1
|
Fernandes DA. Comprehensive Review on Bubbles: Synthesis, Modification, Characterization and Biomedical Applications. Bioconjug Chem 2024. [PMID: 39377727 DOI: 10.1021/acs.bioconjchem.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Accurate detection, treatment, and imaging of diseases are important for effective treatment outcomes in patients. In this regard, bubbles have gained much attention, due to their versatility. Bubbles usually 1 nm to 10 μm in size can be produced and loaded with a variety of lipids, polymers, proteins, and therapeutic and imaging agents. This review details the different production and loading methods for bubbles, for imaging and treatment of diseases/conditions such as cancer, tumor angiogenesis, thrombosis, and inflammation. Bubbles can also be used for perfusion measurements, important for diagnostic and therapeutic decision making in cardiac disease. The different factors important in the stability of bubbles and the different techniques for characterizing their physical and chemical properties are explained, for developing bubbles with advanced therapeutic and imaging features. Hence, the review provides important insights for researchers studying bubbles for biomedical applications.
Collapse
|
2
|
Fahemi N, Angizi S, Hatamie A. Integration of Ultrathin Bubble Walls and Electrochemistry: Innovation in Microsensing for Forensic Nitrite Detection and Microscale Metallic Film Deposition. Anal Chem 2024. [PMID: 38324919 DOI: 10.1021/acs.analchem.3c04488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
We present a strategy for electrochemical measurements using a durable minute bubble wall with a thickness of 27 μm (D = 1.8 cm) as an innovative electrochemical medium. The composition, thickness, and volume of the tiny bubble film were investigated and estimated using the spectroscopic method and the Beer-Lambert law. A carbon microelectrode (D = 10 μm) was then employed as the working electrode, inserted through the bubble wall to function as the solution interface. First, the potential of this method for microelectrodeposition of metallic Ag and Pd films in a tiny bubble was investigated. Interestingly, microscopic images of the deposited film clearly demonstrated that the bubble thickness determines and confines the electrochemical deposition zone. In other words, innovative template-free microelectrodeposition was achieved. In the second phase of our work, microelectroanalysis of trace levels of nitrite ions was performed within the bubble wall and on a foam-covered hand, between the fingers directly, with a low limit of detection of 28 μM. This technique holds significance in criminal investigations, as the presence of NO2- ions on the hand indicates the potential presence of gunshot residue and aids in identifying suspects. In comparison to current methods, this approach is rapid, simple, cost-effective, and amenable to on-site applications, eliminating the need for sample treatment. Ultimately, the utilization of a bubble wall as a novel electrochemical microreactor can open new ways in microelectrochemical analysis, presenting novel opportunities and applications in the field of electrochemical sensors.
Collapse
Affiliation(s)
- Nikoo Fahemi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, P.O. Box 45195-1159, Zanjan 45137-66731, Iran
| | - Shayan Angizi
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Amir Hatamie
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, P.O. Box 45195-1159, Zanjan 45137-66731, Iran
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, Gothenburg 412 96, Sweden
| |
Collapse
|
3
|
Deng Q, Mi J, Dong J, Chen Y, Chen L, He J, Zhou J. Superiorly Stable Three-Layer Air Microbubbles Generated by Versatile Ethanol-Water Exchange for Contrast-Enhanced Ultrasound Theranostics. ACS NANO 2023; 17:263-274. [PMID: 36354372 DOI: 10.1021/acsnano.2c07300] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microbubbles have been widely used as ultrasound contrast agents in clinical diagnosis. Moreover, most current preparation methods for microbubbles are uncontrollable, and the as-obtained microbubbles are unstable in aqueous solution or under ultrasound. Here, we report a strategy to prepare superiorly stable microbubbles with three-layer structures by the ethanol-water exchange. This versatile method can also be applied to prepare different kinds of protein microbubbles with various sizes for advanced biomedical applications. To demonstrate this, the protein air microbubbles are created, which is stable in water for several days with intact structures and exhibits excellent contrast-enhanced ultrasound imaging. Moreover, the protein air microbubbles can also deliver a mass of drugs while maintaining their stable structures, making them a platform for ultrasound imaging-guided drug delivery. The versatile protein air microbubbles have great potential for the design and application of theranostic platforms.
