueous solution. It turned out that Pd nanoparticles grew uniformly and stably inside LNPs nanosphere due to the coordinated binding and interaction between Pd and the functional groups in LNPs, which was significantly different from surface loading. The green and biodegradable LNPs nanospheres are not only used as reducing agents for Pd (II) and nanocarriers, but also act as individual nanocontainers to provide favorable sites for reactions and effectively control the entry and release of reactants and products. Furthermore, the excellent and efficient catalytic properties of Pd@LNPs were exhibited by CC coupling reactions and the reduction of Cr(VI) and 4-nitrophenol. The Pd@LNPs prepared in this study have the advantages of excellent dispersion, great recyclability, high turnover frequency and better green sustainability metrics. It will have a great significance for the development of the potential high-value of lignin and the progress in the field of bio-nanocatalysts.
Collapse
Affiliation(s)
- Zhao Zhang
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, CS 60 319-60 203 Compiègne Cedex, France
| | - Caroline Lefebvre
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, CS 60 319-60 203 Compiègne Cedex, France
| | - Samuel V Somerville
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney 2052, Australia
| | - Richard D Tilley
- School of Chemistry, Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Erwann Guénin
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, CS 60 319-60 203 Compiègne Cedex, France.
| | - Vincent Terrasson
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, CS 60 319-60 203 Compiègne Cedex, France.
| |
Collapse
|
2
|
Zhang Z, Besserer A, Rose C, Brosse N, Terrasson V, Guénin E. Microwave-Assisted Synthesis of Pd Nanoparticles into Wood Block (Pd@wood) as Efficient Catalyst for 4-Nitrophenol and Cr(VI) Reduction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2491. [PMID: 37686999 PMCID: PMC10490320 DOI: 10.3390/nano13172491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Palladium (Pd) nanoparticle catalysis has attracted increasing attention due to its efficient catalytic activity and its wide application in environmental protection and chemical synthesis. In this work, Pd nanoparticles (about 71 nm) were synthesized in aqueous solution by microwave-assisted thermal synthesis and immobilized in beech wood blocks as Pd@wood catalysts. The wood blocks were first hydrothermally treated with 10% NaOH solution to improve the internal structure and increase their porosity, thereby providing favorable attachment sites for the formed Pd nanoparticles. The stable deposition of Pd nanoparticle clusters on the internal channels of the wood blocks can be clearly observed. In addition, the catalytic performance of the prepared Pd@wood was investigated through two model reactions: the reduction of 4-nitrophenol and Cr(VI). The Pd@wood catalyst showed 95.4 g-1 s-1 M-1 of normalized rate constant knorm and 2.03 min-1 of the TOF, respectively. Furthermore, Pd nanoparticles are integrated into the internal structure of wood blocks by microwave-assisted thermal synthesis, which is an effective method for wood functionalization. It benefits metal nanoparticle catalysis in the synthesis of fine chemicals as well as in industrial wastewater treatment.
Collapse
Affiliation(s)
- Zhao Zhang
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, CS 60319, 60203 Compiègne CEDEX, France;
| | - Arnaud Besserer
- LERMAB, Université de Lorraine, INRAE, F54000 Nancy, France; (A.B.); (N.B.)
| | - Christophe Rose
- Centre INRAE-Grand Est-Nancy, UMR SYLVA-SILVATECH pole IM3, 54280 Champenoux, France;
| | - Nicolas Brosse
- LERMAB, Université de Lorraine, INRAE, F54000 Nancy, France; (A.B.); (N.B.)
| | - Vincent Terrasson
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, CS 60319, 60203 Compiègne CEDEX, France;
| | - Erwann Guénin
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, CS 60319, 60203 Compiègne CEDEX, France;
| |
Collapse
|
3
|
Wang T, Chen Z, Gong W, Xu F, Song X, He X, Fan M. Electrospun Carbon Nanofibers and Their Applications in Several Areas. ACS OMEGA 2023; 8:22316-22330. [PMID: 37396209 PMCID: PMC10308409 DOI: 10.1021/acsomega.3c01114] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/15/2023] [Indexed: 07/04/2023]
Abstract
Carbon nanofibers (CNFs) have a broad spectrum of applications, including sensor manufacturing, electrochemical catalysis, and energy storage. Among different manufacturing methods, electrospinning, due to its simplicity and efficiency, has emerged as one of the most powerful commercial large-scale production techniques. Numerous researchers have been attracted to improving the performance of CNFs and exploring new potential applications. This paper first discusses the working theory of manufacturing electrospun CNFs. Next, the current efforts in upgrading the properties of CNFs, such as pore architecture, anisotropy, electrochemistry, and hydrophilicity, are discussed. The corresponding applications due to the superior performances of CNFs are subsequently elaborated. Finally, the future development of CNFs is discussed.
Collapse
Affiliation(s)
- Tongtong Wang
- College
of Advanced Materials Engineering, Jiaxing
Nanhu University, Jiaxing, Zhejiang 314001, People’s Republic of China
- College
of Engineering and Physical Sciences and School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071, United States
- Jiaxing
key Laboratory of Preparation and Application of Advanced Materials
for Energy Conservation and Emission Reduction, Jiaxing Nanhu University, Jiaxing, Zhejiang 314001, People’s Republic of China
| | - Zhe Chen
- College
of Engineering and Physical Sciences and School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Weibo Gong
- College
of Engineering and Physical Sciences and School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Fei Xu
- College
of Advanced Materials Engineering, Jiaxing
Nanhu University, Jiaxing, Zhejiang 314001, People’s Republic of China
- Jiaxing
key Laboratory of Preparation and Application of Advanced Materials
for Energy Conservation and Emission Reduction, Jiaxing Nanhu University, Jiaxing, Zhejiang 314001, People’s Republic of China
| | - Xin Song
- Faculty
of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, People’s Republic of China
| | - Xin He
- College
of Engineering and Physical Sciences and School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071, United States
- College
of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan Province, 610059 People’s Republic
of China
| | - Maohong Fan
- College
of Engineering and Physical Sciences and School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071, United States
- College of
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
4
|
Nisar M, Galland GB, Geshev J, Bergmann C, Quijada R. Magnetically Stimulable Graphene Oxide/Polypropylene Nanocomposites. ACS OMEGA 2023; 8:21983-21995. [PMID: 37360436 PMCID: PMC10286093 DOI: 10.1021/acsomega.3c01917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
Core-shell magnetic air-stable nanoparticles have attracted increasing interest in recent years. Attaining a satisfactory distribution of magnetic nanoparticles (MNPs) in polymeric matrices is difficult due to magnetically induced aggregation, and supporting the MNPs on a nonmagnetic core-shell is a well-established strategy. In order to obtain magnetically active polypropylene (PP) nanocomposites by melt mixing, the thermal reduction of graphene oxides (TrGO) at two different temperatures (600 and 1000 °C) was carried out, and, subsequently, metallic nanoparticles (Co or Ni) were dispersed on them. The XRD patterns of the nanoparticles show the characteristic peaks of the graphene, Co, and Ni nanoparticles, where the estimated sizes of Ni and Co were 3.59 and 4.25 nm, respectively. The Raman spectroscopy presents typical D and G bands of graphene materials as well as the corresponding peaks of Ni and Co nanoparticles. Elemental and surface area studies show that the carbon content and surface area increase with thermal reduction, as expected, following a reduction in the surface area by the support of MNPs. Atomic absorption spectroscopy demonstrates about 9-12 wt % metallic nanoparticles supported on the TrGO surface, showing that the reduction of GO at two different temperatures has no significant effect on the support of metallic nanoparticles. Fourier transform infrared (FT-IR) spectroscopy shows that the addition of a filler does not alter the chemical structure of the polymer. Scanning electron microscopy of the fracture interface of the samples demonstrates consistent dispersion of the filler in the polymer. The TGA analysis shows that, with the incorporation of the filler, the initial (Tonset) and maximum (Tmax) degradation temperatures of the PP nanocomposites increase up to 34 and 19 °C, respectively. The DSC results present an improvement in the crystallization temperature and percent crystallinity. The filler addition slightly enhances the elastic modulus of the nanocomposites. The results of the water contact angle confirm that the prepared nanocomposites are hydrophilic. Importantly, the diamagnetic matrix is transformed into a ferromagnetic one with the addition of the magnetic filler.
