1
|
Kadota K, Kämäräinen T, Sakuma F, Ueda K, Higashi K, Moribe K, Uchiyama H, Minoura K, Tozuka Y. Unveiling the flavone-solubilizing effects of α-glucosyl rutin and hesperidin: probing structural differences through NMR and SAXS analyses. Food Funct 2023; 14:10493-10505. [PMID: 37938858 DOI: 10.1039/d3fo03261b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Flavonoids often exhibit broad bioactivity but low solubility and bioavailability, limiting their practical applications. The transglycosylated materials α-glucosyl rutin (Rutin-G) and α-glucosyl hesperidin (Hsp-G) are known to enhance the dissolution of hydrophobic compounds, such as flavonoids and other polyphenols. In this study, the effects of these materials on flavone solubilization were investigated by probing their interactions with flavone in aqueous solutions. Rutin-G and Hsp-G prepared via solvent evaporation and spray-drying methods were evaluated for their ability to dissolve flavones. Rutin-G had a stronger flavone-solubilizing effect than Hsp-G in both types of composite particles. The origin of this difference in behavior was elucidated by small-angle X-ray scattering (SAXS) and nuclear magnetic resonance analyses. The different self-association structures of Rutin-G and Hsp-G were supported by SAXS analysis, which proved that Rutin-G formed polydisperse aggregates, whereas Hsp-G formed core-shell micelles. The observation of nuclear Overhauser effects (NOEs) between flavone and α-glucosyl materials suggested the existence of intermolecular hydrophobic interactions. However, flavone interacted with different regions of Rutin-G and Hsp-G. In particular, NOE correlations were observed between the protons of flavone and the α-glucosyl protons of Rutin-G. The different molecular association states of Rutin-G or Hsp-G could be responsible for their different effects on the solubility of flavone. A better understanding of the mechanism of flavone solubility enhancement via association with α-glucosyl materials would permit the application of α-glucosyl materials to the solubilization of other hydrophobic compounds including polyphenols such as flavonoids.
Collapse
Affiliation(s)
- Kazunori Kadota
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Tero Kämäräinen
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Fumie Sakuma
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kenjirou Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Hiromasa Uchiyama
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Katsuhiko Minoura
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Yuichi Tozuka
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| |
Collapse
|
2
|
Fajalia AI, Alexandridis P, Tsianou M. Structure of Cellulose Ether Affected by Ionic Surfactant and Solvent: A Small-Angle Neutron Scattering Investigation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11529-11544. [PMID: 37566557 DOI: 10.1021/acs.langmuir.3c00712] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Polysaccharides and their derivatives are commonly used in pharmaceutical and agricultural formulations as rheology modifiers. Their performance is related to their conformation in solution, which in turn is affected by other ingredients present in the formulation. This study focuses on modulating the conformation of relatively rigid cellulose chains in aqueous solutions. In particular, we have investigated the nonionic cellulose derivative ethyl(hydroxyethyl)cellulose (EHEC) in water in the presence of the ionic surfactant sodium dodecyl sulfate (SDS) and/or ethanol acting as modulating agents. We have used small angle neutron scattering (SANS) with contrast variation to determine the EHEC chain conformation in the presence of (but not masked by) ethanol and SDS. In dilute and semidilute aqueous solutions, EHEC exhibits worm-like chain conformation due to the rigid cellulose backbone. Addition of ethanol does not impact the polymer conformation to a great extent. Addition of SDS alters the EHEC chain conformation, resulting in polyelectrolyte-like scattering behavior due to repulsive interactions between bound charged micelles which show similar structure as the free SDS micelles in solution (in the absence of polymers). Ethanol affects the polymer + surfactant system primarily by acting on the surfactant (bound on polymer) which, in turn, affects the polymer conformation. At higher ethanol concentrations (20 wt %), EHEC regains the worm-like chain conformation because of the detachment of the bound SDS micelles. To the best of our knowledge, this is the only study providing details on chain conformation of the rigid polymer EHEC in dilute or semidilute aqueous solutions in the presence of surfactant and alcohol and one of very few papers utilizing SANS for the characterization of polymer + surfactant + water + alcohol interactions. Such fundamental understanding of interactions and structure in multicomponent mixtures supports the design of industrial formulations.