Collapse
Affiliation(s)
- Qiurong Deng
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Jiaomei Mi
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Jianpei Dong
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Yin Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Lanxi Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Jinxu He
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Jianhua Zhou
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| |
Collapse
|
4
|
Chapla R, Huynh KT, Schutt CE. Microbubble–Nanoparticle Complexes for Ultrasound-Enhanced Cargo Delivery. Pharmaceutics 2022; 14:pharmaceutics14112396. [PMID: 36365214 PMCID: PMC9698658 DOI: 10.3390/pharmaceutics14112396] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022] Open
Abstract
Targeted delivery of therapeutics to specific tissues is critically important for reducing systemic toxicity and optimizing therapeutic efficacy, especially in the case of cytotoxic drugs. Many strategies currently exist for targeting systemically administered drugs, and ultrasound-controlled targeting is a rapidly advancing strategy for externally-stimulated drug delivery. In this non-invasive method, ultrasound waves penetrate through tissue and stimulate gas-filled microbubbles, resulting in bubble rupture and biophysical effects that power delivery of attached cargo to surrounding cells. Drug delivery capabilities from ultrasound-sensitive microbubbles are greatly expanded when nanocarrier particles are attached to the bubble surface, and cargo loading is determined by the physicochemical properties of the nanoparticles. This review serves to highlight and discuss current microbubble–nanoparticle complex component materials and designs for ultrasound-mediated drug delivery. Nanocarriers that have been complexed with microbubbles for drug delivery include lipid-based, polymeric, lipid–polymer hybrid, protein, and inorganic nanoparticles. Several schemes exist for linking nanoparticles to microbubbles for efficient nanoparticle delivery, including biotin–avidin bridging, electrostatic bonding, and covalent linkages. When compared to unstimulated delivery, ultrasound-mediated cargo delivery enables enhanced cell uptake and accumulation of cargo in target organs and can result in improved therapeutic outcomes. These ultrasound-responsive delivery complexes can also be designed to facilitate other methods of targeting, including bioactive targeting ligands and responsivity to light or magnetic fields, and multi-level targeting can enhance therapeutic efficacy. Microbubble–nanoparticle complexes present a versatile platform for controlled drug delivery via ultrasound, allowing for enhanced tissue penetration and minimally invasive therapy. Future perspectives for application of this platform are also discussed in this review.
Collapse
Affiliation(s)
- Rachel Chapla
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR 97201, USA
| | - Katherine T. Huynh
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
| | - Carolyn E. Schutt
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
- Correspondence:
| |
Collapse
|
5
|
Rudakovskaya PG, Barmin RA, Kuzmin PS, Fedotkina EP, Sencha AN, Gorin DA. Microbubbles Stabilized by Protein Shell: From Pioneering Ultrasound Contrast Agents to Advanced Theranostic Systems. Pharmaceutics 2022; 14:1236. [PMID: 35745808 PMCID: PMC9227336 DOI: 10.3390/pharmaceutics14061236] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 12/16/2022] Open
Abstract
Ultrasound is a widely-used imaging modality in clinics as a low-cost, non-invasive, non-radiative procedure allowing therapists faster decision-making. Microbubbles have been used as ultrasound contrast agents for decades, while recent attention has been attracted to consider them as stimuli-responsive drug delivery systems. Pioneering microbubbles were Albunex with a protein shell composed of human serum albumin, which entered clinical practice in 1993. However, current research expanded the set of proteins for a microbubble shell beyond albumin and applications of protein microbubbles beyond ultrasound imaging. Hence, this review summarizes all-known protein microbubbles over decades with a critical evaluation of formulations and applications to optimize the safety (low toxicity and high biocompatibility) as well as imaging efficiency. We provide a comprehensive overview of (1) proteins involved in microbubble formulation, (2) peculiarities of preparation of protein stabilized microbubbles with consideration of large-scale production, (3) key chemical factors of stabilization and functionalization of protein-shelled microbubbles, and (4) biomedical applications beyond ultrasound imaging (multimodal imaging, drug/gene delivery with attention to anticancer treatment, antibacterial activity, biosensing). Presented critical evaluation of the current state-of-the-art for protein microbubbles should focus the field on relevant strategies in microbubble formulation and application for short-term clinical translation. Thus, a protein bubble-based platform is very perspective for theranostic application in clinics.