Collapse
Affiliation(s)
- Muhammad Nisar
- Facultad
de Ingeniería, Universidad Católica
de la Santísima Concepción, Alonso de Ribera 2850, Concepción 4090541, Chile
| | - Griselda Barrera Galland
- Instituto
de Química, Universidade Federal
do Rio Grande do Sul, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, Brazil
| | - Julian Geshev
- Instituto
de Física, Universidade Federal do
Rio Grande do Sul, Av.
Bento Gonçalves, 9500, 91501-970 Porto Alegre, Brazil
| | - Carlos Bergmann
- Laboratório
de Materiais Cerâmicos, Departamento de Materiais, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, Brazil
| | - Raúl Quijada
- Departamento
de Ingeniería Química, Biotecnología y Materiales,
Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago 8370456, Chile
| |
Collapse
|
5
|
Verma R, Chauhan MS, Pandey S, Dandia A. Reduced graphene Oxide/NiO based nano-composites for the efficient removal of alizarin dye, indigo dye and reduction of nitro aromatic compounds. Heliyon 2023; 9:e17162. [PMID: 37484436 PMCID: PMC10361311 DOI: 10.1016/j.heliyon.2023.e17162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
Removal of alizarin red S (ARS) and Indigo dye from aqueous media and reduction of nitro aromatic compounds are successfully done under mild condition by using reduced Graphene Oxide-Nickel Oxide (rGO-NiO) nanocomposite as catalyst. RGO-NiO is well characterized by different analytical techniques. Morphology, structural, and composition studies done by HRTEM, FESEM, EDX, TGA, FTIR, XPS, Raman spectroscopy, and XRD. RGO-NiO nanocomposite has high stability for the removal of ARS, Indigo dye, reduction reaction nitro aromatic compounds.
Collapse
Affiliation(s)
- Renu Verma
- ASAS, Amity University Rajasthan, Jaipur, 303002, India
| | | | | | - Anshu Dandia
- Department of Chemistry, University of Rajasthan, Jaipur, 302004, India
| |
Collapse
|
6
|
Liu MM, Wu XM, Guo HX, Huang XG, Ying SM. Solvent Effect on the Fabrication of POMs-Based MOFs Microspheres: Dual-Function in Electrocatalytic Hydrogen Evolution and Catalytic Reduction of Cr6+. Catal Letters 2022. [DOI: 10.1007/s10562-022-04205-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Green gold@chitosan nanocomposite via solid-state synthesis; a separable catalyst for reduction of Cr(IV). J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Valbuena-Rus AM, Savastano M, Arranz-Mascarós P, Bazzicalupi C, Clares MP, Godino-Salido ML, Gutiérrez-Valero MD, Inclán M, Bianchi A, García-España E, López-Garzón R. Noncovalent Assembly and Catalytic Activity of Hybrid Materials Based on Pd Complexes Adsorbed on Multiwalled Carbon Nanotubes, Graphene, and Graphene Nanoplatelets. Inorg Chem 2022; 61:12610-12624. [PMID: 35926979 PMCID: PMC9387097 DOI: 10.1021/acs.inorgchem.2c01559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Green catalysts with excellent performance in Cu-free
Sonogashira
coupling reactions can be prepared by the supramolecular decoration
of graphene surfaces with Pd(II) complexes. Here we report the synthesis,
characterization, and catalytic properties of new catalysts obtained
by the surface decoration of multiwalled carbon nanotubes (MWCNTs),
graphene (G), and graphene nanoplatelets (GNPTs) with Pd(II) complexes
of tetraaza-macrocyclic ligands bearing one or two anchor functionalities.
The decoration of these carbon surfaces takes place under environmentally
friendly conditions (water, room temperature, aerobic) in two steps:
(i) π–π stacking attachment of the ligand via electron-poor
anchor group 6-amino-3,4-dihydro-3-methyl-5-nitroso-4-oxo-pyrimidine
and (ii) Pd(II) coordination from PdCl42–. Ligands are more efficiently adsorbed on the flat surfaces of G
and GNPTs than on the curved surfaces of MWCNTs. All catalysts work
very efficiently under mild conditions (50 °C, aerobic, 7 h),
giving a similar high yield (90% or greater) in the coupling of iodobenzene
with phenylacetylene to form diphenylacetylene in one catalytic cycle,
but catalysts based on G and GNPTs (especially on GNPTs) provide greater
catalytic efficiency in reuse (four cycles). The study also revealed
that the active centers of the ligand-Pd type decorating the support
surfaces are much more efficient than the Pd(0) and PdCl42– centers sharing the same surfaces. All of the
results allow a better understanding of the structural factors to
be controlled in order to obtain an optimal efficiency from similar
catalysts based on graphene supports. Green catalysts
with high efficiency in the Cu-free Sonogashira
C−C coupling reactions can be prepared by the supramolecular
functionalization of carbon materials.
Collapse
Affiliation(s)
- Alba M Valbuena-Rus
- Department of Inorganic and Organic Chemistry, University of Jaén, 23071 Jaen, Spain
| | - Matteo Savastano
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.,National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Florence, Italy
| | | | - Carla Bazzicalupi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - María P Clares
- ICMol, Department of Inorganic Chemistry, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - María L Godino-Salido
- Department of Inorganic and Organic Chemistry, University of Jaén, 23071 Jaen, Spain
| | | | - Mario Inclán
- ICMol, Department of Inorganic Chemistry, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - Antonio Bianchi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Enrique García-España
- ICMol, Department of Inorganic Chemistry, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - Rafael López-Garzón
- Department of Inorganic and Organic Chemistry, University of Jaén, 23071 Jaen, Spain
| |
Collapse
|
9
|
Bashir MS, Ramzan N, Najam T, Abbas G, Gu X, Arif M, Qasim M, Bashir H, Shah SSA, Sillanpää M. Metallic nanoparticles for catalytic reduction of toxic hexavalent chromium from aqueous medium: A state-of-the-art review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154475. [PMID: 35278543 DOI: 10.1016/j.scitotenv.2022.154475] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The ever increasing concentration of toxic and carcinogenic hexavalent chromium (Cr (VI)) in various environmental mediums including water-bodies due to anthropogenic activities with rapid civilization and industrialization have become the major issue throughout the globe during last few decades. Therefore, developing new strategies for the treatment of Cr(VI) contaminated wastewaters are in great demand and have become a topical issue in academia and industry. To date, various techniques have been used for the remediation of Cr(VI) contaminated wastewaters including solvent extraction, adsorption, catalytic reduction, membrane filtration, biological treatment, coagulation, ion exchange and photo-catalytic reduction. Among these methods, the transformation of highly toxic Cr(VI) to benign Cr(III) catalyzed by metallic nanoparticles (M-NPs) with reductant has gained increasing attention in the past few years, and is considered to be an effective approach due to the superior catalytic performance of M-NPs. Thus, it is a timely topic to review this emerging technique for Cr(VI) reduction. Herein, recent development in synthesis of M-NPs based non-supported, supported, mono-, bi- and ternary M-NPs catalysts, their characterization and performance for the reduction of Cr(VI) to Cr(III) are reviewed. The role of supporting host to stabilize the M-NPs and leading to enhance the reduction of Cr(VI) are discussed. The Cr(VI) reduction mechanism, kinetics, and factors affecting the kinetics are overviewed to collect the wealthy kinetics data. Finally, the challenges and perspective in Cr(VI) reduction catalyzed by M-NPs are proposed. We believe that this review will assist the researchers who are working to develop novel M-NPs catalysts for the reduction of Cr(VI).
