1
|
Synthesis of Polymeric Ferrocenyl Amphiphiles with smart hydrophobic block and long hydrophilic poly(ethylene glycol) block and their application in self-assembly micelles with electrochemical response. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
2
|
Zhou Y, Ma J, Gao C, Fan X, Lashari NUR, Li J. Electrospun nanofibers from
ferrocene‐containing
multiblock copolymers prepared via
RAFT
polymerization with
F127
modified precursor. J Appl Polym Sci 2021. [DOI: 10.1002/app.50984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yingxue Zhou
- Department of Polymeric Materials and Engineering College of Materials Science and Engineering, Xi'an Polytechnic University Xi'an China
| | - Jianhua Ma
- Department of Polymeric Materials and Engineering College of Materials Science and Engineering, Xi'an Polytechnic University Xi'an China
| | - Chaofeng Gao
- Shaanxi Research Design institute Petroleum and Chemical Industry Xi'an China
| | - Xiaodong Fan
- Shaanxi Key Laboratory of Macromolecular Science and Technology School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an China
| | - Najeeb ur Rehman Lashari
- Department of Polymeric Materials and Engineering College of Materials Science and Engineering, Xi'an Polytechnic University Xi'an China
| | - Junpeng Li
- Department of Applied Chemistry School of Science, Xi'an University of Technology Xi'an China
| |
Collapse
|
3
|
Du Z, Yan X, Sun N, Ren B. Dual stimuli-responsive nano-structure transition of three-arm branched amphiphilic polymers containing ferrocene (Fc) and azobenzene (Azo) moieties in aqueous solution. SOFT MATTER 2019; 15:8855-8864. [PMID: 31613297 DOI: 10.1039/c9sm01437c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Amphiphilic polymers can self-assemble into various nanostructures in solution, which can find applications in many fields such as nanotechnology, drug delivery, and template synthesis. Herein, we report the controlled self-assembly and dual stimuli-responsive nanostructure transition of a class of three-arm branched amphiphilic polymers (AzoFcPEO) containing ferrocene (Fc) and azobenzene (Azo) moieties in aqueous solution. These amphiphilic polymers were synthesized by an esterification reaction of a variety of polyethylene oxide methyl ethers (Me-PEO) with 3-(6-ferrocenyhexyloxyl)-5-(6-azobenzenehexyloxy) benzoic acid. Both the isomerization of Azo and redox of Fc moieties can respectively change the amphiphilicity of these polymers to different degrees. Consequently, these amphiphilic polymers in aqueous solution can self-assemble into various nanostructures, such as spherical micelle, worm-like micelle, spherical compound micelle, rod-like compound micelle and vesicle dependent on the PEO molecular weight, applied stimuli, and polymer concentration. This work can offer tremendous possibilities not only for the fundamental science of the controlled self-assembly but also for establishing a suitable method for regulating the nanostructures of amphiphilic polymers in aqueous solution.
Collapse
Affiliation(s)
- Zhukang Du
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Xiaolong Yan
- School of Material Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China.
| | - Ning Sun
- Department of Material Technology, Jiangmen Polytechnic, Jiangmen 529090, China
| | - Biye Ren
- School of Material Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China.