Collapse
Affiliation(s)
- Polina G. Rudakovskaya
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Nobel Str. 3, 121205 Moscow, Russia;
| | - Roman A. Barmin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Nobel Str. 3, 121205 Moscow, Russia;
| | - Pavel S. Kuzmin
- Institute of Materials for Modern Energy and Nanotechnology, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, 125047 Moscow, Russia;
| | - Elena P. Fedotkina
- Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, Akademika Oparina Str. 4, 117198 Moscow, Russia; (E.P.F.); (A.N.S.)
| | - Alexander N. Sencha
- Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, Akademika Oparina Str. 4, 117198 Moscow, Russia; (E.P.F.); (A.N.S.)
| | - Dmitry A. Gorin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Nobel Str. 3, 121205 Moscow, Russia;
| |
Collapse
|
6
|
Le TH, Phan AHT, Le KCM, Phan TDU, Nguyen KT. Utilizing polymer-conjugate albumin-based ultrafine gas bubbles in combination with ultra-high frequency radiations in drug transportation and delivery. RSC Adv 2021; 11:34440-34448. [PMID: 35494740 PMCID: PMC9042728 DOI: 10.1039/d1ra04983f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/08/2021] [Indexed: 11/21/2022] Open
Abstract
Ultrafine bubbles stabilized by human serum albumin conjugate polyethylene glycol ameliorates the stability of complex as well as the drug payload. Polyethylene glycol presents the crucial role in releasing drug by means of acoustic sound.
Collapse
Affiliation(s)
- Thi H. Le
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - An H. T. Phan
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Khoa C. M. Le
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Thy D. U. Phan
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Khoi T. Nguyen
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
7
|
Wang Q, Xue C, zhao H, Qin Y, Zhang X, Li Y. The fabrication of protein microbubbles with diverse gas core and the novel exploration on the role of interface introduction in protein crystallization. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124471] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Gultekinoglu M, Öztürk Ş, Chen B, Edirisinghe M, Ulubayram K. Preparation of poly(glycerol sebacate) fibers for tissue engineering applications. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109297] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Hall RL, Juan-Sing ZD, Hoyt K, Sirsi SR. Formulation and Characterization of Chemically Cross-linked Microbubble Clusters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10977-10986. [PMID: 31310715 PMCID: PMC7061884 DOI: 10.1021/acs.langmuir.9b00475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The purpose of this study is to introduce a new concept of chemically cross-linked microbubble clusters (CCMCs), which are individual microbubble ultrasound contrast agents (UCAs) physically tethered together. We demonstrate a facile means of their production, characterize their size and stability, and describe how they can potentially be used in biomedical applications. By tethering UCAs together into CCMCs, we propose that novel methods of ultrasound mediated imaging and therapy can be developed through unique interbubble interactions in an ultrasound field. One of the major challenges in generating CCMCs is controlling aggregate sizes and maintaining stability against Ostwald ripening and coalescence. In this study, we demonstrate that chemically cross-linked microbubble clusters can produce small (<10 μm) quasi-stable complexes that slowly fuse into bubbles with individual gas cores. Furthermore, we demonstrate that this process can be driven with low-intensity ultrasound pulses, enabling a rapid fusion of clusters which could potentially be used to develop novel ultrasound contrast imaging and drug delivery strategies in future studies. The development of novel microbubble clusters presents a simple yet robust process for generating novel UCAs with a design that could allow for more versatility in contrast-enhanced ultrasound (CEUS), molecular imaging, and drug delivery applications. Additionally, microbubble clustering is a unique way to control size, shell, and gas compositions that can be used to study bubble ripening and coalescence in a highly controlled environment or study the behavior of mixed-microbubble populations.
