1
|
Piechocki K, Koynov K, Piechocka J, Chamerski K, Filipecki J, Maczugowska P, Kozanecki M. Small molecule diffusion in poly-(olygo ethylene glycol methacrylate) based hydrogels studied by fluorescence correlation spectroscopy. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
2
|
Piechocki K, Kozanecki M. Hydration in thermo-responsive oligoether methacrylate hydrogels studied by FT-IR spectroscopy. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Grinberg VY, Burova TV, Grinberg NV, Moskalets AP, Dubovik AS, Plashchina IG, Khokhlov AR. Energetics and Mechanisms of poly(N-isopropylacrylamide) Phase Transitions in Water–Methanol Solutions. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Valerij Y. Grinberg
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street. 28, Moscow 119991, Russia
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin Street. 4, Moscow 119991, Russia
| | - Tatiana V. Burova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street. 28, Moscow 119991, Russia
| | - Natalia V. Grinberg
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street. 28, Moscow 119991, Russia
| | - Alexander P. Moskalets
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street. 28, Moscow 119991, Russia
| | - Alexander S. Dubovik
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street. 28, Moscow 119991, Russia
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin Street. 4, Moscow 119991, Russia
| | - Irina G. Plashchina
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin Street. 4, Moscow 119991, Russia
| | - Alexei R. Khokhlov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street. 28, Moscow 119991, Russia
- M.V. Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia
| |
Collapse
|
4
|
Alvarez-Lorenzo C, Grinberg VY, Burova TV, Concheiro A. Stimuli-sensitive cross-linked hydrogels as drug delivery systems: Impact of the drug on the responsiveness. Int J Pharm 2020; 579:119157. [DOI: 10.1016/j.ijpharm.2020.119157] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/19/2022]
|
5
|
Grinberg VY, Burova TV, Grinberg NV, Papkov VS, Khokhlov AR. Binding Energetics of Charged Amphiphilic Ligands to Thermoresponsive Biodegradable Poly(methoxyethylaminophosphazene) Hydrogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16915-16924. [PMID: 31763846 DOI: 10.1021/acs.langmuir.9b03204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Changes in the affinity of the swollen and collapsed forms of a thermoresponsive polymer gel for targeted ligands can be directly estimated using a thermodynamic approach based on high-sensitivity differential scanning calorimetry (HS-DSC). For macromolecular ligands (proteins) bound to the gel, this method provides information on changes in their conformational stability, which is of crucial importance for the biological or pharmaceutical activity of the protein. We used HS-DSC for the study of interactions of two widely administrated drugs-gemfibrozil and ibuprofen-and two globular proteins-α-lactalbumin and BSA-with hydrogels of the cross-linked poly(methoxyethylaminophosphazene). The gel collapse resulted in a substantial increase in the gel affinity for the drugs. We obtained quantitative estimations of the affinity of the collapsed gels depending on the gel structure, pH, concentration of NaCl, and phosphate buffer (an inductor of the thermoresponsivity). The gels retained a high affinity for the drugs in the near-physiological conditions (ionic composition and pH). The binding curves of globular proteins to the gels in the swollen and collapsed states were obtained. The different proteins demonstrated the preferential binding to the swollen or collapsed state of the gels, presumably depending on the protein surface hydrophobicity. The proteins bound to the gel subchains retain their native tertiary structure and, therefore, maintain their functionality when immobilized in the polyphosphazene hydrogels.