| |
Collapse
|
4
|
pH-responsive ultrasonic self-assembly spinosad-loaded nanomicelles and their antifungal activity to Fusarium oxysporum. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
5
|
Liu H, Wang L, Wang X, Hu Y, Feng L, Dong S, Hao J. Vesicle transition of catanionic redox-switchable surfactants controlled by DNA with different chain lengths. J Colloid Interface Sci 2019; 549:89-97. [DOI: 10.1016/j.jcis.2019.04.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 11/17/2022]
|
6
|
Liu X, Liu F, Astruc D, Lin W, Gu H. Highly-branched amphiphilic organometallic dendronized diblock copolymer: ROMP synthesis, self-assembly and long-term Au and Ag nanoparticle stabilizer for high-efficiency catalysis. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.04.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Mu S, Liu W, Ling Q, Liu X, Gu H. Ferrocenyl amphiphilic Janus dendrimers as redox‐responsive micellar carriers. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Shengdong Mu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu 610065 China
| | - Wentao Liu
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu 610065 China
| | - Qiangjun Ling
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu 610065 China
| | - Xiong Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu 610065 China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu 610065 China
| |
Collapse
|
8
|
Zhang L, Qiu G, Liu F, Liu X, Mu S, Long Y, Zhao Q, Liu Y, Gu H. Controlled ROMP synthesis of side-chain ferrocene and adamantane-containing diblock copolymer for the construction of redox-responsive micellar carriers. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Liu X, Qiu G, Zhang L, Liu F, Mu S, Long Y, Zhao Q, Liu Y, Gu H. Controlled ROMP Synthesis of Ferrocene-Containing Amphiphilic Dendronized Diblock Copolymers as Redox-Controlled Polymer Carriers. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800273] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xiong Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education; Sichuan University; Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather Manufacture; Sichuan University; Chengdu 610065 China
| | - Guirong Qiu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education; Sichuan University; Chengdu 610065 China
| | - Li Zhang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education; Sichuan University; Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather Manufacture; Sichuan University; Chengdu 610065 China
| | - Fangfei Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education; Sichuan University; Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather Manufacture; Sichuan University; Chengdu 610065 China
| | - Shengdong Mu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education; Sichuan University; Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather Manufacture; Sichuan University; Chengdu 610065 China
| | - Yanru Long
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education; Sichuan University; Chengdu 610065 China
| | - Qiuxia Zhao
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education; Sichuan University; Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather Manufacture; Sichuan University; Chengdu 610065 China
| | - Yue Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education; Sichuan University; Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather Manufacture; Sichuan University; Chengdu 610065 China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education; Sichuan University; Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather Manufacture; Sichuan University; Chengdu 610065 China
| |
Collapse
|
10
|
Redox-stimuli-responsive drug delivery systems with supramolecular ferrocenyl-containing polymers for controlled release. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.03.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Du Z, Ke K, Chang X, Dong R, Ren B. Controlled Self-Assembly of Multiple-Responsive Superamphiphilc Polymers Based on Host-Guest Inclusions of a Modified PEG with β-Cyclodextrin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5606-5614. [PMID: 29681154 DOI: 10.1021/acs.langmuir.8b00470] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Superamphiphilic polymers (SAPs) constructed by host-guest inclusion can self-assemble into various nanostructures in solution, which can find applications in many fields such as nanodevices, drug delivery, and template synthesis. Herein, we report the controlled self-assembly of multiple-responsive SAP based on a selective host-guest inclusion of β-cyclodextrin (β-CD) with a modified poly(ethylene glycol) (PEG) (FcC11AzoPEG) consisting of a ferrocene (Fc) end group, a C11 alkyl chain, an azobenzene (Azo) block, and a poly(ethylene glycol)methyl ether (PEG) chain. These SAPs can self-assemble into interesting nanostructures in water upon exposure to different stimuli because β-CD can be selectively included with different guests, such as Fc, Azo, and C11 alkyl chain, under different stimuli. The inclusion complex of Fc with β-CD (Fc@β-CD SAP) can form nanowire micelles in aqueous solution. The nanowire micelles can be transformed into spindle micelles with the addition of oxidant because the majority of β-CDs dissociated from the complex Fc@β-CD SAP due to a conversion of Fc to Fc+ and will preferentially include with Azo group to form another dominant inclusion complex (Azo@β-CD SAP). After UV irradiation, the spindle micelles can be further transformed into spherical micelles because most of β-CDs are excluded from the complex Azo@β-CD SAP due to a trans- to cis-Azo conversion and then form a dominant inclusion complex with C11 alkyl chains (C11@β-CD SAP). This work not only demonstrates the selective host-guest inclusion of stimuli-responsive groups modified PEG with β-CD but also provides a useful approach for construction of diverse morphologies.
Collapse
Affiliation(s)
- Zhukang Du
- School of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Kang Ke
- School of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Xueyi Chang
- School of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Renfeng Dong
- School of Chemistry and Environment , South China Normal University , Guangzhou 510006 , China
| | - Biye Ren
- School of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
12
|
Lyu W, Alotaibi M, Bell OA, Watanabe K, Harniman R, Mills BM, Seddon AM, Rogers SE, King SM, Yan W, Faul CFJ. An addressable packing parameter approach for reversibly tuning the assembly of oligo(aniline)-based supra-amphiphiles. Chem Sci 2018; 9:4392-4401. [PMID: 29896380 PMCID: PMC5956978 DOI: 10.1039/c8sc00068a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/01/2018] [Indexed: 11/25/2022] Open
Abstract
An addressable packing parameter approach was developed for reversibly tuning the self-assembly of oligo(aniline)-based supra-amphiphiles.