Collapse
Affiliation(s)
- Ronald L. Hall
- University of Texas at Dallas, Richardson, Texas, 75080, United States
| | | | - Kenneth Hoyt
- University of Texas at Dallas, Richardson, Texas, 75080, United States
- University of Texas Southwestern, Dallas, Texas, 75390, United States
| | - Shashank R. Sirsi
- University of Texas at Dallas, Richardson, Texas, 75080, United States
- University of Texas Southwestern, Dallas, Texas, 75390, United States
| |
Collapse
|
10
|
Chen Z, Pulsipher KW, Chattaraj R, Hammer DA, Sehgal CM, Lee D. Engineering the Echogenic Properties of Microfluidic Microbubbles Using Mixtures of Recombinant Protein and Amphiphilic Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10079-10086. [PMID: 30768278 PMCID: PMC6698903 DOI: 10.1021/acs.langmuir.8b03882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Microbubbles are used as ultrasound contrast agents in medical diagnosis and also have shown great promise in ultrasound-mediated therapy. However, short lifetime and broad size distribution of microbubbles limit their applications in therapy and imaging. Moreover, it is challenging to tailor the echogenic response of microbubbles to make them suitable for specific applications. To overcome these challenges, we use microfluidic flow-focusing to prepare monodisperse microbubbles with a mixture of a recombinant amphiphilic protein, oleosin, and a synthetic amphiphilic copolymer, Pluronic. We show that these microbubbles have superior uniformity and stability under ultrasonic stimulation compared to commercial agents. We also demonstrate that by using different Pluronics, the echogenic response of the microbubbles can be tailored. Our work shows the versatility of using the combination of microfluidics and protein/copolymer mixtures as a method of engineering microbubbles. This tunability could potentially be important and powerful in producing microbubble agents for theranostic applications.
Collapse
Affiliation(s)
- Zhuo Chen
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Katherine W. Pulsipher
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Rajarshi Chattaraj
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, United States
| | - Daniel A. Hammer
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Chandra M. Sehgal
- Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, United States
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
11
|
Jamburidze A, Huerre A, Baresch D, Poulichet V, De Corato M, Garbin V. Nanoparticle-Coated Microbubbles for Combined Ultrasound Imaging and Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10087-10096. [PMID: 31033294 DOI: 10.1021/acs.langmuir.8b04008] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Biomedical microbubbles stabilized by a coating of magnetic or drug-containing nanoparticles show great potential for theranostics applications. Nanoparticle-coated microbubbles can be made to be stable, to be echogenic, and to release the cargo of drug-containing nanoparticles with an ultrasound trigger. This Article reviews the design principles of nanoparticle-coated microbubbles for ultrasound imaging and drug delivery, with a particular focus on the physical chemistry of nanoparticle-coated interfaces; the formation, stability, and dynamics of nanoparticle-coated bubbles; and the conditions for controlled nanoparticle release in ultrasound. The emerging understanding of the modes of nanoparticle expulsion and of the transport of expelled material by microbubble-induced flow is paving the way toward more efficient nanoparticle-mediated drug delivery. This Article highlights the knowledge gap that still remains to be addressed before we can control these phenomena.
Collapse
Affiliation(s)
- Akaki Jamburidze
- Department of Chemical Engineering , Imperial College London , London SW7 2AZ , United Kingdom
| | - Axel Huerre
- Department of Chemical Engineering , Imperial College London , London SW7 2AZ , United Kingdom
| | - Diego Baresch
- Department of Chemical Engineering , Imperial College London , London SW7 2AZ , United Kingdom
| | - Vincent Poulichet
- Department of Chemistry , Ecole Normale Superieure , 75005 Paris , France
| | - Marco De Corato
- Department of Chemical Engineering , Imperial College London , London SW7 2AZ , United Kingdom
| | - Valeria Garbin
- Department of Chemical Engineering , Imperial College London , London SW7 2AZ , United Kingdom
| |
Collapse
|
12
|
Lee L, Cavalieri F, Ashokkumar M. Exploring New Applications of Lysozyme-Shelled Microbubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9997-10006. [PMID: 31088060 DOI: 10.1021/acs.langmuir.9b00896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This feature article provides a review of recent work on the synthesis of biopolymer-shelled microbubbles using various techniques with a particular focus on ultrasonic methodology that offers advantages over other conventional methods for tuning their physical and functional properties. A detailed discussion on the role of surface chemistry in fabricating functional lysozyme-shelled microbubbles has also been presented. Highlights on the applications of lysozyme-shelled microbubbles, particularly recent findings on their use for potential theranostic applications in lung diseases, have also been presented.
