1
|
Yu J, Tavsanli B, Tamminga MJ, Gillies ER. Compact Polyelectrolyte Complexes of Poly(l-Lysine) and Anionic Polysaccharides. Biomacromolecules 2024; 25:5160-5168. [PMID: 39041825 DOI: 10.1021/acs.biomac.4c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Compact polyelectrolyte complexes (CoPECs) can exhibit mechanical properties similar to those of biological tissues and other interesting properties, such as self-healing. To date, a variety of CoPECs prepared from synthetic polyelectrolytes have been investigated, but there are very few examples based entirely on biopolymers. We describe here an investigation of CoPECs based on poly(l-lysine) (PLL) with sodium hyaluronate (HA) and alginate (Alg). A 2:1 ratio of cation:anion and 0.25 M NaBr was beneficial for the formation of viscoelastic PLL-HA CoPECs, with the favorable ratio attributed to the spacing of carboxylates on HA being one every two saccharide units. In contrast, 1.0 M NaBr and a 1:1 ratio were better for PLL-Alg CoPECs. Both CoPECs swelled or retained a constant volume when immersed in hypertonic media, but contracted in hypotonic media. The loading of molecules into the PLL-HA (2:1) CoPECs was investigated. Higher loadings were achieved for anionic molecules compared to cations, presumably due to the excess cationic binding sites on the networks. The times required for full release of the molecules ranged from less than 2 h for neutral paracetamol to about 48 h for crystal violet and diclofenac.
Collapse
Affiliation(s)
- Jaehak Yu
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Burak Tavsanli
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Micah J Tamminga
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Elizabeth R Gillies
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B9, Canada
| |
Collapse
|
2
|
Keshavarzi B, Reising G, Mahmoudvand M, Koynov K, Butt HJ, Javadi A, Schwarzenberger K, Heitkam S, Dolgos M, Kantzas A, Eckert K. Pressure Changes Across a Membrane Formed by Coacervation of Oppositely Charged Polymer-Surfactant Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9934-9944. [PMID: 38690991 DOI: 10.1021/acs.langmuir.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
We investigate the mass transfer and membrane growth processes during capsule formation by the interaction of the biopolymer xanthan gum with CnTAB surfactants. When a drop of xanthan gum polymer solution is added to the surfactant solution, a membrane is formed by coacervation. It encapsulates the polymer drop in the surfactant solution. The underlying mechanisms and dynamic processes during capsule formation are not yet understood in detail. Therefore, we characterized the polymer-surfactant complex formation during coacervation by measuring the surface tension and surface elasticity at the solution-air interface for different surfactant chain lengths and concentrations. The adsorption behavior of the mixed polymer-surfactant system at the solution-air interface supports the understanding of observed trends during the capsule formation. We further measured the change in capsule pressure over time and simultaneously imaged the membrane growth via confocal microscopy. The cross-linking and shrinkage during the membrane formation by coacervation leads to an increasing tensile stress in the elastic membrane, resulting in a rapid pressure rise. Afterward, the pressure gradually decreases and the capsule shrinks as water diffuses out. This is not only due to the initial capsule overpressure but also due to osmosis caused by the higher ionic strength of the surfactant solution outside the capsule compared to the polymer solution inside the capsule. The influence of polymer concentration and surfactant type and concentration on the pressure changes and the membrane structure are studied in this work, providing detailed insights into the dynamic membrane formation process by coacervation. This knowledge can be used to produce capsules with tailored membrane properties and to develop a suitable encapsulation protocol in technological applications. The obtained insights into the mass transfer of water across the capsule membrane are important for future usage in separation techniques and the food industry and allow us to better predict the capsule time stability.