We present a newly developed approach to non-covalently address the packing parameter of an electroactive amphiphile. The pH-responsive reversible switching of a tetra(aniline)-based cationic amphiphile, TANI-pentyl trimethylammonium bromide (TANI-PTAB), between self-assembled vesicles and nanowires by acid/base chemistry in aqueous solution is used to exemplify this approach. Trifluoroacetic acid (TFA) was selected as a prototypical acid to form emeraldine salt (ES) state (TANI(TFA)2-PTAB) vesicles for this new class of small-molecule supramolecular amphiphiles. UV-vis-NIR spectroscopy, transmission electron microscopy (TEM), tapping-mode atomic force microscopy (AFM), and fluorescence spectroscopy were used to investigate the reversible structural transformation from vesicles to nanowires. We show that utilising different protonic acid-dopants for TANI-PTAB can regulate the packing parameter, and thus the final self-assembled structures, in a predictable fashion. We envisage potential application of this concept as smart and switchable delivery systems.
Collapse
Affiliation(s)
- Wei Lyu
- School of Chemistry , University of Bristol , Bristol , BS8 1TS , UK . .,Department of Environmental Science and Engineering , Xi'an Jiaotong University , 710049 , Xi'an , P. R. China
| | - Maha Alotaibi
- School of Chemistry , University of Bristol , Bristol , BS8 1TS , UK . .,Chemistry Department , Faculty of Science , King Abdul Aziz University , Jeddah , Kingdom of Saudi Arabia
| | - O Alexander Bell
- School of Chemistry , University of Bristol , Bristol , BS8 1TS , UK .
| | | | - Robert Harniman
- School of Chemistry , University of Bristol , Bristol , BS8 1TS , UK .
| | - Benjamin M Mills
- School of Chemistry , University of Bristol , Bristol , BS8 1TS , UK .
| | - Annela M Seddon
- School of Physics , H. H. Wills Physics Laboratory , University of Bristol , Tyndall Avenue , Bristol , BS8 1FD , UK.,Bristol Centre for Functional Nanomaterials , H. H. Wills Physics Laboratory , University of Bristol , Tyndall Avenue , Bristol , BS8 1FD , UK
| | - Sarah E Rogers
- ISIS Pulsed Neutron & Muon Source , STFC Rutherford Appleton Laboratory , Harwell Campus , Didcot , OX11 0QX , UK
| | - Stephen M King
- ISIS Pulsed Neutron & Muon Source , STFC Rutherford Appleton Laboratory , Harwell Campus , Didcot , OX11 0QX , UK
| | - Wei Yan
- Department of Environmental Science and Engineering , Xi'an Jiaotong University , 710049 , Xi'an , P. R. China
| | - Charl F J Faul
- School of Chemistry , University of Bristol , Bristol , BS8 1TS , UK .