Collapse
Affiliation(s)
- Muhammad Sohail Bashir
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Naveed Ramzan
- Department of Chemical Engineering, University of Engineering and Technology, Lahore 54890, Pakistan
| | - Tayyaba Najam
- Institute for Advanced Study and Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Ghulam Abbas
- Department of Chemical Engineering, University of Gujrat, Gujrat 50700, Pakistan
| | - Xiangling Gu
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Muhammad Arif
- Department of Chemical Engineering, University of Engineering & Information Technology Abu Dhabi Road, Rahim Yar Khan, 64200 Pakistan
| | - Muhammad Qasim
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Humaira Bashir
- Department of Botany, University of the Punjab, Quaid-e-Azam Campus, 54590 Lahore, Pakistan
| | - Syed Shoaib Ahmad Shah
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India; Zhejiang Rongsheng Environmental Protection Paper Co. LTD, NO.588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang 314213, China.
| |
Collapse
|
10
|
dos Santos JRN, Alves ICB, Marques ALB, Marques EP. Ni–Ag Supported on Reduced Graphene Oxide as Efficient Electrocatalyst for Alcohol Oxidation Reactions. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00754-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Guo Z, Cheng M, Ren W, Wang Z, Zhang M. Treated activated carbon as a metal-free catalyst for effectively catalytic reduction of toxic hexavalent chromium. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128416. [PMID: 35149503 DOI: 10.1016/j.jhazmat.2022.128416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
In this work, activated carbon treated in N2 atmosphere, as a non-metallic catalyst, exhibits excellent catalytic performance in reduction of Cr (VI) to Cr (III) using HCOOH as the reducing agent at room temperature. A series of characterizations and control experiments were carried out to deduce the possible reaction mechanism. The results showed that the improved catalytic performance can be attributed to the enhanced graphitization degree and basic sites such as pyrone-like, which favor electron transferring and activation of reactant. The reaction rate constant observed herein for the C-800 was 22 and 6 times more than that for C-0 and Pd/C catalyst, respectively. In addition, C-800 showed good recycle performance, and no loss of activity was observed after 5 cycles. This study broadens the application of nonmetallic catalyst and provides an easy-available and cost-effective catalytic material for removing toxic Cr (VI).
Collapse
Affiliation(s)
- Zhenbo Guo
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Ming Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Wenqiang Ren
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Zhiqiang Wang
- Tianjin Key Laboratory of Water Environment and Resources, Tianjin Normal University, Tianjin 300387, PR China.
| | - Minghui Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
12
|
Guo Y, Cheng Y, Li X, Li Q, Li X, Chu K. MXene quantum dots decorated Ni nanoflowers for efficient Cr (VI) reduction. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127053. [PMID: 34523495 DOI: 10.1016/j.jhazmat.2021.127053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 05/21/2023]
Abstract
Nickel@MXene quantum dots (Ni@MQDs), as novel flower-like hybrid materials, were firstly prepared through a simple reduction method. The Ni@MQDs exhibited an outstanding catalytic performance for Cr (VI) reduction with a low activation energy (Ea = 18.9 kJ mol-1) and a high kinetic constant (k = 0.4779 min-1) in the presence of formic acid (HCOOH). Density functional theory calculations demonstrated that Ni@MQDs exhibited an upshift of d-band center of active Ni atoms to promote the adsorption of both HCOOH and active H atoms, as well as an improved conductivity to boost the catalytic reaction kinetics, leading to the most favorable catalytic performance. This work may open up a new avenue towards the design and synthesis of novel MQDs-based hybrid catalysts for wastewater treatment.
Collapse
Affiliation(s)
- Yali Guo
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China.
| | - Yonghua Cheng
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
| | - Xingchuan Li
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
| | - Qingqing Li
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
| | - Xiaotian Li
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China.
| |
Collapse
|
13
|
Liu W, Guo Z, Jin Z, Chen D, Lu T, Jia P, Xing H. Visible-light-driven sonophotocatalysis for enhanced Cr(VI) reduction based on mixed-linker zirconium-porphyrin MOFs. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02346b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we synthesized and characterized two mixed-linker zirconium-porphyrin metal-organic frameworks, PCN-134 and PCN-138 which constructed from tetratopic light harvesting TCPP ligand and tritopic BTB/TBTB ligand (TCPP = trakis(4-carboxyphenyl)porphyrin),...
Collapse
|
14
|
Kajala R, Tomar SS, Verma N, Nigam KDP. Catalytic reduction of in-flow aqueous Cr( vi) using a slurry of activated carbon fiber-supported Ni nanoparticles in a coiled flow inverter. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00226d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CFI technology is utilized for the in-flow reduction of Cr(vi) using formic acid as the reducing agent and an aqueous dispersion of Ni/ACF, as an alternative to the conventional packed bed reactors.