Collapse
Affiliation(s)
- Behnam Keshavarzi
- Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden, Germany
- Institute of Process Engineering and Environmental Technology, TU Dresden, 01062 Dresden, Germany
| | - Georg Reising
- Institute of Process Engineering and Environmental Technology, TU Dresden, 01062 Dresden, Germany
| | - Mohsen Mahmoudvand
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | | | - Aliyar Javadi
- Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden, Germany
- Institute of Process Engineering and Environmental Technology, TU Dresden, 01062 Dresden, Germany
| | - Karin Schwarzenberger
- Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden, Germany
- Institute of Process Engineering and Environmental Technology, TU Dresden, 01062 Dresden, Germany
| | - Sascha Heitkam
- Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden, Germany
- Institute of Process Engineering and Environmental Technology, TU Dresden, 01062 Dresden, Germany
| | - Michelle Dolgos
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Apostolos Kantzas
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Kerstin Eckert
- Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden, Germany
- Institute of Process Engineering and Environmental Technology, TU Dresden, 01062 Dresden, Germany
| |
Collapse
|
3
|
Altam AA, Zhu L, Wang W, Yagoub H, Yang S. Stability improvement of carboxymethyl cellulose/chitosan complex beads by thermal treatment. Int J Biol Macromol 2022; 223:1278-1286. [PMID: 36379283 DOI: 10.1016/j.ijbiomac.2022.11.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/22/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022]
Abstract
Carboxymethyl cellulose (CMC) and chitosan (CHI) are two well-known natural polymer derivatives, as such the CMC@CHI complex beads fulfill many requirements for bio-related and safety-required applications. However, poor mechanical properties of CMC@CHI beads hinder their applications. We managed to improve the beads stability by a simple thermal treatment during the bead preparation. The effects of temperature, changing from 25 °C to 75 °C, on the stability of the formed beads were investigated. The morphology, diameter, shell thickness and structure of the beads treated at different temperature were analyzed using SEM, XPS and FTIR. The mechanical test and swelling experiments showed that the thermal treatment enhanced the bead's ability to withstand pressure and swelling. The beads treated at 75 °C showed the best pressure resistance, while the beads treated at 55 °C exhibited the highest swelling capability without losing integrity. This method is convenient to implement, not only improves the stability, but also controls the swelling capacity and mechanical properties of the beads, which are important for their potential applications in adsorption and controlled release. More importantly, this work offered insights on the effects of thermal treatment on the complexation process of the two polysaccharide molecular chains.
Collapse
Affiliation(s)
- Ali A Altam
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
| | - Liping Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China.
| | - Weijie Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
| | - Hajo Yagoub
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
| | - Shuguang Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China.
| |
Collapse
|
4
|
Towongphaichayonte P, Yoksan R. Water-soluble poly(ethylene glycol) methyl ether-grafted chitosan/alginate polyelectrolyte complex hydrogels. Int J Biol Macromol 2021; 179:353-365. [PMID: 33684431 DOI: 10.1016/j.ijbiomac.2021.03.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/21/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Abstract
This study aimed to fabricate polyelectrolyte complexes from water-soluble poly(ethylene glycol) methyl ether-grafted chitosan (mPEG-g-CTS) and alginate (ALG) in the absence of acetic acid. The complexes formed fibrous network macrogels when mPEG-g-CTS with short mPEG chains (mPEG750-g-CTS and mPEG2000-g-CTS) and mPEG-g-CTS:ALG weight ratios in the range from 1:0.14 to 1:1 were used. The macrogels at a weight ratio of mPEG-g-CTS:ALG of 1:1 possessed the highest elasticity with electrophoretic mobility close to 0 m2·V-1·s-1. Water uptake of the sponge-like lyophilized macrogels decreased with increasing ALG content, mPEG chain length, and degree of substitution of mPEG-g-CTS. In contrast, the polyelectrolyte complexes prepared using long mPEG chains of mPEG-g-CTS (mPEG5000-g-CTS) formed spherical nanoparticles (70-90 nm) and showed highly negative electrophoretic mobility (< -3.20 × 108 m2·V-1·s-1). The obtained mPEG-g-CTS/ALG polyelectrolyte complex hydrogels and nanoparticles have the potential to be applied as carriers for functional food additives, drugs, and bioactive compounds.
Collapse
Affiliation(s)
- Pawika Towongphaichayonte
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand; Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| | - Rangrong Yoksan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand; Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
5
|
van Lente J, Claessens MMA, Lindhoud S. Charge-Based Separation of Proteins Using Polyelectrolyte Complexes as Models for Membraneless Organelles. Biomacromolecules 2019; 20:3696-3703. [PMID: 31418555 PMCID: PMC6794638 DOI: 10.1021/acs.biomac.9b00701] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/14/2019] [Indexed: 01/08/2023]
Abstract
Membraneless organelles are liquid compartments within cells with different solvent properties than the surrounding environment. This difference in solvent properties is thought to result in function-related selective partitioning of proteins. Proteins have also been shown to accumulate in polyelectrolyte complexes, but whether the uptake in these complexes is selective has not been ascertained yet. Here, we show the selective partitioning of two structurally similar but oppositely charged proteins into polyelectrolyte complexes. We demonstrate that these proteins can be separated from a mixture by altering the polyelectrolyte complex composition and released from the complex by lowering the pH. Combined, we demonstrate that polyelectrolyte complexes can separate proteins from a mixture based on protein charge. Besides providing deeper insight into the selective partitioning in membraneless organelles, potential applications for selective biomolecule partitioning in polyelectrolyte complexes include drug delivery or extraction processes.