| |
Collapse
|
13
|
Zhao L, Ling Q, Liu X, Hang C, Zhao Q, Liu F, Gu H. Multifunctional triazolylferrocenyl Janus dendron: Nanoparticle stabilizer, smart drug carrier and supramolecular nanoreactor. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.4000] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Li Zhao
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu 610065 China
| | - Qiangjun Ling
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu 610065 China
| | - Xiong Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu 610065 China
| | - Chaodong Hang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu 610065 China
| | - Qiuxia Zhao
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu 610065 China
| | - Fangfei Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu 610065 China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu 610065 China
| |
Collapse
|
14
|
A dual stimuli-responsive amphiphilic polymer: reversible self-assembly and rate-controlled drug release. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4156-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Saleem M, Wang L, Yu H, Zain-ul-Abdin, Akram M, Ullah RS. Synthesis of amphiphilic block copolymers containing ferrocene–boronic acid and their micellization, redox-responsive properties and glucose sensing. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4049-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Xu F, Li H, Luo YL, Tang W. Redox-Responsive Self-Assembly Micelles from Poly(N-acryloylmorpholine-block-2-acryloyloxyethyl ferrocenecarboxylate) Amphiphilic Block Copolymers as Drug Release Carriers. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5181-5192. [PMID: 28097871 DOI: 10.1021/acsami.6b16017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Novel well-defined redox-responsive ferrocene-containing amphiphilic block copolymers (PACMO-b-PAEFC) were synthesized by ATRP, with poly(N-acryloylmorpholine) (PACMO) as hydrophilic blocks and poly(2-acryloyloxyethyl ferrocenecarboxylate) (PAEFC) as hydrophobic blocks. The copolymers were characterized by FT-IR and 1H NMR spectroscopies and gel permeation chromatography, and the crystalline behavior was determined by X-ray diffraction and small-angle X-ray scattering. The results showed that the size of the lamellar crystals and crystallinity vary with the systematic compositions while the periodic structure of the lamellar stacks has no obvious change. These block copolymers could self-assemble and form globular nanoscaled core-shell micellar aggregates in aqueous solution. The reductive ferrocene groups could be changed into hydrophilic ferrocenium via mild oxidation, whereas the polymer micelles at the oxidation state could reversibly recover from their original states upon reduction by vitamin C. The tunable redox response was investigated and verified by transmission electron microscopy, ultraviolet-visible spectroscopy, cyclic voltammetry, and dynamic light scattering measurements. The copolymer micelles were used to entrap anticancer drug paclitaxel (PTX), with high drug encapsulation efficiency of 61.4%, while the PTX-loaded drug formulation exhibited oxidation-controlled drug release, and the release rate could be mediated by the kinds and concentrations of oxidants. MTT assay was performed to disclose the biocompatibility and security of the copolymer micelles and to assess anticancer efficiency of the PTX-loaded nanomicelles. The developed copolymer nanomicelles with reversible redox response are anticipated to have potential in targeted drug delivery systems for cancer therapy.
Collapse
Affiliation(s)
- Feng Xu
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710062, People's Republic of China
| | - He Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710062, People's Republic of China
| | - Yan-Ling Luo
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710062, People's Republic of China
| | - Wei Tang
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710062, People's Republic of China
| |
Collapse
|
17
|
Du Z, Ren B, Chang X, Dong R, Tong Z. An End-Bifunctionalized Hydrophobically Modified Ethoxylated Urethane Model Polymer: Multiple Stimuli-Responsive Aggregation and Rheology in Aqueous Solution. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02301] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Zhukang Du
- School of Materials Science
and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Biye Ren
- School of Materials Science
and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xueyi Chang
- School of Materials Science
and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Renfeng Dong
- School of Materials Science
and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhen Tong
- School of Materials Science
and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
18
|
Jiang X, Li R, Feng C, Lu G, Huang X. Triple-stimuli-responsive ferrocene-containing homopolymers by RAFT polymerization. Polym Chem 2017. [DOI: 10.1039/c7py00091j] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This article presents a new type of well-defined ferrocene-containing homopolymer obtained from RAFT polymerization, showing pH/CO2 and redox responsiveness.
Collapse
Affiliation(s)
- Xue Jiang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Ruru Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| |
Collapse
|
19
|
Chang X, Du Z, Hu F, Cheng Z, Ren B, Fu S, Tong Z. Ferrocene-Functionalized Hydrophobically Modified Ethoxylated Urethane: Redox-Responsive Controlled Self-Assembly and Rheological Behavior in Aqueous Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12137-12145. [PMID: 27800681 DOI: 10.1021/acs.langmuir.6b03508] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this work, we present a novel redox-responsive ferrocene-functionalized hydrophobically modified ethoxylated urethane (Fc-HEUR) model polymer. The effects of a redox-induced hydrophobicity change of ferrocenyl hydrophobes on the self-assembly and rheological properties of Fc-HEUR in aqueous solution were investigated. In view of the redox-induced change in the hydrophilic-lipophilic balance of polymers, the Fc-HEUR polymer in aqueous solution can reversibly self-assemble into spherical micelles and larger micellar aggregates of different nanoscales and also disassemble by redox reactions immediately. Moreover, we have demonstrated that a rearrangement of micellar junctions takes place through a bridge-loop or loop-bridge transition in the concentrated polymer solution followed by redox reactions, which induces a great change in the rheological properties of the polymer solution: a viscoelastic liquid for the reduction state Fc-HEUR and a viscous liquid for the oxidation state Fc+-HEUR, owing to their different relaxation behaviors. Particularly, the associative structures and rheological properties of the Fc-HEUR aqueous solution can be reversibly controlled by redox reactions. This work will be useful not only for understanding of the thickening mechanism of stimuli-responsive HEURs but also for the development of reversible self-assembly and controlled rheological fluids, which may have some special application in drug delivery systems, catalyst supports, sensors, and microfluidic devices.