Collapse
Affiliation(s)
- Lillian Lee
- School of Engineering , RMIT University , Melbourne , VIC 3000 , Australia
| | | | | |
Collapse
|
13
|
Mehta P, Zaman A, Smith A, Rasekh M, Haj‐Ahmad R, Arshad MS, der Merwe S, Chang M, Ahmad Z. Broad Scale and Structure Fabrication of Healthcare Materials for Drug and Emerging Therapies via Electrohydrodynamic Techniques. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800024] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Prina Mehta
- Leicester School of PharmacyDe Montfort University Leicester LE1 9BH UK
| | - Aliyah Zaman
- Leicester School of PharmacyDe Montfort University Leicester LE1 9BH UK
| | - Ashleigh Smith
- School of Pharmacy and Biomedical SciencesSt. Michael's BuildingUniversity of Portsmouth White Swan Road Portsmouth PO1 2DT UK
| | - Manoochehr Rasekh
- Leicester School of PharmacyDe Montfort University Leicester LE1 9BH UK
| | - Rita Haj‐Ahmad
- Leicester School of PharmacyDe Montfort University Leicester LE1 9BH UK
| | | | - Susanna der Merwe
- School of Pharmacy and Biomedical SciencesSt. Michael's BuildingUniversity of Portsmouth White Swan Road Portsmouth PO1 2DT UK
| | - M.‐W. Chang
- College of Biomedical Engineering and Instrument ScienceZhejiang University Hangzhou 310027 China
- Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness AppraisalZhejiang University Hangzhou 310027 China
| | - Z. Ahmad
- Leicester School of PharmacyDe Montfort University Leicester LE1 9BH UK
| |
Collapse
|
14
|
Shekhar H, Smith NJ, Raymond JL, Holland CK. Effect of Temperature on the Size Distribution, Shell Properties, and Stability of Definity ®. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:434-446. [PMID: 29174045 PMCID: PMC5759968 DOI: 10.1016/j.ultrasmedbio.2017.09.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 05/08/2023]
Abstract
Physical characterization of an ultrasound contrast agent (UCA) aids in its safe and effective use in diagnostic and therapeutic applications. The goal of this study was to investigate the impact of temperature on the size distribution, shell properties, and stability of Definity®, a U.S. Food and Drug Administration-approved UCA used for left ventricular opacification. A Coulter counter was modified to enable particle size measurements at physiologic temperatures. The broadband acoustic attenuation spectrum and size distribution of Definity® were measured at room temperature (25 °C) and physiologic temperature (37 °C) and were used to estimate the viscoelastic shell properties of the agent at both temperatures. Attenuation and size distribution was measured over time to assess the effect of temperature on the temporal stability of Definity®. The attenuation coefficient of Definity® at 37 °C was as much as 5 dB higher than the attenuation coefficient measured at 25 °C. However, the size distributions of Definity® at 25 °C and 37 °C were similar. The estimated shell stiffness and viscosity decreased from 1.76 ± 0.18 N/m and 0.21 × 10-6 ± 0.07 × 10-6 kg/s at 25 °C to 1.01 ± 0.07 N/m and 0.04 × 10-6 ± 0.04 × 10-6 kg/s at 37 °C, respectively. Size-dependent differences in dissolution rates were observed within the UCA population at both 25 °C and 37 °C. Additionally, cooling the diluted UCA suspension from 37 °C to 25 °C accelerated the dissolution rate. These results indicate that although temperature affects the shell properties of Definity® and can influence the stability of Definity®, the size distribution of this agent is not affected by a temperature increase from 25 °C to 37 °C.
Collapse
Affiliation(s)
- Himanshu Shekhar
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA.