Collapse
Affiliation(s)
- Jéré
J. van Lente
- Department
of Nanobiophysics, and Membrane Science & Technology Cluster, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Mireille M. A.
E. Claessens
- Department
of Nanobiophysics, and Membrane Science & Technology Cluster, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Saskia Lindhoud
- Department
of Nanobiophysics, and Membrane Science & Technology Cluster, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| |
Collapse
|
6
|
Harrison TD, Yunyaeva O, Borecki A, Hopkins CC, de Bruyn JR, Ragogna PJ, Gillies ER. Phosphonium Polyelectrolyte Complexes for the Encapsulation and Slow Release of Ionic Cargo. Biomacromolecules 2019; 21:152-162. [PMID: 31502452 DOI: 10.1021/acs.biomac.9b01115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Polyelectrolyte complexation, the combination of anionically and cationically charged polymers through ionic interactions, can be used to form hydrogel networks. These networks can be used to encapsulate and release cargo, but the release of cargo is typically rapid, occurring over a period of hours to a few days and they often exhibit weak, fluid-like mechanical properties. Here we report the preparation and study of polyelectrolyte complexes (PECs) from sodium hyaluronate (HA) and poly[tris(hydroxypropyl)(4-vinylbenzyl)phosphonium chloride], poly[triphenyl(4-vinylbenzyl)phosphonium chloride], poly[tri(n-butyl)(4-vinylbenzyl)phosphonium chloride], or poly[triethyl(4-vinylbenzyl)phosphonium chloride]. The networks were compacted by ultracentrifugation, then their composition, swelling, rheological, and self-healing properties were studied. Their properties depended on the structure of the phosphonium polymer and the salt concentration, but in general, they exhibited predominantly gel-like behavior with relaxation times greater than 40 s and self-healing over 2-18 h. Anionic molecules, including fluorescein, diclofenac, and adenosine-5'-triphosphate, were encapsulated into the PECs with high loading capacities of up to 16 wt %. Fluorescein and diclofenac were slowly released over 60 days, which was attributed to a combination of hydrophobic and ionic interactions with the dense PEC network. The cytotoxicities of the polymers and their corresponding networks with HA to C2C12 mouse myoblast cells was investigated and found to depend on the structure of the polymer and the properties of the network. Overall, this work demonstrates the utility of polyphosphonium-HA networks for the loading and slow release of ionic drugs and that their physical and biological properties can be readily tuned according to the structure of the phosphonium polymer.
Collapse
Affiliation(s)
- Tristan D Harrison
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research , The University of Western Ontario , 1151 Richmond Street , London , Ontario , Canada N6A 5B7
| | - Olga Yunyaeva
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research , The University of Western Ontario , 1151 Richmond Street , London , Ontario , Canada N6A 5B7
| | - Aneta Borecki
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research , The University of Western Ontario , 1151 Richmond Street , London , Ontario , Canada N6A 5B7
| | - Cameron C Hopkins
- Department of Physics and Astronomy and the Centre for Advanced Materials and Biomaterials Research , The University of Western Ontario , 1151 Richmond Street , London , Ontario , Canada N6A 3K7
| | - John R de Bruyn
- Department of Physics and Astronomy and the Centre for Advanced Materials and Biomaterials Research , The University of Western Ontario , 1151 Richmond Street , London , Ontario , Canada N6A 3K7
| | - Paul J Ragogna
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research , The University of Western Ontario , 1151 Richmond Street , London , Ontario , Canada N6A 5B7
| | - Elizabeth R Gillies
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research , The University of Western Ontario , 1151 Richmond Street , London , Ontario , Canada N6A 5B7.,Department of Chemical and Biochemical Engineering , The University of Western Ontario , 1151 Richmond Street , London , Ontario , Canada N6A 5B9
| |
Collapse
|
7
|
Herrera SE, Agazzi ML, Cortez ML, Marmisollé WA, Tagliazucchi M, Azzaroni O. Polyamine Colloids Cross‐Linked with Phosphate Ions: Towards Understanding the Solution Phase Behavior. Chemphyschem 2019; 20:1044-1053. [DOI: 10.1002/cphc.201900046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/13/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Santiago E. Herrera
- Departamento de Química, Facultad de Ciencias ExactasUniversidad Nacional de La Plata, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET La Plata 1900 Argentina
| | - Maximiliano L. Agazzi
- Departamento de Química, Facultad de Ciencias ExactasUniversidad Nacional de La Plata, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET La Plata 1900 Argentina