Collapse
Affiliation(s)
- Rakshit Kajala
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Shivam Singh Tomar
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Nishith Verma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - K. D. P. Nigam
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
15
|
Liu Y, Yang H, Chen T. Nitrogen-doped lignin-derived carbon for catalytic reduction of hexavalent chromium via HCOOH-mediated hydrogenation. RSC Adv 2022; 12:4550-4561. [PMID: 35425525 PMCID: PMC8981140 DOI: 10.1039/d1ra06391j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/22/2021] [Indexed: 11/21/2022] Open
Abstract
It is highly desirable to explore efficient catalysts for reducing toxic Cr6+ to benign Cr3+ under mild and eco-friendly conditions. This article describes a facile fabrication of nitrogen doped carbon (N@C-g-C3N4) as a metal-free catalyst for Cr6+ reduction using lignin as a carbon source and g-C3N4 nanosheets as a nitrogen source. The structural properties of the N@C-g-C3N4 catalyst are characterized by TEM, HR-TEM, XRD, TGA, Raman, EDS-mapping, XPS and BET techniques. The summation of these analyses sheds light on the high surface area (903 m2 g−1), mesopore size (17.3 nm) and defects (ID/IG = 0.97) of N@C-g-C3N4, which contribute to its excellent catalytic activity in HCOOH-mediated reduction of Cr6+ to Cr3+ with high rate constant (2.98 min−1) and turnover frequency (2.21 molK2Cr2O7 gcatalyst−1 min−1) and complete degradation (100%) within 5 min. The catalytic performance of the catalyst reveals that the reduction activity is significantly dependent on the concentration of Cr6+ and HCOOH, catalyst loading, pH, temperature, and foreign ions. Particularly, the N@C-g-C3N4 catalyst shows superior stability and renewability with little loss of activity (≥95%) after 8 months storage and five repeated uses. Furthermore, N@C-g-C3N4 can be applied in other hydrogenation reactions involving K3[Fe(CN)6], 4-NP and BPA using NaBH4 as a hydrogen donor, and the removal of organic dyes. These findings illustrate that N@C-g-C3N4 as a metal-free catalyst is effective, versatile and eco-friendly for the reduction of Cr6+ from contaminated environments. Lignin-derived carbon doped with nitrogen for Cr6+ reduction through HCOOH-mediated hydrogenation in mild conditions.![]()
Collapse
Affiliation(s)
- Yun Liu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haihua Yang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tao Chen
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
16
|
Prabakaran E, Pillay K. Self-Assembled Silver Nanoparticles Decorated on Exfoliated Graphitic Carbon Nitride/Carbon Sphere Nanocomposites as a Novel Catalyst for Catalytic Reduction of Cr(VI) to Cr(III) from Wastewater and Reuse for Photocatalytic Applications. ACS OMEGA 2021; 6:35221-35243. [PMID: 34984255 PMCID: PMC8717378 DOI: 10.1021/acsomega.1c00866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/16/2021] [Indexed: 06/14/2023]
Abstract
Silver nanoparticles decorated on an exfoliated graphitic carbon nitride/carbon sphere (AgNP/Eg-C3N4/CS) nanocomposites were synthesized by an adsorption method with a self-assembled process. These nanoparticles were characterized by different techniques like UV-visible (UV-vis) spectroscopy, photoluminescence (PL) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), thermal gravimetric analysis (TGA), Raman spectroscopy, scanning electron spectroscopy (SEM), transmission electron spectroscopy (TEM), electrochemical impedance spectroscopy (EIS), and ζ potential. AgNP/Eg-C3N4/CS nanocomposites showed a higher catalytic reduction activity for the conversion of Cr(VI) into Cr(III) with formic acid (FA) at 45 °C when compared to bulk graphitic carbon nitride (Bg-C3N4, Eg-C3N4, CS, and Eg-C3N4/CS). The kinetic rate constants were determined as a function of catalyst dosage, concentration of Cr(VI), pH, and temperature for the AgNP/Eg-C3N4/CS nanocomposite. This material showed higher reduction efficiency (98.5%, k = 0.0621 min-1) with turnover frequency (0.0158 min-1) for the reduction of Cr(VI) to Cr(III). It also showed great selectivity and high stability after six repeated cycles (98.5%). Further, the reusability of the Cr(III)-AgNP/Eg-C3N4/CS nanocomposite was also investigated for the photocatalytic degradation of methylene blue (MB) under visible light irradiation with various time intervals and it showed good degradation efficiency (α = 97.95%). From these results, the AgNP/Eg-C3N4/CS nanocomposite demonstrated higher catalytic activity, improved environmental friendliness, lower cost for the conversion of toxic Cr(VI) to Cr(III) in solutions, and also good reusability.
Collapse
|
17
|
Bashir MS. Benign fabrication process of hierarchal porous polyurea microspheres with tunable pores and porosity: Their Pd immobilization and use for hexavalent chromium reduction. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.08.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Khazaee Z, Mahjoub AR, Khavar AHC, Srivastava V, Sillanpää M. Sub-level engineering strategy of nitrogen-induced Bi 2O 3/g-C 3N 4: a versatile photocatalyst for oxidation and reduction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:50747-50766. [PMID: 33973121 DOI: 10.1007/s11356-021-14308-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Herein, the α-Bi2O3 nanocrystal decorated by nitrogen dopant and its heterojunction nanocomposite with g-C3N4 (N0.1/Bi2O3/g-C3N4) is successfully fabricated for the first time, for photo-oxidation of RhB and photo-reduction of Cr(VI) to Cr(III). The resulting N0.1/Bi2O3/g-C3N4 (3%) nanocomposite showed an optimal Cr(VI) photo-reduction and RhB photo-oxidation rates under visible-light irradiation, being 3-4 times higher than that of pure α-Bi2O3. The results from XPS confirmed the substitution of nitrogen with various oxidation states from N3+ to Nx+ (x < 5), due to the existence of different nitrogen oxides including N-O, O-N=O, and NO3- in the crystal structure. We investigated the reaction mechanism using catalytic tests, impedance spectroscopy, EPR technique, and density functional calculations. The DFT calculations presented the appearance of a new mid-gap hybrid of p states, comprised of N 2p, O 2p, and Bi 6P states, which enhance light absorption capacity and narrow band gap. The theoretical results were in excellent agreement with experimental UV-Vis data. The N0.1/Bi2O3/g-C3N4 nanocomposite exhibited acceptable practical application value and recycling ability for removal of the contaminants. Such improved photocatalytic activity is originated from the modified band positions, new electron evolution pathway, introducing defects in α-Bi2O3 by insertion of N atoms into the Bi sites, and the enhanced charge carrier mobility between N0.1/Bi2O3 and g-C3N4. The strategy to form nitrogen-doped bismuth-based nanocomposites may open a new opportunity to design atomic-level electronic defects by feasible methods to obtain a versatile photocatalyst material with simultaneous photo-reduction and photo-oxidation ability for removal of Cr(VI) and organic dyes from water.
Collapse
Affiliation(s)
- Zeynab Khazaee
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Reza Mahjoub
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran.
| | | | - Varsha Srivastava
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
| | - Mika Sillanpää
- Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Vietnam
| |
Collapse
|
19
|
Zhu K, Chen L, Alharbi NS, Chen C. Interconnected hierarchical nickel-carbon hybrids assembled by porous nanosheets for Cr(VI) reduction with formic acid. J Colloid Interface Sci 2021; 606:213-222. [PMID: 34390989 DOI: 10.1016/j.jcis.2021.08.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/20/2022]
Abstract
Magnetic carbon materials promise distinct advantages in the decontamination of heavy metal ions. In this work, a novel interconnected hierarchical nickel-carbon (Ni@IHC) hybrid was synthesized by combining the solvothermal method with a one-step pyrolysis under argon atmosphere. Benefitting from 3D flower-like morphology, interconnected porous nanosheets, large surface area, and abundant Ni nanoparticles, Ni@IHC hybrids can remove Cr(VI) within 25 min by using formic acid (FA) as a reductant at 25 ℃. Furthermore, the experimental parameters that can affect the material catalytic performance such as initial Cr(VI) concentration, catalyst dosage, FA concentration, and temperature were also investigated in detail. It was found that highly dispersed Ni nanoparticles contributed significantly to the reduction process. More importantly, the embedded Ni nanoparticles favor fast separation by a magnet and were helpful for the recycles use. This Ni@IHC hybrid was obtained by a facile and easy scale-up method, resulting in the fast transformation of Cr(VI) into Cr(III).
Collapse
Affiliation(s)
- Kairuo Zhu
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230000, PR China
| | - Lili Chen
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230000, PR China
| | - Njud S Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Changlun Chen
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
20
|
Besharat F, Ahmadpoor F, Nasrollahzadeh M. Graphene-based (nano)catalysts for the reduction of Cr(VI): A review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116123] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Ma B, Zhu J, Sun B, Chen C, Sun D. Efficient catalytic reduction of highly toxic aqueous Cr(VI) with Fe@CBC/Pd composites at room temperature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8569-8575. [PMID: 33067787 DOI: 10.1007/s11356-020-11095-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
We report a facile approach to fabricating catalytic active palladium nanoparticles (NPs) immobilized on Fe-loaded carbonized bacterial cellulose nanofibers (Fe@CBC) for the catalytic reduction of toxic Cr(VI) to Cr(III) at room temperature. The formed nanofiber composites (Fe@CBC/Pd) was investigated by various physicochemical characterization and its catalytic activity, and reusability were evaluated as well. The results demonstrated that the Fe@CBC/Pd exhibited favorable catalytic activity for the reduction of Cr(VI) to Cr(III) in the presence of HCOOH. Moreover, the catalyst could be easily recovered from reaction system in a facile manner and recycled four times without obvious loss in activity.