| | - Nathaniel J Smith
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jason L Raymond
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Christy K Holland
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
15
|
Ho HN, Laidmäe I, Kogermann K, Lust A, Meos A, Nguyen CN, Heinämäki J. Development of electrosprayed artesunate-loaded core–shell nanoparticles. Drug Dev Ind Pharm 2017; 43:1134-1142. [DOI: 10.1080/03639045.2017.1300163] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hoang Nhan Ho
- National Institute of Pharmaceutical Technology, Hanoi University of Pharmacy, Ha Noi, Vietnam
- College of Medicine and Pharmacy, Hue University, Thua Thien Hue, Vietnam
| | - Ivo Laidmäe
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Karin Kogermann
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Andres Lust
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Andres Meos
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Chien Ngoc Nguyen
- National Institute of Pharmaceutical Technology, Hanoi University of Pharmacy, Ha Noi, Vietnam
| | - Jyrki Heinämäki
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
16
|
Mehta P, Haj-Ahmad R, Rasekh M, Arshad MS, Smith A, van der Merwe SM, Li X, Chang MW, Ahmad Z. Pharmaceutical and biomaterial engineering via electrohydrodynamic atomization technologies. Drug Discov Today 2017; 22:157-165. [DOI: 10.1016/j.drudis.2016.09.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/17/2016] [Accepted: 09/22/2016] [Indexed: 10/20/2022]
|
17
|
Pagureva N, Tcholakova S, Rusanova K, Denkov N, Dimitrova T. Factors affecting the coalescence stability of microbubbles. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Lin H, Chen J, Chen C. A novel technology: microfluidic devices for microbubble ultrasound contrast agent generation. Med Biol Eng Comput 2016; 54:1317-30. [DOI: 10.1007/s11517-016-1475-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 02/15/2016] [Indexed: 12/16/2022]
|
19
|
Koppula KS, Fan R, Veerapalli KR, Wan J. Integrated microfluidic system with simultaneous emulsion generation and concentration. J Colloid Interface Sci 2016; 466:162-7. [PMID: 26722797 DOI: 10.1016/j.jcis.2015.12.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/11/2015] [Accepted: 12/17/2015] [Indexed: 11/24/2022]
Abstract
Because the size, size distribution, and concentration of emulsions play an important role in most of the applications, controlled emulsion generation and effective concentration are of great interest in fundamental and applied studies. While microfluidics has been demonstrated to be able to produce emulsion drops with controlled size, size distribution, and hierarchical structures, progress of controlled generation of concentrated emulsions is limited. Here, we present an effective microfluidic emulsion generation system integrated with an orifice structure to separate aqueous droplets from the continuous oil phase, resulting in concentrated emulsion drops in situ. Both experimental and simulation results show that the efficiency of separation is determined by a balance between pressure drop and droplet accumulation near the orifice. By manipulating this balance via changing flow rates and microfluidic geometry, we can achieve monodisperse droplets on chip that have a concentration as high as 80,000 drops per microliter (volume fraction of 66%). The present approach thus provides insights to the design of microfluidic device that can be used to concentrate emulsions (drops and bubbles), colloidal particles (drug delivery polymer particles), and biological particles (cells and bacteria) when volume fractions as high as 66% are necessary.
Collapse
|
20
|
Rovers TAM, Sala G, van der Linden E, Meinders MBJ. Effect of Temperature and Pressure on the Stability of Protein Microbubbles. ACS APPLIED MATERIALS & INTERFACES 2016; 8:333-340. [PMID: 26619225 DOI: 10.1021/acsami.5b08527] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Protein microbubbles are air bubbles with a network of interacting proteins at the air-water interface. Protein microbubbles are commonly used in medical diagnostic and therapeutic research. They have also recently gained interest in the research area of food as they can be used as structural elements to control texture, allowing for the manufacture of healthier foods with increased consumer perception. For the application of microbubbles in the food industry, it is important to gain insights into their stability under food processing conditions. In this study, we tested the stability of protein microbubbles against heating and pressurization. Microbubbles could be heated to 50 °C for 2 min or pressurized to 100 kPa overpressure for 15 s without significantly affecting their stability. At higher pressures and temperatures, the microbubbles became unstable and buckled. Buckling was observed above a critical pressure and was influenced by the shell modulus. The addition of cross-linkers like glutaraldehyde and tannic acid resulted in microbubbles that were stable against all tested temperatures and overpressures, more specifically, up to 120 °C and 470 kPa, respectively. We found a relation between the storage temperatures of microbubble dispersions (4, 10, 15, and 21 °C) and a decrease in the number of microbubbles with the highest decrease at the highest storage temperature. The average rupture time of microbubbles stored at different storage temperatures followed an Arrhenius relation with an activation energy for rupture of the shell of approximately 27 kT. This strength ensures applicability of microbubbles in food processes only at moderate temperatures and storage for a moderate period of time. After the proteins in the shell are cross-linked, the microbubbles can withstand pressures and temperatures that are representative of food processes.
