1
|
Liu P, Pei X, Li C, Li R, Chen Z, Song B, Cui Z, Xie D. pH-switchable wormlike micelles with high viscoelasticity formed by pseudo-oligomeric surfactants. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
2
|
Liu Z, Lin W, Fan Y, Kampf N, Wang Y, Klein J. Effects of Hyaluronan Molecular Weight on the Lubrication of Cartilage-Emulating Boundary Layers. Biomacromolecules 2020; 21:4345-4354. [PMID: 32931261 PMCID: PMC7556541 DOI: 10.1021/acs.biomac.0c01151] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/12/2020] [Indexed: 01/15/2023]
Abstract
Osteoarthritic joints contain lower-molecular-weight (MW) hyaluronan (hyaluronic acid, HA) than healthy joints. To understand the relevance of this HA size effect for joint lubrication, the friction and surface structure of cartilage-emulating surfaces with HA of different MWs were studied using a surface force balance (SFB) and atomic force microscopy (AFM). Gelatin (gel)-covered mica surfaces were coated with high-MW HA (HHA), medium-MW HA (MHA), or low-MW HA (LHA), and lipids of hydrogenated soy l-α-phosphatidylcholine (HSPC) in the form of small unilamellar vesicles, using a layer-by-layer assembly method. SFB results indicate that the gel-HHA-HSPC boundary layer provides very efficient lubrication, attributed to hydration lubrication at the phosphocholine headgroups exposed by the HA-attached lipids, with friction coefficients (COF) as low as 10-3-10-4 at contact stresses at least up to P = 120 atm. However, for the gel-MHA-HSPC and gel-LHA-HSPC surfaces, the friction, initially low, increases sharply at much lower pressures (up to 30-60 atm at most). This higher friction with the shorter chains may be due to their weaker total adhesion energy to the gelatin, where the attraction between the negatively charged HA and the weakly positively charged gelatin is attributed largely to counterion-release entropy. Thus, the complexes of LHA and MHA with the lubricating HSPC lipids are more easily removed by shear during sliding, especially at high stresses, than the HHA-HSPC complex, which is strongly adhered to gelatin. This is ultimately the reason for lower-pressure lubrication breakdown with the shorter polysaccharides. Our results provide molecular-level insight into why the decrease in HA molecular weight in osteoarthritic joints may be associated with higher friction at the articular cartilage surface, and may have relevance for treatments of osteoarthritis involving intra-articular HA injections.
Collapse
Affiliation(s)
- Zhang Liu
- Department
of Materials and Interfaces, Weizmann Institute
of Science, Rehovot 76100, Israel
- Key
Laboratory of Colloid and Interface Science, Beijing National Laboratory
for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Weifeng Lin
- Department
of Materials and Interfaces, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Yaxun Fan
- Key
Laboratory of Colloid and Interface Science, Beijing National Laboratory
for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Nir Kampf
- Department
of Materials and Interfaces, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Yilin Wang
- Key
Laboratory of Colloid and Interface Science, Beijing National Laboratory
for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jacob Klein
- Department
of Materials and Interfaces, Weizmann Institute
of Science, Rehovot 76100, Israel
| |
Collapse
|
3
|
Raychaudhuri R, Pandey A, Hegde A, Abdul Fayaz SM, Chellappan DK, Dua K, Mutalik S. Factors affecting the morphology of some organic and inorganic nanostructures for drug delivery: characterization, modifications, and toxicological perspectives. Expert Opin Drug Deliv 2020; 17:1737-1765. [PMID: 32878492 DOI: 10.1080/17425247.2020.1819237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Introduction: In this review, we aim to highlight the impact of various processes and formulation variables influencing the characteristics of certain surfactant-based nanoconstructs for drug delivery. Areas covered: The review includes the discussion on processing parameters for the preparation of nanoconstructs, especially those made up of surfactants. Articles published in last 15 years (437) were reviewed, 381 articles were selected for data review and most appropriate articles (215) were included in article. Effect of variables such as surfactant concentration and type, membrane additives, temperature, and pH-dependent transitions on morphology has been highlighted along with effect of shape on nanoparticle uptake by cells. Various characterization techniques explored for these nanostructures with respect to size, morphology, lamellarity, distribution, etc., and a separate section on polymeric vesicles and the influence of block copolymers, type of block copolymer, control of block length, interaction of multiple block copolymers on the structure of polymersomes and chimeric nanostructures have been discussed. Finally, applications, modification, degradation, and toxicological aspects of these drug delivery systems have been highlighted. Expert opinion: Parameters influencing the morphology of micelles and vesicles can directly or indirectly affect the efficacy of small molecule cellular internalization as well as uptake in the case of biologicals.[Figure: see text].