Collapse
Affiliation(s)
- Bo Ma
- Department of Life Sciences of Lianyungang Teacher's College, Sheng Hu Lu 28, Lianyungang, 222006, China
- Chemicobiology and Functional Materials, Institute of Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, 210094, China
| | - Jianguo Zhu
- Department of Life Sciences of Lianyungang Teacher's College, Sheng Hu Lu 28, Lianyungang, 222006, China
| | - Bianjing Sun
- Chemicobiology and Functional Materials, Institute of Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, 210094, China
| | - Chuntao Chen
- Chemicobiology and Functional Materials, Institute of Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, 210094, China
| | - Dongping Sun
- Chemicobiology and Functional Materials, Institute of Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, 210094, China.
| |
Collapse
|
22
|
Farooqi ZH, Akram MW, Begum R, Wu W, Irfan A. Inorganic nanoparticles for reduction of hexavalent chromium: Physicochemical aspects. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123535. [PMID: 33254738 PMCID: PMC7382355 DOI: 10.1016/j.jhazmat.2020.123535] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 05/24/2023]
Abstract
Hexavalent Chromium [Cr(VI)] is a highly carcinogenic and toxic material. It is one of the major environmental contaminants in aquatic system. Its removal from aqueous medium is a subject of current research. Various technologies like adsorption, membrane filtration, solvent extraction, coagulation, biological treatment, ion exchange and chemical reduction for removal of Cr(VI) from waste water have been developed. But chemical reduction of Cr(VI) to Cr(III) has attracted a lot of interest in the past few years because, the reduction product [Cr(III)] is one of the essential nutrients for organisms. Various nanoparticles based systems have been designed for conversion of Cr(VI) into Cr(III) which have not been critically reviewed in literature. This review present recent research progress of classification, designing and characterization of various inorganic nanoparticles reported as catalysts/reductants for rapid conversion of Cr(VI) into Cr(III) in aqueous medium. Kinetics and mechanism of nanoparticles enhanced/catalyzed reduction of Cr(VI) and factors affecting the reduction process have been discussed critically. Personal future insights have been also predicted for further development in this area.
Collapse
Affiliation(s)
- Zahoor H Farooqi
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, 54590, Pakistan.
| | - Muhammad Waseem Akram
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, 54590, Pakistan
| | - Robina Begum
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, 54590, Pakistan.
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ahmad Irfan
- Research Center for Advanced Materials Science, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia; Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| |
Collapse
|
23
|
Joseph T, Thomas T, Thomas N. Graphene Oxide Modified Carbon Paste Electrode for Handy and Ultra‐sensitive Determination of Epinephrine in the Presence of Uric and Ascorbic Acids. ELECTROANAL 2020. [DOI: 10.1002/elan.202060085] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Teena Joseph
- Department of Chemistry Nirmalagiri College Nirmalagiri, Kannur Kerala 670701
| | - Tony Thomas
- Department of Chemistry Deva Matha College Kuravilangad, Kottayam Kerala 686633
| | - Nygil Thomas
- Department of Chemistry Nirmalagiri College Nirmalagiri, Kannur Kerala 670701
| |
Collapse
|
24
|
Saha D, Hoinkis TJ, Van Bramer SE. Electrospun, flexible and reusable nanofiber mat of graphitic carbon nitride: Photocatalytic reduction of hexavalent chromium. J Colloid Interface Sci 2020; 575:433-442. [DOI: 10.1016/j.jcis.2020.04.090] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 11/30/2022]
|
25
|
Veerakumar P, Lin KC. An overview of palladium supported on carbon-based materials: Synthesis, characterization, and its catalytic activity for reduction of hexavalent chromium. CHEMOSPHERE 2020; 253:126750. [PMID: 32302912 DOI: 10.1016/j.chemosphere.2020.126750] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Palladium plays a pivotal role in most of the industrial heterogeneous catalysts, because of its unique properties such as well-defined structure, great intrinsic carrier, outstanding electronic, mechanical and thermal stability. The combination of palladium and various porous carbons (PCs) can widen the use of heterogeneous catalysts. This review highlights the advantages and limitations of carbon supported palladium-based heterogeneous catalyst in reduction of toxic hexavalent chromium (Cr(VI)). In addition, we address recent progress on synthesis routes for mono and bimetallic palladium nanoparticles supported by various carbon composites including graphene-based materials, carbon nanotubes, mesoporous carbons, and activated carbons. The related reaction mechanisms for the Cr(VI) reduction are also suggested. Finally, the challenge and perspective are proposed.
Collapse
Affiliation(s)
- Pitchaimani Veerakumar
- Department of Chemistry, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei, 10617, Taiwan, ROC; Institute of Atomic and Molecular Sciences, Academia Sinica, No. 1, Roosevelt Road, Section 4, Taipei, 10617, Taiwan, ROC.
| | - King-Chuen Lin
- Department of Chemistry, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei, 10617, Taiwan, ROC; Institute of Atomic and Molecular Sciences, Academia Sinica, No. 1, Roosevelt Road, Section 4, Taipei, 10617, Taiwan, ROC.
| |
Collapse
|
26
|
Ain NU, Rehman ZU, Nayab U, Nasir JA, Aamir A. Facile photocatalytic reduction of carcinogenic Cr(vi) on Fe-doped copper sulfide nanostructures. RSC Adv 2020; 10:27377-27386. [PMID: 35516946 PMCID: PMC9055602 DOI: 10.1039/d0ra04852f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/03/2020] [Indexed: 11/30/2022] Open
Abstract
In this study, Fe-doped copper sulfide nanoparticles (NPs) were investigated for the solar-assisted reduction of CrVI ions in raw water. The Fe-doped NPs were synthesized by decomposing copper(ii) N,N-diphenylmethylpiperazinecarbamodithioate via a facile single-step, one-pot solvothermal method in the presence of iron salt. The CrVI photoreduction data were fit to a pseudo-first-order kinetic model and a Langmuir model. The CuS/Cu2S NP reduction ability for CrVI increases with an increase in dopant percentage. The best catalyst (9% Fe-doped) was able to reduce CrVI (10-4 M K2Cr2O7) to CrIII in raw water using an initial amount of 10 mg in 6 min with a reduction efficiency of up to 100%. The photocatalytic activity was examined while varying five different parameters: sunlight, diffused light, change in pH, and changes in the concentration of the catalyst and the temperature. This new approach presents an active, simple, and cost-effective means for wastewater treatment.