Collapse
Affiliation(s)
- Tijs A M Rovers
- Top Institute Food and Nutrition , P.O. Box 557 6700 AN, Wageningen, The Netherlands
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University and Research Centre , P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| | - Guido Sala
- Top Institute Food and Nutrition , P.O. Box 557 6700 AN, Wageningen, The Netherlands
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University and Research Centre , P.O. Box 17, 6700 AA, Wageningen, The Netherlands
- Food and Biobased Research, Wageningen University and Research Centre , P.O. Box 17 6700 AA, Wageningen, The Netherlands
| | - Erik van der Linden
- Top Institute Food and Nutrition , P.O. Box 557 6700 AN, Wageningen, The Netherlands
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University and Research Centre , P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| | - Marcel B J Meinders
- Top Institute Food and Nutrition , P.O. Box 557 6700 AN, Wageningen, The Netherlands
- Food and Biobased Research, Wageningen University and Research Centre , P.O. Box 17 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
21
|
Upadhyay A, Dalvi SV. Synthesis, characterization and stability of BSA-encapsulated microbubbles. RSC Adv 2016. [DOI: 10.1039/c5ra24304a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, we present an account of experimental studies performed for the synthesis, shelf stability andin vitrostability of microbubbles made from perfluorobutane (PFB) gas and coated in a shell of Bovine Serum Albumin (BSA).
Collapse
Affiliation(s)
- Awaneesh Upadhyay
- Chemical Engineering
- Indian Institute of Technology Gandhinagar
- Chandkheda 382424
- India
| | - Sameer V. Dalvi
- Chemical Engineering
- Indian Institute of Technology Gandhinagar
- Chandkheda 382424
- India
| |
Collapse
|
22
|
Jiang X, Zhang Y, Edirisinghe M, Parhizkar M. Combining microfluidic devices with coarse capillaries to reduce the size of monodisperse microbubbles. RSC Adv 2016. [DOI: 10.1039/c6ra09802a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In this work, a major advance for the controlled production of monodisperse microbubbles, which are a key constituent in many advanced technologies, has been invented using simple microfluidic technology.
Collapse
Affiliation(s)
- X. Jiang
- Department of Mechanical Engineering
- University College London
- London
- UK
| | - Y. Zhang
- Department of Mechanical Engineering
- University College London
- London
- UK
| | - M. Edirisinghe
- Department of Mechanical Engineering
- University College London
- London
- UK
| | - M. Parhizkar
- Department of Mechanical Engineering
- University College London
- London
- UK
| |
Collapse
|
23
|
Sridhar S, Patel A, Dalvi SV. Estimation of Storage Stability of Aqueous Microbubble Suspensions. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2015.10.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Abstract
Studies on the deformation behaviours of cellular entities, such as coated microbubbles and liposomes subject to a cavitation flow, become increasingly important for the advancement of ultrasonic imaging and drug delivery. Numerical simulations for bubble dynamics of ultrasound contrast agents based on the boundary integral method are presented in this work. The effects of the encapsulating shell are estimated by adapting Hoff's model used for thin-shell contrast agents. The viscosity effects are estimated by including the normal viscous stress in the boundary condition. In parallel, mechanical models of cell membranes and liposomes as well as state-of-the-art techniques for quantitative measurement of viscoelasticity for a single cell or coated microbubbles are reviewed. The future developments regarding modelling and measurement of the material properties of the cellular entities for cutting-edge biomedical applications are also discussed.
Collapse
Affiliation(s)
- Qianxi Wang
- School of Mathematics , University of Birmingham , Birmingham B15 2TY , UK
| | - Kawa Manmi
- School of Mathematics , University of Birmingham , Birmingham B15 2TY , UK ; Department of Mathematics, College of Science , Salahaddin University-Erbil , Kurdistan Region , Iraq
| | - Kuo-Kang Liu
- School of Engineering , University of Warwick , Coventry CV4 7AL , UK
| |
Collapse
|
25
|
Mahalingam S, Xu Z, Edirisinghe M. Antibacterial Activity and Biosensing of PVA-Lysozyme Microbubbles Formed by Pressurized Gyration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9771-9780. [PMID: 26307462 DOI: 10.1021/acs.langmuir.5b02005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this work, the biosensing and antibacterial capabilities of PVA-lysozyme microbubbles have been explored. Gas-filled PVA-lysozyme microbubbles with and without gold nanoparticles in the diameter range of 10 to 250 μm were produced using a single-step pressurized gyration process. Fluorescence microscopy showed the integration of gold nanoparticles on the shell of the microbubbles. Microbubbles prepared with gold nanoparticles showed greater optical extinction values than those without gold nanoparticles, and these values increased with the concentration of the gold nanoparticles. Both types of microbubbles showed antibacterial activity against Gram-negative Escherichia coli (E. coli), with the bubbles containing the gold nanoparticles performing better than the former. The conjugation of the microbubbles with alkaline phosphatase allowed the detection of pesticide paraoxon in aqueous solution, and this demonstrates the biosensing capabilities of these microbubbles.