Collapse
Affiliation(s)
- Ankitkumar I Fajalia
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260-4200, United States
| | - Paschalis Alexandridis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260-4200, United States
| | - Marina Tsianou
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260-4200, United States
| |
Collapse
|
3
|
Changsan N, Sawatdee S, Suedee R, Chunhachaichana C, Srichana T. Aqueous cannabidiol β-cyclodextrin complexed polymeric micelle nasal spray to attenuate in vitro and ex-vivo SARS-CoV-2-induced cytokine storms. Int J Pharm 2023; 640:123035. [PMID: 37182795 PMCID: PMC10181874 DOI: 10.1016/j.ijpharm.2023.123035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/23/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
Cannabidiol (CBD) has a number of biological effects by acting on the cannabinoid receptors CB1 and CB2. CBD may be involved in anti-inflammatory processes via CB1 and CB2 receptors, resulting in a decrease of pro-inflammatory cytokines. However, CBD's poor aqueous solubility is a major issue in pharmaceutical applications. The aim of the present study was to develop and evaluate a CBD nasal spray solution. A water-soluble CBD was prepared by complexation with β-cyclodextrin (β-CD) at a stoichiometric ratio of 1:1 and forming polymeric micelles using poloxamer 407. The mixture was then lyophilized and characterized using FT-IR, DSC, and TGA. CBD-β-CD complex-polymeric micelles were formulated for nasal spray drug delivery. The physicochemical properties of the CBD-β-CD complex-polymeric micelle nasal spray solution (CBD-β-CDPM-NS) were assessed. The results showed that the CBD content in the CBD-β-CD complex polymeric micelle powder was 102.1 ± 0.5%. The CBD-β-CDPM-NS was a clear colorless isotonic solution. The particle size, zeta potential, pH value, and viscosity were 111.9 ± 0.7 nm, 0.8 ± 0.1 mV, 6.02 ± 0.02, and 12.04 ± 2.64 cP, respectively. This formulation was stable over six months at ambient temperature. The CBD from CBD-β-CDPM-NS rapidly released to 100% within 1 min. Ex-vivo permeation studies of CBD-β-CDPM-NS through porcine nasal mucosa revealed a permeation rate of 4.8 μg/cm2/min, which indicated that CBD was effective in penetrating nasal epithelial cells. CBD-β-CDPM-NS was tested for its efficacy and safety in terms of cytokine production from nasal immune cells and toxicity to nasal epithelial cells. The CBD-β-CDPM-NS was not toxic to nasal epithelial at the concentration of CBD equivalent to 3.125-50 μg/mL. When the formulation was subjected to bioactivity testing against monocyte-like macrophage cells, it proved that the CBD-β-CDPM-NS has the potential to inhibit inflammatory cytokines. CBD-β-CDPM-NS demonstrated the formulation's ability to reduce the cytokine produced by S-RBD stimulation in ex vivo porcine nasal mucosa in both preventative and therapeutic modes.
Collapse
Affiliation(s)
- Narumon Changsan
- College of Pharmacy, Rangsit University, Pathumtani 12000, Thailand
| | - Somchai Sawatdee
- Drug and Cosmetics Excellence Center and School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand
| | - Roongnapa Suedee
- Molecular Recognition Materials Research Unit, Nanotec-PSU Center of Excellence on Drug Delivery System Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University Hat Yai, Songkhla 90112, Thailand
| | - Charisopon Chunhachaichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| |
Collapse
|
4
|
Physicochemical and Stability Evaluation of Topical Niosomal Encapsulating Fosinopril/γ-Cyclodextrin Complex for Ocular Delivery. Pharmaceutics 2022; 14:pharmaceutics14061147. [PMID: 35745720 PMCID: PMC9228017 DOI: 10.3390/pharmaceutics14061147] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed to develop a chemically stable niosomal eye drop containing fosinopril (FOS) for lowering intraocular pressure. The effects of cyclodextrin (CD), surfactant types and membrane stabilizer/charged inducers on physiochemical and chemical properties of niosome were evaluated. The pH value, average particle size, size distribution and zeta potentials were within the acceptable range. All niosomal formulations were shown to be slightly hypertonic with low viscosity. Span® 60/dicetyl phosphate niosomes in the presence and absence of γCD were selected as the optimum formulations according to their high %entrapment efficiency and negative zeta potential values as well as controlled release profile. According to ex vivo permeation study, the obtained lowest flux and apparent permeability coefficient values confirmed that FOS/γCD complex was encapsulated within the inner aqueous core of niosome and could be able to protect FOS from its hydrolytic degradation. The in vitro cytotoxicity revealed that niosome entrapped FOS or FOS/γCD formulations were moderate irritation to the eyes. Furthermore, FOS-loaded niosomal preparations exhibited good physical and chemical stabilities especially of those in the presence of γCD, for at least three months under the storage condition of 2–8 °C.
Collapse
|
5
|
Wang H, Xiong W. Revealing the Molecular Physics of Lattice Self-Assembly by Vibrational Hyperspectral Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3017-3031. [PMID: 35238562 DOI: 10.1021/acs.langmuir.1c03313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lattice self-assemblies (LSAs), which mimic protein assemblies, were studied using a new nonlinear vibrational imaging technique called vibrational sum-frequency generation (VSFG) microscopy. This technique successfully mapped out the mesoscopic morphology, microscopic geometry, symmetry, and ultrafast dynamics of an LSA formed by β-cyclodextrin (β-CD) and sodium dodecyl sulfate (SDS). The spatial imaging also revealed correlations between these different physical properties. Such knowledge shed light on the functions and mechanical properties of LSAs. In this Feature Article, we briefly introduce the fundamental principles of the VSFG microscope and then discuss the in-depth molecular physics of the LSAs revealed by this imaging technique. The application of the VSFG microscope to the artificial LSAs also paved the way for an alternative approach to studying the structure-dynamic-function relationships of protein assemblies, which were essential for life and difficult to study because of their various and complicated interactions. We expect that the hyperspectral VSFG microscope could be broadly applied to many noncentrosymmetric soft materials.