Collapse
Affiliation(s)
- Noor Ul Ain
- Department of Chemistry, Quaid-i-Azam University Islamabad-45320 Pakistan +92-51-90642241 +92-51-90642245
| | - Zia Ur Rehman
- Department of Chemistry, Quaid-i-Azam University Islamabad-45320 Pakistan +92-51-90642241 +92-51-90642245
| | - Ujala Nayab
- Department of Chemistry, Quaid-i-Azam University Islamabad-45320 Pakistan +92-51-90642241 +92-51-90642245
| | - Jamal Abdul Nasir
- Department of Chemistry, Quaid-i-Azam University Islamabad-45320 Pakistan +92-51-90642241 +92-51-90642245
| | - Asma Aamir
- Department of Chemistry, Quaid-i-Azam University Islamabad-45320 Pakistan +92-51-90642241 +92-51-90642245
| |
Collapse
|
27
|
Murugan K, Nainamalai D, Kanagaraj P, Nagappan SG, Palaniswamy S. Green‐Synthesized Nickel Nanoparticles on Reduced Graphene Oxide as an Active and Selective Catalyst for Suzuki and Glaser‐Hay Coupling Reactions. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Karthik Murugan
- Supramolecular and Catalysis Lab, Department of Natural Products Chemistry, School of ChemistryMadurai Kamaraj University Madurai 625021 India
| | - Devarajan Nainamalai
- Supramolecular and Catalysis Lab, Department of Natural Products Chemistry, School of ChemistryMadurai Kamaraj University Madurai 625021 India
| | - Pavithara Kanagaraj
- Supramolecular and Catalysis Lab, Department of Natural Products Chemistry, School of ChemistryMadurai Kamaraj University Madurai 625021 India
| | - Saravana Ganesan Nagappan
- Supramolecular and Catalysis Lab, Department of Natural Products Chemistry, School of ChemistryMadurai Kamaraj University Madurai 625021 India
| | - Suresh Palaniswamy
- Supramolecular and Catalysis Lab, Department of Natural Products Chemistry, School of ChemistryMadurai Kamaraj University Madurai 625021 India
| |
Collapse
|
28
|
Intrinsic acid resistance and high removal performance from the incorporation of nickel nanoparticles into nitrogen doped tubular carbons for environmental remediation. J Colloid Interface Sci 2020; 566:46-59. [DOI: 10.1016/j.jcis.2020.01.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 12/25/2022]
|
29
|
Yao D, Xu T, Yuan J, Tao Y, He G, Chen H. Graphene Based Copper‐Nickel Bimetal Nanocomposite: Magnetically Separable Catalyst for Reducing Hexavalent Chromium. ChemistrySelect 2020. [DOI: 10.1002/slct.201904931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dachuan Yao
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou UniversityKey Laboratory of Advanced Catalytic Materials and TechnologyAdvanced Catalysis and Green Manufacturing Collaborative Innovation CenterChangzhou University Changzhou Jiangsu Province 213164 China
| | - Tingting Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou UniversityKey Laboratory of Advanced Catalytic Materials and TechnologyAdvanced Catalysis and Green Manufacturing Collaborative Innovation CenterChangzhou University Changzhou Jiangsu Province 213164 China
| | - Jingjing Yuan
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou UniversityKey Laboratory of Advanced Catalytic Materials and TechnologyAdvanced Catalysis and Green Manufacturing Collaborative Innovation CenterChangzhou University Changzhou Jiangsu Province 213164 China
- School of Chemical EngineeringNanjing University of Science and Technology Nanjing Jiangsu 210094 China
| | - Yingrui Tao
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou UniversityKey Laboratory of Advanced Catalytic Materials and TechnologyAdvanced Catalysis and Green Manufacturing Collaborative Innovation CenterChangzhou University Changzhou Jiangsu Province 213164 China
| | - Guangyu He
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou UniversityKey Laboratory of Advanced Catalytic Materials and TechnologyAdvanced Catalysis and Green Manufacturing Collaborative Innovation CenterChangzhou University Changzhou Jiangsu Province 213164 China
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou UniversityKey Laboratory of Advanced Catalytic Materials and TechnologyAdvanced Catalysis and Green Manufacturing Collaborative Innovation CenterChangzhou University Changzhou Jiangsu Province 213164 China
| |
Collapse
|
30
|
Hirano Y, Beltramini JN, Mori A, Nakamura M, Karim MR, Kim Y, Nakamura M, Hayami S. Microwave-assisted catalytic conversion of glucose to 5-hydroxymethylfurfural using “three dimensional” graphene oxide hybrid catalysts. RSC Adv 2020; 10:11727-11736. [PMID: 35496634 PMCID: PMC9050549 DOI: 10.1039/d0ra01009j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/14/2020] [Accepted: 03/14/2020] [Indexed: 11/21/2022] Open
Abstract
High glucose → 5-HMF conversion was yielded with conversion of 99% and yield of 95% by 3D structured NiGO-FD and microwave-assisted reaction.
Collapse
Affiliation(s)
- Yui Hirano
- Department of Chemistry
- Graduate School of Science and Technology
- Kumamoto University
- Kumamoto 860-8555
- Japan
| | - Jorge N. Beltramini
- Department of Chemistry
- Graduate School of Science and Technology
- Kumamoto University
- Kumamoto 860-8555
- Japan
| | - Atsushi Mori
- Department of Chemistry
- Graduate School of Science and Technology
- Kumamoto University
- Kumamoto 860-8555
- Japan
| | - Manami Nakamura
- Department of Chemistry
- Graduate School of Science and Technology
- Kumamoto University
- Kumamoto 860-8555
- Japan
| | - Mohammad Razaul Karim
- Chemistry Department
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
- Department of Chemistry
| | - Yang Kim
- Department of Chemistry
- Graduate School of Science and Technology
- Kumamoto University
- Kumamoto 860-8555
- Japan
| | - Masaaki Nakamura
- Department of Chemistry
- Graduate School of Science and Technology
- Kumamoto University
- Kumamoto 860-8555
- Japan
| | - Shinya Hayami
- Department of Chemistry
- Graduate School of Science and Technology
- Kumamoto University
- Kumamoto 860-8555
- Japan
| |
Collapse
|
31
|
Almeida AR, Salimian M, Ferro M, Marques PA, Goncalves G, Titus E, Domingues I. Biochemical and behavioral responses of zebrafish embryos to magnetic graphene/nickel nanocomposites. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109760. [PMID: 31606642 DOI: 10.1016/j.ecoenv.2019.109760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/03/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Graphene nanocomposites are emerging carbon-based materials with interesting electrical, mechanical, optical and magnetic properties, relevant for applications in different fields. Despite this increased use, the impact of graphene nanocomposites residues in the environment has not been properly studied. Thus, the goal of this work was to assess the toxicity of two nickel/graphene nanocomposites (G/Ni1 and G/Ni2) differing in size and shape to Danio rerio embryos. Their toxicity was evaluated using apical (mortality, development and hatching), biochemical [cholinesterase (ChE), glutathione-S-transferase (GST), and catalase (CAT) activities] and behavioral (locomotor activity) endpoints. At the tested concentrations, neither of the nanocomposites presented lethal or developmental effects. Nevertheless, both nanocomposites induced behavioral effects, reducing swimming distances. This effect was, however detected at lower concentrations in the G/Ni1 nanocomposite. At biochemical level, only G/Ni1 nanocomposite showed to interfere with the measured parameters, increasing the activities of ChE, CAT and GST. Differences in the effects induced by the two nanocomposites seem to be related not only with their size, but also with the shape and the ability to continuously release nickel ions to aqueous medium. This work highlights the importance of studying graphene nanocomposites effects to aquatic organisms even when acute toxicity is not expected. The relevance of the effects found in this work need to be further analyzed in light of the consequences to the long-term fitness of the organisms and in light of the environmental concentrations expected for this type of compounds.