Collapse
Affiliation(s)
- Ruchira Raychaudhuri
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal, Karnataka State, India
| | - Abhjieet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal, Karnataka State, India
| | - Aswathi Hegde
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal, Karnataka State, India
| | - Shaik Mohammad Abdul Fayaz
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education , Manipal, Karnataka State, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University , Bukit Jalil, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney , Broadway, NSW, Australia
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal, Karnataka State, India
| |
Collapse
|
4
|
Thermodynamic insights and molecular environments into catanionic surfactant systems: Influence of chain length and molar ratio. J Colloid Interface Sci 2019; 548:77-87. [PMID: 30981965 DOI: 10.1016/j.jcis.2019.04.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 01/09/2023]
Abstract
HYPOTHESIS Imidazolium-based Ionic liquids as new generation cationic surfactants can provide designable alkyl chain length. In the catanionic surfactant systems, the alkyl chain lengths and molar ratios can greatly influence the interactions such as electrostatic and hydrophobic interaction. The variation in these interactions has a significant effect on the molecular environments of the self-assembly structure, and this process is always accompanied by the transition of aggregates and release or consumption of heat. Hence, it is of interest to study the relationship between intermolecular interactions, molecular environments, self-assembly structure and the change in energy of system in the catanionic surfactant mixed systems. EXPERIMENTS The enthalpy change ΔH of titrations the imidazolium-based into SDS micelle solution was studied to characterize the heat by using isothermal titration calorimetry (ITC) during the transitions of the aggregate structures. The corresponding self-assembly structure was monitored via cryogenic transmission electron microscopy (cryo-TEM). Employing proton magnetic resonance (1H NMR), we focus on the interactions between imidazolium-based ILs and SDS based on the variations in the molecular environments of aggregates. FINDINGS Of these imidazolium-based ionic liquids/SDS system, the 1-octyl-3-methylimidazolium ([OMIM]Cl)/SDS system shows several features such as intense energy absorption and releasing processes, which indicate the formation of high entanglement wormlike micelles and vesicles. This is related to the formation of self-adjusting state between the SDS and [OMIM]Cl molecules due to the balance between the electrostatic interaction and hydrophobic interaction. Varying the alkyl chain length appears to cause significant differences to the molecular environments. From the molecular environments, three different models about the polarity of the catanionic surfactant molecules are used to explain the balance of the intermolecular interactions.
Collapse
|
5
|
Peng F, Ke Y, He J, Lu S, Hu X. Big effects of small nanoparticles on hydrophobically modified polyacrylamide in an aqueous solution. J Appl Polym Sci 2018. [DOI: 10.1002/app.47269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fangfang Peng
- College of Science; China University of Petroleum; Beijing 102249 China
| | - Yangchuan Ke
- College of Science; China University of Petroleum; Beijing 102249 China
| | - Jing He
- College of Science; China University of Petroleum; Beijing 102249 China
| | - Shichao Lu
- College of Science; China University of Petroleum; Beijing 102249 China
| | - Xu Hu
- College of Science; China University of Petroleum; Beijing 102249 China
| |
Collapse
|
6
|
Fan Y, Wang Y. Self-Assembly and Functions of Star-Shaped Oligomeric Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11220-11241. [PMID: 29616549 DOI: 10.1021/acs.langmuir.8b00290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Oligomeric surfactants consist of three or more amphiphilic moieties which are connected by spacer groups covalently at the level of headgroups. It provides a possible route to bridge the gap from conventional single-chain surfactants to polymeric surfactants and leads to many profound improvements in the properties of surfactants in aqueous solution and at the air/water and water/solid interfaces. Generally, oligomeric surfactants are categorized into linear, ring-like, and star-shaped on the basis of the topological structures of their spacer groups, and their aggregation behavior strongly depends on the resultant topological structures. In recent years, we studied trimeric, tetrameric, and hexameric surfactants with a star-shaped spacer which spreads from a central site of elemental nitrogen or carbon, and their charged headgroups connect with each other through the spacers. It has been found that both the nature of spacer groups and the degree of oligomerization show important influences on the self-assembly of oligomeric surfactants and provide great possibilities in fabricating various surfactant aggregate morphologies by adjusting the molecule conformations. The unique self-assembly behavior endows them with superior physicochemical properties and potential applications. This feature article summarizes the development of star-shaped oligomeric surfactants, including self-assembly at the air/water and water/solid interfaces, self-assembly in aqueous solution, and their functions. We expect that this review could provide a comprehensive understanding of the structure-property relationship and various potential applications of star-shaped oligomeric surfactants and offer additional motivation for their future research.