Collapse
|
6
|
Akamatsu M, Saito K, Iwase H, Ogura T, Sakai K, Sakai H. Contrast Variation Small-Angle Neutron Scattering Study of Solubilization of Perfumes in Cationic Surfactant Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10770-10775. [PMID: 34459205 DOI: 10.1021/acs.langmuir.1c01489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Perfume solubilization is an important process in the production of commercial products such as beverages, foods, and cosmetics. In the present study, small-angle neutron scattering (SANS) experiments were performed to investigate the solubilization behavior of perfumes in cetyltrimethylammonium bromide (CTAB) micelles. The solubilization of linalool (LL) and l-menthol (MT), which are relatively hydrophilic perfumes, did not change the size of the CTAB micelles although the perfumes were incorporated in the micelles, as indicated by a decrease in scattering length density. On the other hand, the solubilization of d-limonene (LN), a hydrophobic perfume, led to the swelling of CTAB micelles. An internal contrast variation SANS study was performed by the deuteration of CTAB molecules to directly observe the perfumes in the micelles. The radius of d-CTAB micelles solubilizing LL or MT corresponds to that of h-CTAB, which indicates that these perfumes are accommodated in the palisade layers of the micelles and are homogeneously distributed in the micelles. On the other hand, LN formed small droplets, as indicated by the SANS profile, which implies the solubilization of LN molecules in the core of the CTAB micelles. We found that the relatively hydrophilic perfumes (LL and MT) show less impact on the sizes of the cationic micelles in comparison to nonionic micelles. Thus, the internal contrast variation method of SANS allowed the direct observation of the solubilization sites of perfumes with different hydrophilicity-hydrophobicity balances. This method is a powerful tool to determine the solubilization states that affect the solubilization capacity, volatilization, or release speed of perfumes.
Collapse
Affiliation(s)
- Masaaki Akamatsu
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kai Saito
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hiroki Iwase
- Comprehensive Research Organization for Science and Society (CROSS), 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Taku Ogura
- NIKKOL GROUP Cosmos Technical Center Co., Ltd., 3-24-3 Hasune, Itabashi-ku, 174-0046 Tokyo, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kenichi Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hideki Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
7
|
Dos Santos Silva Araújo L, Lazzara G, Chiappisi L. Cyclodextrin/surfactant inclusion complexes: An integrated view of their thermodynamic and structural properties. Adv Colloid Interface Sci 2021; 289:102375. [PMID: 33592397 DOI: 10.1016/j.cis.2021.102375] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Abstract
Cyclodextrins (CDs) play an important role in self-assembly systems of amphiphiles. The structure of CDs provides distinguished physicochemical properties, including the ability to form host-guest complexes. The complexation affects the properties of guest molecules and can produce supramolecular aggregates with desirable characteristics for fundamental and practical applications. Surfactants are particularly attractive host molecules due to their wide variety, availability, responsiveness to different stimuli, and high relevance in different fields, e.g. medical, cosmetic, pharmaceutical, and food industries. The tendency of organization in higher-order supramolecular aggregates arises the interest in applying such versatile complexes in the development of novel materials. In this review, we provide a comprehensive overview of the thermodynamics aspects of surfactants and CDs inclusion complexes formation in aqueous environment, emphasizing the assessment of the interactions, thermodynamic driving forces, and structural aspects. Also, the most common analytical techniques used to gather deep insight into the aspects of CDs complexes are discussed and the perspectives for the surfactant-cyclodextrin complexes are pointed out.
Collapse
Affiliation(s)
- Larissa Dos Santos Silva Araújo
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze pad 17, 90128 Palermo, Italy; Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze pad 17, 90128 Palermo, Italy.
| | - Leonardo Chiappisi
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042 Grenoble, France.
| |
Collapse
|
8
|
Chiral Micellar Electrokinetic Chromatography. J Chromatogr A 2020; 1626:461383. [PMID: 32797856 DOI: 10.1016/j.chroma.2020.461383] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
Abstract
The potential of Micellar Electrokinetic Chromatography to achieve enantiomeric separations is reviewed in this article. The separation principles and the most frequently employed separation strategies to achieve chiral separations by Micellar Electrokinetic Chromatography are described. The use of chiral micellar systems alone or combined with other micellar systems or chiral selectors, as well as of mixtures of achiral micellar systems with chiral selectors is discussed together with the effect of different additives present in the separation medium. Indirect methods based on the derivatization of analytes with chiral derivatizing reagents and the use of achiral micelles are also considered. Preconcentration techniques employed to improve sensitivity and the main approaches developed to facilitate the coupling with Mass Spectrometry are included. The most recent and relevant methodologies developed by chiral Micellar Electrokinetic Chromatography and their applications in different fields are presented.
Collapse
|
9
|
Ghosh A, Kanti Seth S, Purkayastha P. Controlled Formation of Hydrated Micelles by the Intervention of Cyclodextrins. Chempluschem 2020; 84:130-135. [PMID: 31950737 DOI: 10.1002/cplu.201800559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/17/2018] [Indexed: 11/08/2022]
Abstract
The interaction between surfactants and cyclodextrins (CDs) is well known. Studies have focused mainly on destruction of micelles with CDs to release the encapsulated drugs. However, less emphasis has been given on understanding the formation of micelles with the CD encapsulated surfactants. We have used fluorescence spectroscopy to study the impact of CDs on micelles using a fluorophore that has been tactically designed as a reporter. This molecule has a pyrene moiety on one end and a cationic head group on the other so that the orientation of the compound can be prefixed on micelle formation in aqueous environment. We have observed that the CD encapsulated surfactants can form "hydrated micelles" that allow extensive penetration of water molecules toward the core. The mechanism for such a process involves inclusion of the hydrophobic surfactant tails within the CD core and participation of these inclusion complexes in micelle formation. The process could be controlled by tuning the concentration of CD. The degree of hydration varies as the micelles get more opened up due to the residence of the CDs inside them.