Collapse
Affiliation(s)
- Ana Rita Almeida
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Maryam Salimian
- TEMA-NRD, Department of Mechanical Engineering, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Marta Ferro
- Department of Material and Ceramic Engineering, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Paula Aap Marques
- TEMA-NRD, Department of Mechanical Engineering, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Gil Goncalves
- TEMA-NRD, Department of Mechanical Engineering, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Elby Titus
- TEMA-NRD, Department of Mechanical Engineering, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Inês Domingues
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
32
|
Li H, Gao M, Gao Q, Wang H, Han B, Xia K, Zhou C. Palladium nanoparticles uniformly and firmly supported on hierarchical flower-like TiO2 nanospheres as a highly active and reusable catalyst for detoxification of Cr(VI)-contaminated water. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01164-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Mahar AM, Balouch A, Talpur FN, Abdullah, Sirajuddin, Kumar A, Panah P, Shah MT. Synthesis and Catalytic Applicability of Pt–Pd ITO Grown Nano Catalyst: An Excellent Candidate for Reduction of Toxic Hexavalent Chromium. Catal Letters 2019. [DOI: 10.1007/s10562-019-02848-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Ren M, Kang X, Li L, Duan L, Liao F. Electrochemical sensor based on Ni/reduced graphene oxide nanohybrids for selective detection of ascorbic acid. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1579653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Miao Ren
- Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, School of Chemistry and Chemical Industry, China West Normal University, Nanchong, China
| | - Xinyuan Kang
- Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, School of Chemistry and Chemical Industry, China West Normal University, Nanchong, China
| | - Li Li
- Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, School of Chemistry and Chemical Industry, China West Normal University, Nanchong, China
| | - Liping Duan
- Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, School of Chemistry and Chemical Industry, China West Normal University, Nanchong, China
| | - Fang Liao
- Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, School of Chemistry and Chemical Industry, China West Normal University, Nanchong, China
| |
Collapse
|
35
|
Akram MY, Hameed MU, Akhtar N, Ali S, Maitlo I, Zhu XQ, Jun N. Synthesis of high performance Ni 3C-Ni decorated thermally expanded reduced graphene oxide (TErGO/Ni 3C-Ni) nanocomposite: A stable catalyst for reduction of Cr(VI) and organic dyes. JOURNAL OF HAZARDOUS MATERIALS 2019; 366:723-731. [PMID: 30597388 DOI: 10.1016/j.jhazmat.2018.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/19/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
A high performance thermally expanded reduced graphene oxide (TErGO) nanocomposite decorated with Ni3C-Ni nanoparticles (TErGO/Ni3C-Ni) has been successfully synthesized by using a facile and eco-friendly approach. The morphology, textural features, surface composition and stability of TErGO/Ni3C-Ni nanocomposite are investigated by various physicochemical characterizations which revealed the uniform dispersion of crystalline metal nanoparticles inside TErGO matrix. The composite has been exhibited a large surface area and pore volume of 121 m2 g-1 and 0.791 cm3 g-1, respectively. The TErGO/Ni3C-Ni exhibited remarkable catalytic performance surpassing most metal-based catalysts with various kind of support matrices reported in recent literature. The reduction of Cr(Ⅵ) to Cr(Ⅲ) was achieved within 1 min with an excellent rate constant of 2.74 min-1 and phenomenally higher specific removal rate (SRR) of 0.29 mg Cr(VI) min-1. mg-1 of TErGO/Ni3C-Ni. While it also proved an excellent reducing catalyst for organic dyes via NaBH4 with full reduction achieved within 30 s. Moreover, as prepared nanocatalyst possesses excellent stability and recyclability with easy magnetic separation.
Collapse
Affiliation(s)
- Muhammad Yasir Akram
- State Key Laboratory of Chemical Resource Engineering & Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | | | - Naseem Akhtar
- State Key Laboratory of Chemical Resource Engineering & Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Safdar Ali
- State Key Laboratory of Chemical Resource Engineering & Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Inamullah Maitlo
- State Key Laboratory of Chemical Resource Engineering & Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China; Dawood University of Engineering and Technology, Karachi, Pakistan
| | - Xiao-Qun Zhu
- State Key Laboratory of Chemical Resource Engineering & Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Nie Jun
- State Key Laboratory of Chemical Resource Engineering & Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
36
|
Khandelwal N, Singh N, Tiwari E, Darbha GK. Novel synthesis of a clay supported amorphous aluminum nanocomposite and its application in removal of hexavalent chromium from aqueous solutions. RSC Adv 2019; 9:11160-11169. [PMID: 35520243 PMCID: PMC9062990 DOI: 10.1039/c9ra00742c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/01/2019] [Indexed: 11/21/2022] Open
Abstract
Synthesis and application of bentonite supported amorphous aluminum nanocomposite as promising material for the removal of Cr(vi) from aqueous solutions.
Collapse
Affiliation(s)
- Nitin Khandelwal
- Environmental Nanoscience Laboratory
- Indian Institute of Science Education and Research Kolkata
- Kolkata
- India
| | - Nisha Singh
- Environmental Nanoscience Laboratory
- Indian Institute of Science Education and Research Kolkata
- Kolkata
- India
| | - Ekta Tiwari
- Environmental Nanoscience Laboratory
- Indian Institute of Science Education and Research Kolkata
- Kolkata
- India
| | - Gopala Krishna Darbha
- Environmental Nanoscience Laboratory
- Indian Institute of Science Education and Research Kolkata
- Kolkata
- India
- Centre for Climate Change and Environmental Studies
| |
Collapse
|
37
|
Synthesis and Characterization of 1D-MoO3 Nanorods Using Abutilon indicum Extract for the Photoreduction of Hexavalent Chromium. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0970-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Yi XH, Wang FX, Du XD, Fu H, Wang CC. Highly efficient photocatalytic Cr(VI) reduction and organic pollutants degradation of two new bifunctional 2D Cd/Co-based MOFs. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.06.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Synthesis of Ag nanoparticles decoration on magnetic carbonized polydopamine nanospheres for effective catalytic reduction of Cr(VI). J Colloid Interface Sci 2018; 526:1-8. [DOI: 10.1016/j.jcis.2018.04.094] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/22/2018] [Accepted: 04/24/2018] [Indexed: 11/23/2022]
|
40
|
Chen DM, Sun CX, Liu CS, Du M. Stable Layered Semiconductive Cu(I)–Organic Framework for Efficient Visible-Light-Driven Cr(VI) Reduction and H2 Evolution. Inorg Chem 2018; 57:7975-7981. [DOI: 10.1021/acs.inorgchem.8b01137] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Di-Ming Chen
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Chun-Xiao Sun
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Chun-Sen Liu
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Miao Du
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| |
Collapse
|
41
|
Sun H, Ye Y, Liu J, Tian Z, Cai Y, Li P, Liang C. Pure Ni nanocrystallines anchored on rGO present ultrahigh electrocatalytic activity and stability in methanol oxidation. Chem Commun (Camb) 2018; 54:1563-1566. [PMID: 29308477 DOI: 10.1039/c7cc09361f] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Pure Ni nanoparticles with ultrafine size (2.3 ± 0.4 nm) embedded on rGO present ultrahigh catalytic activity (1600 mA mg-1), excellent stability (1020 mA mg-1 retained after 1000 cycles), and a saturation concentration (4 M) of methanol for methanol oxidation reactions, which is better than that of all previously reported Ni-based catalysts.