| | - M. Lorena Cortez
- Departamento de Química, Facultad de Ciencias ExactasUniversidad Nacional de La Plata, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET La Plata 1900 Argentina
| | - Waldemar A. Marmisollé
- Departamento de Química, Facultad de Ciencias ExactasUniversidad Nacional de La Plata, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET La Plata 1900 Argentina
| | - Mario Tagliazucchi
- INQUIMAE-CONICETCiudad Universitaria Pabellón 2, Ciudad Autónoma de Buenos Aires Buenos Aires C1428EHA Argentina
| | - Omar Azzaroni
- Departamento de Química, Facultad de Ciencias ExactasUniversidad Nacional de La Plata, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET La Plata 1900 Argentina
| |
Collapse
|
8
|
de Silva UK, Choudhuri K, Bryant-Friedrich AC, Lapitsky Y. Customizing polyelectrolyte complex shapes through photolithographic directed assembly. SOFT MATTER 2018; 14:521-532. [PMID: 29300411 DOI: 10.1039/c7sm02022h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polyelectrolyte complexes (PECs) form through the association of oppositely charged polymers and, due to their attractive properties, such as their mild/simple preparation and stimulus-sensitivity, attract widespread interest. The diverse applications of these materials often require control over PEC shapes. As a versatile approach to achieving such control, we report a new photolithographic directed assembly method for tailoring their structure. This method uses aqueous solutions of a polyelectrolyte, an oppositely charged monomer and a photoinitiator. Irradiation of these mixtures leads to site-specific polymerization of the ionic monomer into a polymer and, through this localized polyanion/polycation mixture formation, results in the assembly of PECs with 2-D and 3-D shapes that reflect the photoirradiation pattern. In addition to generating macroscopic PECs using photomasks, this photodirected PEC assembly method can be combined with multiphoton lithography, which enables the preparation of custom-shaped PECs with microscopic dimensions. Like other PECs, the custom-shaped structures formed through this photodirected assembly approach are stimulus-responsive, and can be made to switch shape or dissolve in response to changes in their external environments. This control over PEC shape and stimulus-sensitivity suggests the photopolymerization-based directed PEC assembly method as a potentially attractive route to stimulus-responsive soft device fabrication (e.g., preparation of intricately shaped, function-specific PECs through photolithographic 3-D printing).
Collapse
Affiliation(s)
- Udaka K de Silva
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio 43606, USA.
| | | | | | | |
Collapse
|
9
|
Kim M, Yeo SJ, Highley CB, Burdick JA, Yoo PJ, Doh J, Lee D. One-Step Generation of Multifunctional Polyelectrolyte Microcapsules via Nanoscale Interfacial Complexation in Emulsion (NICE). ACS NANO 2015; 9:8269-78. [PMID: 26172934 DOI: 10.1021/acsnano.5b02702] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Polyelectrolyte microcapsules represent versatile stimuli-responsive structures that enable the encapsulation, protection, and release of active agents. Their conventional preparation methods, however, tend to be time-consuming, yield low encapsulation efficiency, and seldom allow for the dual incorporation of hydrophilic and hydrophobic materials, limiting their widespread utilization. In this work, we present a method to fabricate stimuli-responsive polyelectrolyte microcapsules in one step based on nanoscale interfacial complexation in emulsions (NICE) followed by spontaneous droplet hatching. NICE microcapsules can incorporate both hydrophilic and hydrophobic materials and also can be induced to trigger the release of encapsulated materials by changes in the solution pH or ionic strength. We also show that NICE microcapsules can be functionalized with nanomaterials to exhibit useful functionality, such as response to a magnetic field and disassembly in response to light. NICE represents a potentially transformative method to prepare multifunctional nanoengineered polyelectrolyte microcapsules for various applications such as drug delivery and cell mimicry.
Collapse
Affiliation(s)
- Miju Kim
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Seon Ju Yeo
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- School of Chemical Engineering, Sungkyunkwan University (SKKU) , Suwon 440-746, Republic of Korea
| | - Christopher B Highley
- Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Pil J Yoo
- School of Chemical Engineering, Sungkyunkwan University (SKKU) , Suwon 440-746, Republic of Korea
| | - Junsang Doh
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , Pohang, Gyeongbuk 790-784, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH) , Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|