Collapse
Affiliation(s)
- Yaxun Fan
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Yilin Wang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
7
|
pH-Dependent Antibiotic Gatifloxacin Interacting with Cationic Surfactant: Insights from Spectroscopic and Chromatographic Measurements. J SOLUTION CHEM 2018. [DOI: 10.1007/s10953-018-0811-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Kang W, Zhao Y, Wang P, Li Z, Hou X, Huang Z, Yang H. Rheological behavior and mechanism of pH-responsive wormlike micelle variations induced by isomers of phthalic acid. SOFT MATTER 2018; 14:4445-4452. [PMID: 29693695 DOI: 10.1039/c8sm00467f] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Responsive wormlike micelles (WLMs) constructed by different carboxylic acids are fascinating. However, it is unknown how the position of the carboxylic groups alters the stimuli-response of wormlike micellar systems. Herein, three pH-responsive WLMs based on Gemini-like surfactants (named o-EAPA, m-EAPA, and p-EAPA) were formed and studied through the complexation of N-erucamidopropyl-N,N-dimethylamine (UC22AMPM) and o-phthalic acid (o-PA), m-phthalic acid (m-PA), or p-phthalic acid (p-PA) at the molar ratio of 2 : 1. The viscoelasticity, phase behavior and aggregate microstructure were separately explored by rheological, appearance observation and cryo-TEM methods. The results show that all phthalic acids can protonate UC22AMPM, thereby forming WLMs. However, with the shorter spacer distance between two carboxyl groups in phthalic acid, o-EAPA exhibits the longer length scale of aggregates and a more efficient thickening ability compared to the other two systems. Similar results in the N,N-dimethyl oleoaminde-propylamine (DOAPA) and o-PA, m-PA, and p-PA systems further verify the applicability of this mechanism. Furthermore, the phthalic acid based WLMs are found to exhibit intriguing reversible pH-responsive behaviors, which include promptly switching between a high elastic system and a low viscosity fluid by pH control. The o-EAPA system possesses a larger viscosity maximum, which produces more precipitous viscosity changes as the pH varies. This study is beneficial for the formation of pH-responsive WLMs and to determine their advantages for applications.
Collapse
Affiliation(s)
- Wanli Kang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
9
|
Zhou T, Yuan J, Chen Y, Xin X, Tan Y, Xu G. Surface Rheological Properties of Hydrophobically Modified Polyacrylamide and Imidazolium Surfactant Systems. J SURFACTANTS DETERG 2017. [DOI: 10.1007/s11743-017-1931-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Raman Ujjwal R, Sharma T, Sangwai JS, Ojha U. Rheological investigation of a random copolymer of polyacrylamide and polyacryloyl hydrazide (PAM-ran-PAH) for oil recovery applications. J Appl Polym Sci 2016. [DOI: 10.1002/app.44648] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Rewati Raman Ujjwal
- Department of Chemistry; Rajiv Gandhi Institute of Petroleum Technology Raebareli; Ratapur Chowk Uttar Pradesh 229316 India
| | - Tushar Sharma
- Petroleum Engineering Program, Department of Ocean Engineering; Indian Institute of Technology Madras; Chennai 600036 India
| | - Jitendra S. Sangwai
- Petroleum Engineering Program, Department of Ocean Engineering; Indian Institute of Technology Madras; Chennai 600036 India
| | - Umaprasana Ojha
- Department of Chemistry; Rajiv Gandhi Institute of Petroleum Technology Raebareli; Ratapur Chowk Uttar Pradesh 229316 India
| |
Collapse
|
11
|
Nazar MF, Azeem W, Rana UA, Ashfaq M, Lashin A, Al-Arifi N, Rahman HMAU, Lazim AM, Mahmood A. pH-dependent probing of levofloxacin assimilated in surfactant mediated assemblies: Insights from photoluminescent and chromatographic measurements. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.04.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Qiao F, Wang M, Liu Z, Fan Y, Wang Y. Transitions in the Molecular Configuration and Aggregates for Mixtures of a Star-Shaped Hexameric Cationic Surfactant and a Monomeric Anionic Surfactant. Chem Asian J 2016; 11:2763-2772. [DOI: 10.1002/asia.201600432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/23/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Fulin Qiao