Collapse
Affiliation(s)
- Ashutosh Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, WB 741246, India
| | - Sourav Kanti Seth
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, WB 741246, India
| | - Pradipta Purkayastha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, WB 741246, India
| |
Collapse
|
10
|
Agudelo ÁJP, Coelho YL, Ferreira GMD, Ferreira GMD, Hudson EA, dos Santos Pires AC, da Silva LHM. Solvophobic effect of 1-alkyl-3-methylimidazolium chloride on the thermodynamic of complexation between β-cyclodextrin and dodecylpyridinium cation. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Li T, Xie L, Long R, Tong C, Guo Y, Tong X, Shi S, Lin Q. Cetyltrimethyl ammonium mediated enhancement of the red emission of carbon dots and an advanced method for fluorometric determination of iron(III). Mikrochim Acta 2019; 186:791. [DOI: 10.1007/s00604-019-3933-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/12/2019] [Indexed: 10/25/2022]
|
12
|
Fernández MA, Silva OF, Vico RV, de Rossi RH. Complex systems that incorporate cyclodextrins to get materials for some specific applications. Carbohydr Res 2019; 480:12-34. [PMID: 31158527 DOI: 10.1016/j.carres.2019.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/06/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
Cyclodextrins (CDs) are a family of biodegradable cyclic hydrocarbons composed of α-(1,4) linked glucopyranose subunits, the more common containing 6, 7 or 8 glucose units are named α, β and γ-cyclodextrins respectively. Since the discovery of CDs, they have attracted interest among scientists and the first studies were about the properties of the native compounds and in particular their use as catalysts of organic reactions. Characteristics features of different types of cyclodextrins stimulated investigation in different areas of research, due to its non-toxic and non-inmunogenic properties and also to the development of an improved industrial production. In this way, many materials with important properties have been developed. This mini-review will focus on chemical systems that use cyclodextrins, whatever linked covalently or mediated by the non covalent interactions, to build complex systems developed mainly during the last five years.
Collapse
Affiliation(s)
- Mariana A Fernández
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| | - O Fernando Silva
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Raquel V Vico
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Rita H de Rossi
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| |
Collapse
|
13
|
Zhang F, Islam MS, Berry RM, Tam KC. β-Cyclodextrin-Functionalized Cellulose Nanocrystals and Their Interactions with Surfactants. ACS OMEGA 2019; 4:2102-2110. [PMID: 31459458 PMCID: PMC6648498 DOI: 10.1021/acsomega.8b02534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/10/2019] [Indexed: 05/30/2023]
Abstract
β-cyclodextrin (β-CD) forms a host-guest inclusion complex with many organic and amphiphilic compounds found in pharmaceutical, textile, cosmetic, food, and personal care systems. Therefore, grafting of β-CD onto a cellulose nanocrystal (CNC) offers a possible strategy to use functionalized CNC to complex with surface-active molecules. We have successfully grafted β-CD onto CNCs in a stepwise manner using cyanuric chloride as the linker. The structure of β-CD-grafted CNC (CNC-CD) was characterized by UV-vis and Fourier-transform infrared spectroscopy, and the grafting ratio of β-CD was determined by the phenolphthalein inclusion protocol. Ionic surfactants induced the aggregation of CNC-CDs by forming inclusion complexes with β-CDs on the surface of CNC. The interactions of amphiphilic compounds with CNC-CD were examined by surface tensiometry, conductometric and potentiometric titration, and isothermal titration calorimetry. Mechanisms describing the complex formation between surfactants and CNC-CD were proposed, where an improved understanding of CD interactions with surfactants and lipids would enable better strategies for drug encapsulation and delivery with CDs.
Collapse
Affiliation(s)
- Feifei Zhang
- Department
of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L
3G1, Canada
| | - Muhammad Shahidul Islam
- Department
of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L
3G1, Canada
| | - Richard M. Berry
- CelluForce
Inc., 625, Président-Kennedy
Avenue, Montreal, Québec H3A 1K2, Canada
| | - Kam Chiu Tam
- Department
of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L
3G1, Canada
| |
Collapse
|
14
|
Mantik P, Xie M, Wong H, La H, Steigerwalt RW, Devanaboyina U, Ganem G, Shih D, Flygare JA, Fairbrother WJ, Chakravarty P, Russell D, Fernandez GE, Narang AS. Cyclodextrin Reduces Intravenous Toxicity of a Model Compound. J Pharm Sci 2019; 108:1934-1943. [PMID: 30639736 DOI: 10.1016/j.xphs.2019.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/23/2018] [Accepted: 01/04/2019] [Indexed: 10/27/2022]
Abstract
Solubilization of new chemical entities for toxicity assessment must use excipients that do not negatively impact drug pharmacokinetics and toxicology. In this study, we investigated the tolerability of a model freebase compound, GDC-0152, solubilized by pH adjustment with succinic acid and complexation with hydroxypropyl-β-cyclodextrin (HP-β-CD) to enable intravenous use. Solubility, critical micelle concentration, and association constant with HP-β-CD were determined. Blood compatibility and potential for hemolysis were assessed in vitro. Local tolerability was assessed after intravenous and subcutaneous injections in rats. A pharmacokinetic study was conducted in rats after intravenous bolus administration. GDC-0152 exhibited pH-dependent solubility that was influenced by self-association. The presence of succinic acid increased solubility in a concentration-dependent manner. HP-β-CD alone also increased solubility, but the extent of solubility enhancement was significantly lower than succinic acid alone. Inclusion of HP-β-CD in the solution of GDC-0152 improved blood compatibility, reduced hemolytic potential by ∼20-fold in vitro, and increased the maximum tolerated dose to 80 mg/kg.
