1
|
Bartl JD, Thomas C, Henning A, Ober MF, Savasci G, Yazdanshenas B, Deimel PS, Magnano E, Bondino F, Zeller P, Gregoratti L, Amati M, Paulus C, Allegretti F, Cattani-Scholz A, Barth JV, Ochsenfeld C, Nickel B, Sharp ID, Stutzmann M, Rieger B. Modular Assembly of Vibrationally and Electronically Coupled Rhenium Bipyridine Carbonyl Complexes on Silicon. J Am Chem Soc 2021; 143:19505-19516. [PMID: 34766502 DOI: 10.1021/jacs.1c09061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hybrid inorganic/organic heterointerfaces are promising systems for next-generation photocatalytic, photovoltaic, and chemical-sensing applications. Their performance relies strongly on the development of robust and reliable surface passivation and functionalization protocols with (sub)molecular control. The structure, stability, and chemistry of the semiconductor surface determine the functionality of the hybrid assembly. Generally, these modification schemes have to be laboriously developed to satisfy the specific chemical demands of the semiconductor surface. The implementation of a chemically independent, yet highly selective, standardized surface functionalization scheme, compatible with nanoelectronic device fabrication, is of utmost technological relevance. Here, we introduce a modular surface assembly (MSA) approach that allows the covalent anchoring of molecular transition-metal complexes with sub-nanometer precision on any solid material by combining atomic layer deposition (ALD) and selectively self-assembled monolayers of phosphonic acids. ALD, as an essential tool in semiconductor device fabrication, is used to grow conformal aluminum oxide activation coatings, down to sub-nanometer thicknesses, on silicon surfaces to enable a selective step-by-step layer assembly of rhenium(I) bipyridine tricarbonyl molecular complexes. The modular surface assembly of molecular complexes generates precisely structured spatial ensembles with strong intermolecular vibrational and electronic coupling, as demonstrated by infrared spectroscopy, photoluminescence, and X-ray photoelectron spectroscopy analysis. The structure of the MSA can be chosen to avoid electronic interactions with the semiconductor substrate to exclusively investigate the electronic interactions between the surface-immobilized molecular complexes.
Collapse
Affiliation(s)
- Johannes D Bartl
- Walter Schottky Institute and Physics Department, Technische Universität München, Am Coulombwall 4, 85748 Garching bei München, Germany.,Department of Chemistry, WACKER-Chair for Macromolecular Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747 Garching bei München, Germany
| | - Christopher Thomas
- Department of Chemistry, WACKER-Chair for Macromolecular Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747 Garching bei München, Germany
| | - Alex Henning
- Walter Schottky Institute and Physics Department, Technische Universität München, Am Coulombwall 4, 85748 Garching bei München, Germany
| | - Martina F Ober
- Faculty of Physics, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany.,Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Gökcen Savasci
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany.,Department of Chemistry, University of Munich, LMU, Butenandtstraße 5-13, 81377 Munich, Germany.,Cluster of Excellence E-conversion, Lichtenbergstraße 4a, 85748 Garching, Germany
| | - Bahar Yazdanshenas
- Walter Schottky Institute and Physics Department, Technische Universität München, Am Coulombwall 4, 85748 Garching bei München, Germany
| | - Peter S Deimel
- Physics Department E20, Technische Universität München, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Elena Magnano
- IOM CNR, Laboratorio TASC, AREA Science Park, Strada Statale 14 km 163.5, 34149 Basovizza, Trieste, Italy.,Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| | - Federica Bondino
- IOM CNR, Laboratorio TASC, AREA Science Park, Strada Statale 14 km 163.5, 34149 Basovizza, Trieste, Italy
| | - Patrick Zeller
- Elettra-Sincrotrone Trieste SCpA, AREA Science Park, Strada Statale 14 km 163.5, 34149, Trieste, Italy
| | - Luca Gregoratti
- Elettra-Sincrotrone Trieste SCpA, AREA Science Park, Strada Statale 14 km 163.5, 34149, Trieste, Italy
| | - Matteo Amati
- Elettra-Sincrotrone Trieste SCpA, AREA Science Park, Strada Statale 14 km 163.5, 34149, Trieste, Italy
| | - Claudia Paulus
- Walter Schottky Institute and Physics Department, Technische Universität München, Am Coulombwall 4, 85748 Garching bei München, Germany
| | - Francesco Allegretti
- Physics Department E20, Technische Universität München, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Anna Cattani-Scholz