Collapse
Affiliation(s)
| | | | | | - Zhiyu Cheng
- College of Chemistry and Environmental Engineering, Dongguan University of Technology , Dongguan 523808, China
| | | | | | | |
Collapse
|
20
|
Hao S, Zhai Q, Zhao L, Xu B. Construction and reversible assembly of a redox-responsive supramolecular cyclodextrin amphiphile. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Wang A, Shi W, Huang J, Yan Y. Adaptive soft molecular self-assemblies. SOFT MATTER 2016; 12:337-357. [PMID: 26509717 DOI: 10.1039/c5sm02397a] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Adaptive molecular self-assemblies provide possibility of constructing smart and functional materials in a non-covalent bottom-up manner. Exploiting the intrinsic properties of responsiveness of non-covalent interactions, a great number of fancy self-assemblies have been achieved. In this review, we try to highlight the recent advances in this field. The following contents are focused: (1) environmental adaptiveness, including smart self-assemblies adaptive to pH, temperature, pressure, and moisture; (2) special chemical adaptiveness, including nanostructures adaptive to important chemicals, such as enzymes, CO2, metal ions, redox agents, explosives, biomolecules; (3) field adaptiveness, including self-assembled materials that are capable of adapting to external fields such as magnetic field, electric field, light irradiation, and shear forces.
Collapse
Affiliation(s)
- Andong Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Wenyue Shi
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
22
|
|
23
|
Chang X, Cheng Z, Ren B, Dong R, Peng J, Fu S, Tong Z. Voltage-responsive reversible self-assembly and controlled drug release of ferrocene-containing polymeric superamphiphiles. SOFT MATTER 2015; 11:7494-7501. [PMID: 26268718 DOI: 10.1039/c5sm01623a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A new type of voltage-responsive comb-like superamphiphilic block polymer PEG113-b-PAA30/FTMA was prepared by the electrostatic interactions of an ionic ferrocenyl surfactant (FTMA) and an oppositely charged double-hydrophilic block polyelectrolyte poly-(ethylene glycol)-b-poly(acrylic acid) (PEG113-b-PAA30) in aqueous solution. An in situ electrochemical redox system was designed to research its electrochemical activity in aqueous solution. The polymeric superamphiphile PEG113-b-PAA30/FTMA could reversibly aggregate to form spherical micelles of 20-30 nm diameter in aqueous solution, and also disaggregate into irregular fragments by an electrochemical redox reaction when its concentration is in the range of the critical aggregation concentration (cacred) of the reduction state to its cacox of the oxidation state. Interestingly, above cacox, the superamphiphile can aggregate into spherical micelles of 20-30 nm diameter, which can be transformed into larger spherical micelles of 40-120 nm diameter after electrochemical oxidation, and reversibly recover initial sizes after electrochemical reduction. Moreover, this reversible self-assembly process can be electrochemically controlled just by changing its electrochemical redox extent without adding any other chemical reagent. Further, rhodamine 6G (R6G)-loaded polymeric superamphiphile aggregates have been successfully used for the voltage-controlled release of loaded molecules based on their voltage-responsive self-assembly, and the release rate of R6G could be mediated by changing electrochemical redox potentials and the concentrations of polymeric superamphiphiles. Our observations witness a new strategy to construct a voltage-responsive reversible self-assembly system.
Collapse
Affiliation(s)
- Xueyi Chang
- Research Institute of Materials Science and, The Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510641, China.
| | | | | | | | | | | | | |
Collapse
|