Collapse
Affiliation(s)
- Priscilla Mantik
- Departments of Small Molecule Pharmaceutical Sciences, Genentech, Inc., One DNA Way, South San Francisco, California 94080.
| | - Minli Xie
- Departments of Small Molecule Pharmaceutical Sciences, Genentech, Inc., One DNA Way, South San Francisco, California 94080
| | - Harvey Wong
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., One DNA Way, South San Francisco, California 94080
| | - Hank La
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., One DNA Way, South San Francisco, California 94080
| | - Ronald W Steigerwalt
- Safety Assessment, Genentech, Inc., One DNA Way, South San Francisco, California 94080
| | - Uday Devanaboyina
- Safety Assessment, Genentech, Inc., One DNA Way, South San Francisco, California 94080
| | - Geoffrey Ganem
- Safety Assessment, Genentech, Inc., One DNA Way, South San Francisco, California 94080
| | - Danny Shih
- Safety Assessment, Genentech, Inc., One DNA Way, South San Francisco, California 94080
| | - John A Flygare
- Discovery Chemistry, Genentech, Inc., One DNA Way, South San Francisco, California 94080
| | - Wayne J Fairbrother
- Early Discovery Biochemistry, Genentech, Inc., One DNA Way, South San Francisco, California 94080
| | - Paroma Chakravarty
- Departments of Small Molecule Pharmaceutical Sciences, Genentech, Inc., One DNA Way, South San Francisco, California 94080
| | - David Russell
- Departments of Small Molecule Pharmaceutical Sciences, Genentech, Inc., One DNA Way, South San Francisco, California 94080
| | - Gilberto E Fernandez
- Departments of Small Molecule Pharmaceutical Sciences, Genentech, Inc., One DNA Way, South San Francisco, California 94080
| | - Ajit S Narang
- Departments of Small Molecule Pharmaceutical Sciences, Genentech, Inc., One DNA Way, South San Francisco, California 94080.
| |
Collapse
|
15
|
Morozova JE, Syakaev VV, Shalaeva YV, Ermakova AM, Nizameev IR, Kadirov MK, Konovalov AI. Nanoassociates of amphiphilic carboxy-calixresorcinarene and cetylpyridinuim chloride: The search of optimal macrocycle/surfactant molar ratio. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.05.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Zhang Z, Shao L, Yang J. A phosphonated copillar[5]arene: Synthesis and application in the construction of pH-responsive supramolecular polymer in water. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.06.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Machado ND, Silva OF, de Rossi RH, Fernández MA. Cyclodextrin modified niosomes to encapsulate hydrophilic compounds. RSC Adv 2018; 8:29909-29916. [PMID: 35547321 PMCID: PMC9085284 DOI: 10.1039/c8ra05021j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/13/2018] [Indexed: 01/21/2023] Open
Abstract
Niosomes were prepared from equimolar mixtures of two non-ionic surfactants, Span 80 and Tween 80. The capability of the vesicular systems was studied through the encapsulation of two azo dyes as molecular probes of different hydrophobicity (methyl orange (MO) and methyl yellow (MY)). To improve the efficiency of the niosomes to encapsulate the dyes, we employed an additional modification of the vesicular system, adding β-cyclodextrin (β-CD) or a modified amphiphilic β-CD (Mod-β-CD) to the niosomes. Neither the inclusion of dyes nor the incorporation of β-CD to the niosomes produces considerable modifications in size and morphology of the vesicles. However, in the presence of Mod-β-CD the niosomes became smaller, probably due to the anchoring of the cyclodextrin at the surface of vesicles through the hydrophobic chain, altering the curvature of the outer monolayer and reducing the surface charge of the interphase. The entrapment efficiency (EE) for MY was higher than that for MO in niosomes without cyclodextrin, however, the content of MO in the presence of β-CD increased considerably. Besides, the release of this dye under the same conditions was faster and reached 70% in 24 hours whereas in the absence of the macrocycle, the release was 15%, in the same time. UV-visible spectrophotometry and induced circular dichroism analysis allowed it to be established that MO is complexed with cyclodextrins inside vesicles, whereas MY interacts mainly with the niosome bilayer instead of with CD. Besides, the cavity of cyclodextrins is probably located in the interphase and preferably in the polar region of niosomes. Incorporation of β-cyclodextrin into niosomes considerably increased the encapsulated amount and the delivery rate of a hydrophilic molecular probe.![]()
Collapse
Affiliation(s)
- Noelia D. Machado
- Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC-CONICET)
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad Nacional de Córdoba
- Ciudad Universitaria
| | - O. Fernando Silva
- Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC-CONICET)
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad Nacional de Córdoba
- Ciudad Universitaria
| | - Rita H. de Rossi
- Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC-CONICET)
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad Nacional de Córdoba
- Ciudad Universitaria
| | - Mariana A. Fernández
- Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC-CONICET)
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad Nacional de Córdoba
- Ciudad Universitaria
| |
Collapse
|
18
|
Combined approach using capillary electrophoresis, NMR and molecular modeling for ambrisentan related substances analysis: Investigation of intermolecular affinities, complexation and separation mechanism. J Pharm Biomed Anal 2017; 144:220-229. [DOI: 10.1016/j.jpba.2017.01.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/16/2016] [Accepted: 01/19/2017] [Indexed: 11/20/2022]