Collapse
Affiliation(s)
| | - Zewen Xu
- Department of Mechanical Engineering, University College London , Torrington Place, London WC1E 7JE, U.K
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London , Torrington Place, London WC1E 7JE, U.K
| |
Collapse
|
26
|
Rovers TAM, Sala G, van der Linden E, Meinders MBJ. Disintegration of protein microbubbles in presence of acid and surfactants: a multi-step process. SOFT MATTER 2015; 11:6403-6411. [PMID: 26171925 DOI: 10.1039/c5sm01296a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The stability of protein microbubbles against addition of acid or surfactants was investigated. When these compounds were added, the microbubbles first released the encapsulated air. Subsequently, the protein shell completely disintegrated into nanometer-sized particles. The decrease in the number of intact microbubbles could be well described with the Weibull distribution. This distribution is based on two parameters, which suggests that two phenomena are responsible for the fracture of the microbubble shell. The microbubble shell is first weakened. Subsequently, the weakened protein shell fractures randomly. The probability of fracture turned out to be exponentially proportional to the concentration of acid and surfactant. A higher decay rate and a lower average breaking time were observed at higher acid or surfactant concentrations. For different surfactants, different decay rates were observed. The fact that the microbubble shell was ultimately disintegrated into nanometer-sized particles upon addition of acid or surfactants indicates that the interactions in the shell are non-covalent and most probably hydrophobic. After acid addition, the time at which the complete disintegration of the shell was observed coincided with the time of complete microbubble decay (release of air), while in the case of surfactant addition, there was a significant time gap between complete microbubble decay and complete shell disintegration.
Collapse
Affiliation(s)
- Tijs A M Rovers
- Top Institute Food and Nutrition, P.O. Box 557, 6700AN, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
27
|
Ouriemi M, Vlahovska PM. Electrohydrodynamic Deformation and Rotation of a Particle-Coated Drop. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6298-305. [PMID: 26011225 DOI: 10.1021/acs.langmuir.5b00774] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A dielectric drop suspended in conducting liquid and subjected to a uniform electric field deforms into an ellipsoid whose major axis is either perpendicular or tilted (because of the Quincke rotation effect) relative to the applied field. We experimentally study the effect of surface-adsorbed colloidal particles on these classic electrohydrodynamic phenomena. We observe that at a high surface coverage (90%), the electrohydrodynamic flow is suppressed, oblate drop deformation is enhanced, and the threshold for tilt is decreased compared to that of the particle-free drop. The deformation data are explained well by a capsule model, which assumes that the particle monolayer acts as an elastic interface. The reduction of the threshold field for rotation is likely related to drop asphericity.
Collapse
Affiliation(s)
- M Ouriemi
- †IFPEN, Solaize, BP 3, 69360 Lyon, France
| | - P M Vlahovska
- ‡School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
28
|
Coaxial electrohydrodynamic atomization: Microparticles for drug delivery applications. J Control Release 2015; 205:70-82. [DOI: 10.1016/j.jconrel.2014.12.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 12/20/2022]
|
29
|
Mahalingam S, Raimi-Abraham BT, Craig DQM, Edirisinghe M. Formation of protein and protein-gold nanoparticle stabilized microbubbles by pressurized gyration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:659-666. [PMID: 25027827 DOI: 10.1021/la502181g] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A one-pot single-step novel process has been developed to form microbubbles up to 250 μm in diameter using a pressurized rotating device. The microbubble diameter is shown to be a function of rotational speed and working pressure of the processing system, and a modified Rayleigh-Plesset equation has been derived to explain the bubble-forming mechanism. A parametric plot is constructed to identify a rotating speed and working pressure regime, which allows for continuous bubbling. Bare protein (lysozyme) microbubbles generated in this way exhibit a morphological change, resulting in microcapsules over a period of time. Microbubbles prepared with gold nanoparticles at the bubble surface showed greater stability over a time period and retained the same morphology. The functionalization of microbubbles with gold nanoparticles also rendered optical tunability and has promising applications in imaging, biosensing, and diagnostics.
Collapse
Affiliation(s)
- Suntharavathanan Mahalingam
- Department of Mechanical Engineering, University College London , Torrington Place, London WC1E 7JE, United Kingdom
| | | | | | | |
Collapse
|