- Key Laboratory of Colloid and Interface Science; Beijing National Laboratory for Molecular Sciences (BNLMS); Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Meina Wang
- Key Laboratory of Colloid and Interface Science; Beijing National Laboratory for Molecular Sciences (BNLMS); Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Zhang Liu
- Key Laboratory of Colloid and Interface Science; Beijing National Laboratory for Molecular Sciences (BNLMS); Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Yaxun Fan
- Key Laboratory of Colloid and Interface Science; Beijing National Laboratory for Molecular Sciences (BNLMS); Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Yilin Wang
- Key Laboratory of Colloid and Interface Science; Beijing National Laboratory for Molecular Sciences (BNLMS); Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| |
Collapse
|
13
|
Liu Z, Cao M, Chen Y, Fan Y, Wang D, Xu H, Wang Y. Interactions of Divalent and Trivalent Metal Counterions with Anionic Sulfonate Gemini Surfactant and Induced Aggregate Transitions in Aqueous Solution. J Phys Chem B 2016; 120:4102-13. [PMID: 27096262 DOI: 10.1021/acs.jpcb.6b02897] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interactions of multivalent metal counterions with anionic sulfonate gemini surfactant 1,3-bis(N-dodecyl-N-propanesulfonate sodium)-propane (C12C3C12(SO3)2) and the induced aggregate transitions in aqueous solution have been studied. Divalent metal ions Ca(2+), Mg(2+), Cu(2+), Zn(2+), Mn(2+), Co(2+), and Ni(2+) and trivalent metal ions Al(3+), Fe(3+), and Cr(3+) were chosen. The results indicate that the critical micelle concentration (CMC) of C12C3C12(SO3)2 is greatly reduced by the ions, and the aggregate morphologies of C12C3C12(SO3)2 are adjusted by changing the nature and molar ratio of the metal ions. These metal ions can be classified into four groups because the ions in each group have very similar interaction mechanisms with C12C3C12(SO3)2: (I) Cu(2+) and Zn(2+); (II) Ca(2+), Mn(2+) and Mg(2+); (III) Ni(2+) and Co(2+); and (IV) Cr(3+), Al(3+) and Fe(3+). Cu(2+), Mg(2+), Ni(2+), and Al(3+) then were selected as representatives for each group to further study their interaction with C12C3C12(SO3)2. C12C3C12(SO3)2 interacts with the multivalent metal ions by electrostatic interaction and coordination interaction. C12C3C12(SO3)2 forms prolate micelles and plate-like micelles with Cu(2+), vesicles and wormlike micelles with Al(3+) or Ni(2+), and viscous three-dimensional network structure with Mg(2+). Moreover, precipitation does not take place in aqueous solution even at a high ion/surfactant ratio. The related mechanisms have been discussed. The present work provides guidance on how to apply the anionic surfactant into the solutions containing the multivalent metal ions, and those aggregates may have potential usage in separating heavy metal ions from aqueous solutions.
Collapse
Affiliation(s)
- Zhang Liu
- Key Laboratory of Colloid and Interface Science, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
| | - Meiwen Cao
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China) , 66 Changjiang West Road, Qingdao 266580, People's Republic of China
| | - Yao Chen
- Key Laboratory of Colloid and Interface Science, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
| | - Yaxun Fan
- Key Laboratory of Colloid and Interface Science, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
| | - Dong Wang
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China) , 66 Changjiang West Road, Qingdao 266580, People's Republic of China
| | - Hai Xu
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China) , 66 Changjiang West Road, Qingdao 266580, People's Republic of China
| | - Yilin Wang
- Key Laboratory of Colloid and Interface Science, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
| |
Collapse
|
14
|
Spectral-luminescent properties of pH-sensitive azo fluorophore in complexes with quaternary ammonium disinfectants. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3687-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Nazar MF, Mukhtar F, Ashfaq M, Rahman HMAU, Zafar MN, Sumrra SH. Physicochemical investigation of antibacterial Moxifloxacin interacting with quaternary ammonium disinfectants. FLUID PHASE EQUILIBRIA 2015; 406:47-54. [DOI: 10.1016/j.fluid.2015.07.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|