|
19
|
Morozova JE, Syakaev VV, Shalaeva YV, Ermakova AM, Nizameev IR, Kadirov MK, Voloshina AD, Zobov VV, Antipin IS, Konovalov AI. Unusual nanosized associates of carboxy-calix[4]resorcinarene and cetylpyridinium chloride: the macrocycle as a glue for surfactant micelles. SOFT MATTER 2017; 13:2004-2013. [PMID: 28197613 DOI: 10.1039/c7sm00004a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The association of cetylpyridinium chloride (CPC) micelles in the presence of octaacetated tetraphenyleneoxymethylcalix[4]resorcinarene (CR) leads to the formation of unusual spherical supramolecular nanoparticles (SNPs). Within the range of CR/CPC molar ratios from 10/1 to 1/10 (except for 1/8), CR, acting as a counterion, decreases the critical micelle concentration of CPC by one order of magnitude and leads to the formation of SNPs with an average hydrodynamic radius of 164 nm and an average zeta potential of -60 mV. The formation of SNPs was studied by NMR FT-PGSE and 2D NOESY, DLS, TEM, fluorimetry, and UV-Vis methods. The stability of SNPs at different temperatures and pH values and in the presence of electrolytes was investigated. The specificity of the interactions of the SNPs with substrates that were preferentially bound by a macrocycle or CPC micelle was studied. The enhancement of cation dye binding in the presence of SNPs is shown. The presented supramolecular system may serve as a nanocapsule for water-soluble and water-insoluble compounds.
Collapse
Affiliation(s)
- Ju E Morozova
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation. and Kazan Federal University, Kremlevskaya st. 18, 420008 Kazan, Russian Federation
| | - V V Syakaev
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation.
| | - Ya V Shalaeva
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation. and Kazan Federal University, Kremlevskaya st. 18, 420008 Kazan, Russian Federation
| | - A M Ermakova
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation. and Kazan Federal University, Kremlevskaya st. 18, 420008 Kazan, Russian Federation
| | - I R Nizameev
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation. and Kazan National Research Technical University, K. Marx str. 10, 420111 Kazan, Russian Federation
| | - M K Kadirov
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation.
| | - A D Voloshina
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation.
| | - V V Zobov
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation.
| | - I S Antipin
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation. and Kazan Federal University, Kremlevskaya st. 18, 420008 Kazan, Russian Federation
| | - A I Konovalov
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation.
| |
Collapse
|
20
|
Liow SS, Zhou H, Sugiarto S, Guo S, Chalasani MLS, Verma NK, Xu J, Loh XJ. Highly Efficient Supramolecular Aggregation-Induced Emission-Active Pseudorotaxane Luminogen for Functional Bioimaging. Biomacromolecules 2017; 18:886-897. [DOI: 10.1021/acs.biomac.6b01777] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sing Shy Liow
- Institute of Materials
Research and Engineering (IMRE), 2
Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
| | - Hui Zhou
- Institute of Materials
Research and Engineering (IMRE), 2
Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
| | - Sigit Sugiarto
- Institute of Materials
Research and Engineering (IMRE), 2
Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
| | - Shifeng Guo
- Institute of Materials
Research and Engineering (IMRE), 2
Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
| | - Madhavi Latha S. Chalasani
- Lee
Kong Chian School of Medicine, Nanyang Technological University, Experimental
Medicine Building, Singapore 636921, Singapore
| | - Navin Kumar Verma
- Lee
Kong Chian School of Medicine, Nanyang Technological University, Experimental
Medicine Building, Singapore 636921, Singapore
- Singapore Eye
Research Institute, 11 Third Hospital
Avenue, The Academia, 20 College Road, Singapore 168751, Singapore
| | - Jianwei Xu
- Institute of Materials
Research and Engineering (IMRE), 2
Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
| | - Xian Jun Loh
- Institute of Materials
Research and Engineering (IMRE), 2
Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
- Singapore Eye
Research Institute, 11 Third Hospital
Avenue, The Academia, 20 College Road, Singapore 168751, Singapore
- Department
of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| |
Collapse
|
21
|
Valero M, Castiglione F, Mele A, da Silva MA, Grillo I, González-Gaitano G, Dreiss CA. Competitive and Synergistic Interactions between Polymer Micelles, Drugs, and Cyclodextrins: The Importance of Drug Solubilization Locus. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13174-13186. [PMID: 27951706 DOI: 10.1021/acs.langmuir.6b03367] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Polymeric micelles, in particular PEO-PPO-based Pluronic, have emerged as promising drug carriers, while cyclodextrins (CD), cyclic oligosaccharides with an apolar cavity, have long been used for their capacity to form inclusion complexes with drugs. Dimethylated β-cyclodextrin (DIMEB) has the capacity to fully breakup F127 Pluronic micelles, while this effect is substantially hindered if drugs are loaded within the micellar aggregates. Four drugs were studied at physiological temperature: lidocaine (LD), pentobarbital sodium salt (PB), sodium naproxen (NP), and sodium salicylate (SAL); higher temperatures shift the equilibrium toward higher drug partitioning and lower drug/CD binding compared to 25 °C ( Valero, M.; Dreiss, C. A. Growth, Shrinking, and Breaking of Pluronic Micelles in the Presence of Drugs and/or β-Cyclodextrin, a Study by Small-Angle Neutron Scattering and Fluorescence Spectroscopy . Langmuir 2010 , 26 , 10561 - 10571 ). The impact of drugs on micellar structure was characterized by small-angle neutron scattering (SANS), while their solubilization locus was revealed by 2D NOESY NMR. UV and fluorescence spectroscopy, Dynamic and Static Light Scattering were employed to measure a range of micellar properties and drug:CD interactions: binding constant, drug partitioning within the micelles, critical micellar concentration of the loaded micelles, aggregation number (Nagg). Critically, time-resolved SANS (TR-SANS) reveal that micellar breakup in the presence of drugs is substantially slower (100s of seconds) than for the free micelles (<100 ms) ( Valero, M.; Grillo, I.; Dreiss, C. A. Rupture of Pluronic Micelles by Di-Methylated β-Cyclodextrin Is Not Due to Polypseudorotaxane Formation . J. Phys. Chem. B 2012 , 116 , 1273 - 1281 ). These results combined together give new insights into the mechanisms of protection of the drugs against CD-induced micellar breakup. The outcomes are practical guidelines to improve the design of drug delivery systems as well as a better understanding of competitive assembly mechanisms leading to shape and function modulation.
Collapse
Affiliation(s)
- Margarita Valero
- Dpto. Química Física, Facultad de Farmacia, Universidad de Salamanca , Campus Miguel de Unamuno, s/n, 37007 Salamanca, Spain
| | - Franca Castiglione
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano , Piazza L. Da Vinci 32, I-20133 Milano, Italy
| | - Andrea Mele
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano , Piazza L. Da Vinci 32, I-20133 Milano, Italy
| | - Marcelo A da Silva
- Institute of Pharmaceutical Science, King's College London , Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Isabelle Grillo
- Institut Laue Langevin , 71 avenue des martyrs, B.P. 156, 38042 Grenoble Cedex 9, France
| | | | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London , Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| |
Collapse
|
22
|
Dwivedi AK, Singh R, Singh A, Wei KH, Wu CY, Lyu PC, Lin HC. Novel Water-Soluble Cyclodextrin-Based Conjugated Polymer for Selective Host–Guest Interactions of Cationic Surfactant CTAB and Reverse FRET with Rhodamine B Tagged Adamantyl Guest. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00789] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Atul Kumar Dwivedi
- Department
of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Ravinder Singh
- Department
of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Ashutosh Singh
- Department
of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Kung-Hwa Wei
- Department
of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Chu-Ya Wu
- Institute
of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Ping-Chiang Lyu
- Institute
of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Hong-Cheu Lin
- Department
of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
23
|
Fini ME, Bauskar A, Jeong S, Wilson MR. Clusterin in the eye: An old dog with new tricks at the ocular surface. Exp Eye Res 2016; 147:57-71. [PMID: 27131907 DOI: 10.1016/j.exer.2016.04.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/22/2016] [Accepted: 04/23/2016] [Indexed: 12/30/2022]
Abstract
The multifunctional protein clusterin (CLU) was first described in 1983 as a secreted glycoprotein present in ram rete testis fluid that enhanced aggregation ('clustering') of a variety of cells in vitro. It was also independently discovered in a number of other systems. By the early 1990s, CLU was known under many names and its expression had been demonstrated throughout the body, including in the eye. Its homeostatic activities in proteostasis, cytoprotection, and anti-inflammation have been well documented, however its roles in health and disease are still not well understood. CLU is prominent at fluid-tissue interfaces, and in 1996 it was demonstrated to be the most highly expressed transcript in the human cornea, the protein product being localized to the apical layers of the mucosal epithelia of the cornea and conjunctiva. CLU protein is also present in human tears. Using a preclinical mouse model for desiccating stress that mimics human dry eye disease, the authors recently demonstrated that CLU prevents and ameliorates ocular surface barrier disruption by a remarkable sealing mechanism dependent on attainment of a critical all-or-none concentration in the tears. When the CLU level drops below the critical all-or-none threshold, the barrier becomes vulnerable to desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating stress in vivo, and in vitro to LGALS3 (galectin-3), a key barrier component. Positioned in this way, CLU not only physically seals the ocular surface barrier, but it also protects the barrier cells and prevents further damage to barrier structure. CLU depletion from the ocular surface epithelia is seen in a variety of inflammatory conditions in humans and mice that lead to squamous metaplasia and a keratinized epithelium. This suggests that CLU might have a specific role in maintaining mucosal epithelial differentiation, an idea that can now be tested using the mouse model for desiccating stress. Most excitingly, the new findings suggest that CLU could serve as a novel biotherapeutic for dry eye disease.