Collapse
Affiliation(s)
- Hongmei Sun
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | | | | | | | | | | | | |
Collapse
|
42
|
Li S, Liu L, Zhao Q, He C, Liu W. N-Doped graphene-supported PdCu nanoalloy as efficient catalyst for reducing Cr(vi) by formic acid. Phys Chem Chem Phys 2018; 20:3457-3464. [PMID: 29334086 DOI: 10.1039/c7cp07391g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reducing Cr(vi) to Cr(iii) with formic acid is desirable for environmental protection, but the sluggish kinetics limits its practical application, which currently motivates the intensive study of efficient catalysts for this redox reaction. Here bimetallic PdCu nanoalloy (∼5 nm in size) supported by N-doped graphene was synthesized through a one-pot hydrothermal process. The catalytic activity of PdCu nanoalloy highly depends on the Pd/Cu atomic ratio and N-doped graphene support. The obtained Pd6Cu4/NG shows superior catalysis towards the Cr(vi) reduction by formic acid with a high kinetic constant (kn = 23.2 min-1 mg-1) and a low activation energy (Ea = 34.9 kJ mol-1). Active H atoms were found to be the exact reductant for the Cr(vi) reduction, quite different from the reported H2-reduction route. The enhanced catalysis originates from the electronic and geometric modification of active Pd after formation of PdCu alloy. Electron transfer from Cu to Pd enhances the electron density of Pd atoms, which favors the adsorption of the bridging formate intermediate and subsequent generation of active H atoms over PdCu/NG. The catalyst can be recycled five times without obvious loss of activity. Our work provides an example to explore the alloying effect on the catalytic behavior of PdCu alloy, which may shed light on developing other advanced nanoalloys for Cr(vi) reduction.
Collapse
Affiliation(s)
- Shuangzhi Li
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, China.
| | | | | | | | | |
Collapse
|
43
|
Zhang Z, Sun L, Liu R. Flash nanoprecipitation of polymer supported Pt colloids with tunable catalytic chromium reduction property. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4231-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Dhahri A, Jaoua-Bahloul H, Baouab MHV, Luneau D, Beyou E. Magnetic properties of cellulose-grafted reduced graphite oxide decorated with Ni nanoparticles. POLYM ENG SCI 2017. [DOI: 10.1002/pen.24752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Abdelwaheb Dhahri
- Ingénierie des Matériaux Polymères; UMR CNRS 5223, Université de Lyon Université Lyon1; Villeurbanne F-69622 France
- Laboratoire de Microélectroniques et Instrumentations; Université de Monastir, Faculté des Sciences de Monastir, Boulevard de l'environnement; Monastir 5019 Tunisie
| | - Hend Jaoua-Bahloul
- Ingénierie des Matériaux Polymères; UMR CNRS 5223, Université de Lyon Université Lyon1; Villeurbanne F-69622 France
| | - Mohammed Hassen V. Baouab
- Laboratoire de Microélectroniques et Instrumentations; Université de Monastir, Faculté des Sciences de Monastir, Boulevard de l'environnement; Monastir 5019 Tunisie
| | - Dominique Luneau
- Laboratoire des Multimatériaux et Interfaces; UMR CNRS 5615, Université de Lyon1, Université Lyon1; Villeurbanne F-69622 France
| | - Emmanuel Beyou
- Ingénierie des Matériaux Polymères; UMR CNRS 5223, Université de Lyon Université Lyon1; Villeurbanne F-69622 France
| |
Collapse
|
45
|
Sengupta D, Bhowmik K, De G, Basu B. Ni nanoparticles on RGO as reusable heterogeneous catalyst: effect of Ni particle size and intermediate composite structures in C-S cross-coupling reaction. Beilstein J Org Chem 2017; 13:1796-1806. [PMID: 28904623 PMCID: PMC5588615 DOI: 10.3762/bjoc.13.174] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/09/2017] [Indexed: 12/15/2022] Open
Abstract
The present work demonstrates the C–S cross-coupling reaction between aryl halides and thiols using nickel nanoparticles (Ni NPs) supported on reduced graphene oxide (Ni/RGO) as a heterogeneous catalyst. It is observed that the uniformly dispersed Ni NPs supported on RGO could exhibit excellent catalytic activity in C–S cross-coupling reactions and the catalytic application is generalized with diverse coupling partners. Although the electron-rich planar RGO surface helps in stabilizing the agglomeration-free Ni NPs, the catalytic process is found to occur involving Ni(II) species and the recovered catalyst containing both Ni(0)/Ni(II) species is equally efficient in recycle runs. A correlation of loading of Ni species, size of NPs and the intermediate Ni-related heterostructures formed during the catalytic process has been established for the first time, and found to be best in the C–S cross-coupling reaction for Ni(0) and Ni(II) NPs of the average sizes 11–12 nm and 4 nm, respectively.
Collapse
Affiliation(s)
- Debasish Sengupta
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India. ; Tel: +91 353 2776381
| | - Koushik Bhowmik
- Nano-Structured Materials Division, CSIR-Central Glass & Ceramic Research Institute, 196, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India. ; Tel: +91 33 23223403
| | - Goutam De
- Nano-Structured Materials Division, CSIR-Central Glass & Ceramic Research Institute, 196, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India. ; Tel: +91 33 23223403
| | - Basudeb Basu
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India. ; Tel: +91 353 2776381
| |
Collapse
|
46
|
Karthik M, Suresh P. Greener Synthesis of Reduced Graphene Oxide-Nickel Nanocomposite: Rapid and Sustainable Catalyst for the Reduction of Nitroaromatics. ChemistrySelect 2017. [DOI: 10.1002/slct.201701314] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Murugan Karthik
- Supramolecular and Catalysis Lab; Dept. of Natural Products Chemistry; School of Chemistry; Madurai Kamaraj University; Madurai- 625021 India
| | - Palaniswamy Suresh
- Supramolecular and Catalysis Lab; Dept. of Natural Products Chemistry; School of Chemistry; Madurai Kamaraj University; Madurai- 625021 India
| |
Collapse
|
47
|
|
48
|
Zhang S, Xu J, Hu J, Cui C, Liu H. Interfacial Growth of TiO 2-rGO Composite by Pickering Emulsion for Photocatalytic Degradation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5015-5024. [PMID: 28467095 DOI: 10.1021/acs.langmuir.7b00719] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A 2D sandwich-like TiO2-rGO composite was fabricated by the Pickering emulsion approach to improve the photocatalytic efficiency. Through an in situ growth of antase-TiO2 nanoparticles on the interface of O/W type GO Pickering emulsion, TiO2 nanoparticles were closely and densely packed on the surface of well-exfoliated rGO sheets; meanwhile, many mesoporous voids acting as the adsorption chamber and microreactor were produced. Evaluated by methylene blue (MB) degradation, its photocatalytic activity was prominent compared with the common TiO2-based photocatalyst, with the rate constants 5 and 3.1 times higher under visible light and xenon lamp, respectively. When we applied it in the photocatalytic degradation of tetracycline hydrochloride (TCH, such as 10 ppm) under the visible light without adding any oxidants, the total removal efficiency was as high as 94% after 40 min. The mechanism of this good photocatalytic efficiency was illustrated by the scavenger trapping tests, which showed that this unique structure of TiO2-rGO composite induced by the Pickering emulsion can significantly enhance the light absorption ability, accelerate the separation rate of electron-hole pairs, increase the adsorption capacity of organic pollutants, and hence improve the photocatalytic efficiency.
Collapse
Affiliation(s)
| | - Jian Xu
- Shanghai Institute of Measurement and Testing Technology , 1500 Zhang Heng Road, Shanghai, 201203, China
| | | | | | | |
Collapse
|
49
|
Mai Z, Hu Y, Huang P, Zhang X, Dong X, Fang Y, Wu C, Cheng J, Zhou W. Outside-in stepwise bi-functionalization of magnetic mesoporous silica incorporated with Pt nanoparticles for effective removal of hexavalent chromium. POWDER TECHNOL 2017. [DOI: 10.1016/j.powtec.2017.02.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Markad US, Kalekar AM, Naik DB, Sharma KKK, Kshirasagar KJ, Sharma GK. Photo enhanced detoxification of chromium (VI) by formic acid using 3D palladium nanocatalyst. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.01.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|