Collapse
Affiliation(s)
- Valerij Y Grinberg
- N.M. Emanuel Institute of Biochemical Physics , Russian Academy of Sciences , Kosygin St. 4 , Moscow 119991 , Russian Federation
- A.N. Nesmeyanov Institute of Organoelement Compounds , Russian Academy of Sciences , Vavilov St. 28 , Moscow 119991 , Russian Federation
| | - Tatiana V Burova
- A.N. Nesmeyanov Institute of Organoelement Compounds , Russian Academy of Sciences , Vavilov St. 28 , Moscow 119991 , Russian Federation
| | - Natalia V Grinberg
- A.N. Nesmeyanov Institute of Organoelement Compounds , Russian Academy of Sciences , Vavilov St. 28 , Moscow 119991 , Russian Federation
| | - Vladimir S Papkov
- A.N. Nesmeyanov Institute of Organoelement Compounds , Russian Academy of Sciences , Vavilov St. 28 , Moscow 119991 , Russian Federation
| | - Alexei R Khokhlov
- Physics Department , M.V. Lomonosov Moscow State University , Vorobyevy Gory , Moscow 119334 , Russian Federation
| |
Collapse
|
6
|
Grinberg VY, Burova TV, Grinberg NV, Alvarez-Lorenzo C, Khokhlov AR. Protein-like energetics of conformational transitions in a polyampholyte hydrogel. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Grinberg VY, Burova TV, Grinberg NV, Papkov VS, Khokhlov AR. Conformation-Dependent Affinity of Thermoresponsive Biodegradable Hydrogels for Multifunctional Ligands: A Differential Scanning Calorimetry Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14378-14387. [PMID: 30392359 DOI: 10.1021/acs.langmuir.8b03218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We investigated energetics of binding of multifunctional pyranine ligands to hydrogels of the cross-linked poly(methoxyethylaminophosphazene) (PMOEAP) from data on the thermotropic volume phase transition of the gels by means of high-sensitivity differential scanning calorimetry. Dependences of the transition temperature, enthalpy, and width on the concentration of pyranines were obtained, and the excess transition free energy as a function of the pyranine concentration was calculated. We found that the affinity of the gels for the pyranine ligands increased very significantly upon the gel collapse. The intrinsic binding constants and free energies of binding of the ligands to the gels in the collapsed state were estimated from the DSC data. They revealed a significant increase in the hydrogel affinity for pyranines proportional to the number of anionic groups in the ligand structure. The affinity of the PMOEAP hydrogels for the multifunctional ligands was not affected by an increase in the cross-linking density of the gels and only slightly reduced by physiological salt concentrations.
Collapse
Affiliation(s)
- Valerij Y Grinberg
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences , Vavilov St. 28 , Moscow 119991 , Russian Federation
- N.M. Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences , Kosygin St. 4 , Moscow 119991 , Russian Federation
| | - Tatiana V Burova
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences , Vavilov St. 28 , Moscow 119991 , Russian Federation
| | - Natalia V Grinberg
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences , Vavilov St. 28 , Moscow 119991 , Russian Federation
| | - Vladimir S Papkov
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences , Vavilov St. 28 , Moscow 119991 , Russian Federation
| | - Alexei R Khokhlov
- Physics Department , M.V. Lomonosov Moscow State University , Vorobyevy Gory , Moscow 119334 , Russian Federation
| |
Collapse
|
8
|
Olejniczak MN, Piechocki K, Kozanecki M, Koynov K, Adamus A, Wach RA. The influence of selected NSAIDs on volume phase transition in poly(2-(2-methoxyethoxy)ethyl methacrylate) hydrogels. J Mater Chem B 2016; 4:1528-1534. [DOI: 10.1039/c5tb02217g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogels exhibiting Volume Phase Transition (VPT) are considered as useful biomaterials for the preparation of various drug delivery systems.
Collapse
Affiliation(s)
| | - Krzysztof Piechocki
- Department of Molecular Physics
- Faculty of Chemistry
- Lodz University of Technology
- Lodz
- Poland
| | - Marcin Kozanecki
- Department of Molecular Physics
- Faculty of Chemistry
- Lodz University of Technology
- Lodz
- Poland
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research
- D-55021 Mainz
- Germany
| | - Agnieszka Adamus
- Institute of Applied Radiation Chemistry
- Lodz University of Technology
- 93-590 Lodz
- Poland
| | - Radosław A. Wach
- Institute of Applied Radiation Chemistry
- Lodz University of Technology
- 93-590 Lodz
- Poland
| |
Collapse
|
9
|
Burova TV, Grinberg NV, Dubovik AS, Grinberg VY. Conformational stability of bovine serum albumin in complexes with poly[di(carboxylatophenoxy)phosphazene]. POLYMER SCIENCE SERIES A 2015. [DOI: 10.1134/s0965545x15060061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Lorenzo RA, Carro AM, Concheiro A, Alvarez-Lorenzo C. Stimuli-responsive materials in analytical separation. Anal Bioanal Chem 2015; 407:4927-48. [DOI: 10.1007/s00216-015-8679-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/30/2015] [Accepted: 04/07/2015] [Indexed: 02/07/2023]
|