Collapse
Affiliation(s)
- M Elizabeth Fini
- USC Institute for Genetic Medicine and Departments of Cell & Neurobiology and Ophthalmology, Keck School of Medicine of USC, University of Southern California, 2250 Alcatraz St., Suite 240, Los Angeles, CA 90089-9037, USA.
| | - Aditi Bauskar
- USC Institute for Genetic Medicine and Graduate Program in Medical Biology, Keck School of Medicine of USC, University of Southern California, 2250 Alcatraz St., Suite 240, Los Angeles, CA 90089-9037, USA.
| | - Shinwu Jeong
- USC Institute for Genetic Medicine and Department of Ophthalmology, Keck School of Medicine of USC, University of Southern California, 2250 Alcatraz St., Suite 240, Los Angeles, CA 90089-9037, USA.
| | - Mark R Wilson
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, New South Wales, 2522 Australia.
| |
Collapse
|
24
|
Mallick S, Pal K, Koner AL. Probing microenvironment of micelle and albumin using diethyl 6-(dimethylamino)naphthalene-2,3-dicarboxylate: An electroneutral solvatochromic fluorescent probe. J Colloid Interface Sci 2016; 467:81-89. [DOI: 10.1016/j.jcis.2015.12.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/08/2015] [Accepted: 12/11/2015] [Indexed: 11/15/2022]
|
25
|
Textor M, Keller S. Calorimetric Quantification of Cyclodextrin-Mediated Detergent Extraction for Membrane-Protein Reconstitution. Methods Enzymol 2016; 567:129-56. [DOI: 10.1016/bs.mie.2015.07.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
26
|
Self-assembly of sodium bis(2-ethylhexyl) sulfosuccinate in aqueous solutions: Modulation of micelle structure and interactions by cyclodextrins investigated by small-angle neutron scattering. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Bauskar A, Mack WJ, Mauris J, Argüeso P, Heur M, Nagel BA, Kolar GR, Gleave ME, Nakamura T, Kinoshita S, Moradian-Oldak J, Panjwani N, Pflugfelder SC, Wilson MR, Fini ME, Jeong S. Clusterin Seals the Ocular Surface Barrier in Mouse Dry Eye. PLoS One 2015; 10:e0138958. [PMID: 26402857 PMCID: PMC4581869 DOI: 10.1371/journal.pone.0138958] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/04/2015] [Indexed: 12/02/2022] Open
Abstract
Dry eye is a common disorder caused by inadequate hydration of the ocular surface that results in disruption of barrier function. The homeostatic protein clusterin (CLU) is prominent at fluid-tissue interfaces throughout the body. CLU levels are reduced at the ocular surface in human inflammatory disorders that manifest as severe dry eye, as well as in a preclinical mouse model for desiccating stress that mimics dry eye. Using this mouse model, we show here that CLU prevents and ameliorates ocular surface barrier disruption by a remarkable sealing mechanism dependent on attainment of a critical all-or-none concentration. When the CLU level drops below the critical all-or-none threshold, the barrier becomes vulnerable to desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating stress in vivo, and in vitro to the galectin LGALS3, a key barrier component. Positioned in this way, CLU not only physically seals the ocular surface barrier, but it also protects the barrier cells and prevents further damage to barrier structure. These findings define a fundamentally new mechanism for ocular surface protection and suggest CLU as a biotherapeutic for dry eye.
Collapse
Affiliation(s)
- Aditi Bauskar
- USC Institute for Genetic Medicine and Graduate Program in Medical Biology, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, United States of America
| | - Wendy J. Mack
- Southern California Clinical & Translational Science Institute and Department of Preventive Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, United States of America
| | - Jerome Mauris
- The Schepens Eye Research Institute, Massachusetts Eye & Ear and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pablo Argüeso
- The Schepens Eye Research Institute, Massachusetts Eye & Ear and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Martin Heur
- USC Eye Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, United States of America
| | - Barbara A. Nagel
- Research Microscopy and Histology Core, Department of Pathology, Saint Louis University School of Medicine, St Louis, Missouri, United States of America
| | - Grant R. Kolar
- Department of Pathology and Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Martin E. Gleave
- The Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Takahiro Nakamura
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Division of Biomedical Sciences, University of Southern California, Herman Ostrow School of Dentistry of USC, Los Angeles, California, United States of America
| | - Noorjahan Panjwani
- New England Eye Center/Department of Ophthalmology and Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Stephen C. Pflugfelder
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mark R. Wilson
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - M. Elizabeth Fini
- USC Institute for Genetic Medicine and Departments of Cell & Neurobiology and Ophthalmology, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, United States of America
| | - Shinwu Jeong
- USC Institute for Genetic Medicine and Department of Ophthalmology, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
28
|
Fajalia AI, Tsianou M. Self-assembly control via molecular recognition: Effect of cyclodextrins on surfactant micelle structure and interactions determined by SANS. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2014.12.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Textor M, Vargas C, Keller S. Calorimetric quantification of linked equilibria in cyclodextrin/lipid/detergent mixtures for membrane-protein reconstitution. Methods 2015; 76:183-193. [DOI: 10.1016/j.ymeth.2015.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 12/30/2014] [Accepted: 01/02/2015] [Indexed: 10/24/2022] Open
|