- Walter Schottky Institute and Physics Department, Technische Universität München, Am Coulombwall 4, 85748 Garching bei München, Germany.,Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Johannes V Barth
- Physics Department E20, Technische Universität München, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Christian Ochsenfeld
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany.,Department of Chemistry, University of Munich, LMU, Butenandtstraße 5-13, 81377 Munich, Germany.,Cluster of Excellence E-conversion, Lichtenbergstraße 4a, 85748 Garching, Germany
| | - Bert Nickel
- Faculty of Physics, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany.,Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Ian D Sharp
- Walter Schottky Institute and Physics Department, Technische Universität München, Am Coulombwall 4, 85748 Garching bei München, Germany
| | - Martin Stutzmann
- Walter Schottky Institute and Physics Department, Technische Universität München, Am Coulombwall 4, 85748 Garching bei München, Germany
| | - Bernhard Rieger
- Department of Chemistry, WACKER-Chair for Macromolecular Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747 Garching bei München, Germany
| |
Collapse
|
2
|
Tuccitto N, Amato T, Gangemi CMA, Trusso Sfrazzetto G, Puglisi R, Pappalardo A, Ballistreri FP, Messina GML, Li-Destri G, Marletta G. Driving Coordination Polymer Monolayer Formation by Competitive Reactions at the Air/Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11706-11713. [PMID: 30199641 DOI: 10.1021/acs.langmuir.8b02607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We have developed a novel approach enabling us to follow and facilitate the formation of two-dimensional coordination polymer monolayers directly at the air/water interface without the need of complex instrumentation. The method is based on the use of a surface active ligand that, when spread at the air/water interface, progressively undergoes hydrolysis with consequent gradual decrease in surface pressure. Notably, if the aqueous subphase contains metal ions capable of coordinating the ligand, coordination competes with hydrolysis, resulting in a lower surface pressure decrease. As a consequence, the formation of the coordination polymer monolayer can be verified simply by surface pressure measurements. Competition between hydrolysis and coordination was investigated as a function of the main experimental parameters affecting the two reactions, enabling the formation of stable coordination polymer monolayers with controlled density. Finally, the formation of continuous rigid 2D layers was confirmed by compression isotherms and ex situ morphological characterization. This work will simplify the verification of coordination polymer monolayer formation; thus, it will boost the synthesis of novel and innovative 2D materials.
Collapse
Affiliation(s)
- Nunzio Tuccitto
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemical Sciences , University of Catania and CSGI , Viale Andrea Doria 6 , 95125 , Catania , Italy
| | - Tiziana Amato
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemical Sciences , University of Catania and CSGI , Viale Andrea Doria 6 , 95125 , Catania , Italy
| | | | - Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences , University of Catania , Viale Andrea Doria 6 , 95125 , Catania , Italy
| | - Roberta Puglisi
- Department of Chemical Sciences , University of Catania , Viale Andrea Doria 6 , 95125 , Catania , Italy
| | - Andrea Pappalardo
- Department of Chemical Sciences , University of Catania , Viale Andrea Doria 6 , 95125 , Catania , Italy
| | - Francesco P Ballistreri
- Department of Chemical Sciences , University of Catania , Viale Andrea Doria 6 , 95125 , Catania , Italy
| | - Grazia M L Messina
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemical Sciences , University of Catania and CSGI , Viale Andrea Doria 6 , 95125 , Catania , Italy
| | - Giovanni Li-Destri
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemical Sciences , University of Catania and CSGI , Viale Andrea Doria 6 , 95125 , Catania , Italy
| | - Giovanni Marletta
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemical Sciences , University of Catania and CSGI , Viale Andrea Doria 6 , 95125 , Catania , Italy
| |
Collapse
|
3
|
McElhinny KM, Park J, Ahn Y, Huang P, Joo Y, Lakkham A, Pateras A, Wen H, Gopalan P, Evans PG. Photoisomerization Dynamics in a Densely Packed Optically Transformable Azobenzene Monolayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10828-10836. [PMID: 30145906 DOI: 10.1021/acs.langmuir.8b01524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Molecular monolayers that can be reconfigured through the use of external stimuli promise to enable the creation of interfaces with precisely selected dynamically adjustable physical and electronic properties with potential impact ranging from electronics to energy storage. Azobenzene-containing molecular monolayers have multiple stable molecular conformations but face a challenging nanoscale problem associated with understanding the basic mechanisms of reconfiguration. Time-resolved X-ray reflectivity studies show that the reconfiguration of a densely packed rhenium-azobenzene monolayer occurs in a period of many seconds. The degree of reconfiguration from trans to cis forms depends on the integrated UV fluence and has kinetics that are consistent with a mechanism in which the transformation occurs through the nucleation and growth of nanoscale two-dimensional regions of the cis isomer.
Collapse
Affiliation(s)
- Kyle M McElhinny
- Department of Materials Science and Engineering , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Joonkyu Park
- Department of Materials Science and Engineering , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Youngjun Ahn
- Department of Materials Science and Engineering , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Peishen Huang
- Department of Materials Science and Engineering , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Yongho Joo
- Department of Materials Science and Engineering , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Arunee Lakkham
- Department of Materials Science and Engineering , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Anastasios Pateras
- Department of Materials Science and Engineering , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Haidan Wen
- Advanced Photon Source , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Padma Gopalan
- Department of Materials Science and Engineering , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Paul G Evans
- Department of Materials Science and Engineering , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
4
|
McElhinny KM, Huang P, Joo Y, Kanimozhi C, Lakkham A, Sakurai K, Evans PG, Gopalan P. Optically Reconfigurable Monolayer of Azobenzene Donor Molecules on Oxide Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2157-2168. [PMID: 28170273 DOI: 10.1021/acs.langmuir.6b04585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The structural configuration of molecules assembled at organic-inorganic interfaces within electronic materials strongly influences the functional electronic and vibrational properties relevant to applications ranging from energy storage to photovoltaics. Controlling and characterizing the structural state of an interface and its evolution under external stimuli is crucial both for the fundamental understanding of the factors influenced by molecular structure and for the development of methods for material synthesis. It has been challenging to create complete molecular monolayers that exhibit external reversible control of the structure and electronic configuration. We report a monolayer/inorganic interface consisting of an organic monolayer assembled on an oxide surface, exhibiting structural and electronic reconfiguration under ultraviolet illumination. The molecular monolayer is linked to the surface through a carboxylate link, with the backbone bearing an azobenzene functional group and the head group consisting of a rhenium-bipyridine group. Optical spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy, and X-ray reflectivity show that closely packed monolayers are formed from these molecules via the Langmuir-Blodgett technique. Reversible photoisomerization is observed in solution and in monolayers assembled on Si and quartz substrates. The reconfiguration of these monolayers provides additional means to control excitation and charge transfer processes that are important in applications in catalysis, molecular electronics, and solar energy conversion.
Collapse
Affiliation(s)
- Kyle M McElhinny
- Department of Materials Science and Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Peishen Huang
- Department of Materials Science and Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Yongho Joo
- Department of Materials Science and Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Catherine Kanimozhi
- Department of Materials Science and Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Arunee Lakkham
- Department of Materials Science and Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Kenji Sakurai
- National Institute for Materials Science , Tsukuba, Ibaraki 305-4007, Japan
- University of Tsukuba , Tsukuba, Ibaraki 305-8577, Japan
| | - Paul G Evans
- Department of Materials Science and Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Padma Gopalan
- Department of Materials Science and Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|