1
|
Yang Q, Li L, Sun L, Ye Z, Wang Y, Guo X. Spherical polyelectrolyte brushes as bio‐platforms to integrate platinum nanozyme and glucose oxidase for colorimetric detection of glucose. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Qingsong Yang
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Li Li
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Liang Sun
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan Shihezi University Xinjiang China
| | - Zhishuang Ye
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Yunwei Wang
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan Shihezi University Xinjiang China
| |
Collapse
|
2
|
Ye Z, Li L, Dai L, Wang Y, Yang Q, von Klitzing R, Guo X. Selective uptake of different proteins by annealed and quenched cationic spherical polyelectrolyte brushes. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhishuang Ye
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Li Li
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Liheng Dai
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Yunwei Wang
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Qingsong Yang
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | | | - Xuhong Guo
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan Shihezi University Xinjiang China
| |
Collapse
|
3
|
Ferrand-Drake Del Castillo G, Koenig M, Müller M, Eichhorn KJ, Stamm M, Uhlmann P, Dahlin A. Enzyme Immobilization in Polyelectrolyte Brushes: High Loading and Enhanced Activity Compared to Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3479-3489. [PMID: 30742441 DOI: 10.1021/acs.langmuir.9b00056] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Catalysis by enzymes on surfaces has many applications. However, strategies for efficient enzyme immobilization with preserved activity are still in need of further development. In this work, we investigate polyelectrolyte brushes prepared by both grafting-to and grafting-from with the aim to achieve high catalytic activity. For comparison, self-assembled monolayers that bind enzymes with the same chemical interactions are included. We use the model enzyme glucose oxidase and two kinds of polymers: anionic poly(acrylic acid) and cationic poly(diethylamino)methyl methacrylate. Surface plasmon resonance and spectroscopic ellipsometry are used for accurate quantification of surface coverage. Besides binding more enzymes, the "3D-like" brush environment enhances the specific activity compared to immobilization on self-assembled monolayers. For grafting-from brushes, multilayers of enzymes were spontaneously and irreversibly immobilized without conjugation chemistry. When the pH was between the pI of the enzyme and the p Ka of the polymer, binding was considerable (thousands of ng/cm2 or up to 50% of the polymer mass), even at physiological ionic strength. However, binding was observed also when the brushes were neutrally charged. For acidic brushes (both grafting-to and grafting-from), the activity was higher for covalent immobilization compared to noncovalent. For grafting-from brushes, a fully preserved specific activity compared to enzymes in the liquid bulk was achieved, both with covalent (acidic brush) and noncovalent (basic brush) immobilization. Catalytic activity of hundreds of pmol cm-2 s-1 was easily obtained for polybasic brushes only tens of nanometers in dry thickness. This study provides new insights for designing functional interfaces based on enzymatic catalysis.
Collapse
Affiliation(s)
| | - Meike Koenig
- Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , D-01069 Dresden , Germany
| | - Martin Müller
- Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , D-01069 Dresden , Germany
- Technische Universität Dresden, Physical Chemistry of Polymer Materials, Dresden , Germany
| | - Klaus-Jochen Eichhorn
- Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , D-01069 Dresden , Germany
| | - Manfred Stamm
- Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , D-01069 Dresden , Germany
- Technische Universität Dresden, Physical Chemistry of Polymer Materials, Dresden , Germany
| | - Petra Uhlmann
- Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , D-01069 Dresden , Germany
- Department of Chemistry , University of Nebraska-Lincoln , Hamilton Hall, 639 North 12th Street , Lincoln , Nebraska 68588 , United States
| | - Andreas Dahlin
- Department of Chemistry and Chemical Engineering , Chalmers University of Technology , 41296 Göteborg , Sweden
| |
Collapse
|
4
|
Wang X, Zheng K, Si Y, Guo X, Xu Y. Protein⁻Polyelectrolyte Interaction: Thermodynamic Analysis Based on the Titration Method †. Polymers (Basel) 2019; 11:E82. [PMID: 30960066 PMCID: PMC6402006 DOI: 10.3390/polym11010082] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/26/2018] [Accepted: 01/02/2019] [Indexed: 01/05/2023] Open
Abstract
This review discussed the mechanisms including theories and binding stages concerning the protein⁻polyelectrolyte (PE) interaction, as well as the applications for both complexation and coacervation states of protein⁻PE pairs. In particular, this review focused on the applications of titration techniques, that is, turbidimetric titration and isothermal titration calorimetry (ITC), in understanding the protein⁻PE binding process. To be specific, by providing thermodynamic information such as pHc, pHφ, binding constant, entropy, and enthalpy change, titration techniques could shed light on the binding affinity, binding stoichiometry, and driving force of the protein⁻PE interaction, which significantly guide the applications by utilization of these interactions. Recent reports concerning interactions between proteins and different types of polyelectrolytes, that is, linear polyelectrolytes and polyelectrolyte modified nanoparticles, are summarized with their binding differences systematically discussed and compared based on the two major titration techniques. We believe this short review could provide valuable insight in the understanding of the structure⁻property relationship and the design of applied biomedical PE-based systems with optimal performance.
Collapse
Affiliation(s)
- Xiaohan Wang
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Kai Zheng
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yi Si
- Institute of Vascular Surgery, Fudan University, 180 Fenglin road, Shanghai 200032, China.
| | - Xuhong Guo
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
- Engineering Research Center of Xinjiang Bingtuan of Materials Chemical Engineering, Shihezi University, Xinjiang 832000, China.
| | - Yisheng Xu
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
- Engineering Research Center of Xinjiang Bingtuan of Materials Chemical Engineering, Shihezi University, Xinjiang 832000, China.
| |
Collapse
|
5
|
Wang W, Li L, Henzler K, Lu Y, Wang J, Han H, Tian Y, Wang Y, Zhou Z, Lotze G, Narayanan T, Ballauff M, Guo X. Protein Immobilization onto Cationic Spherical Polyelectrolyte Brushes Studied by Small Angle X-ray Scattering. Biomacromolecules 2017; 18:1574-1581. [PMID: 28398743 DOI: 10.1021/acs.biomac.7b00164] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The immobilization of bovine serum albumins (BSA) onto cationic spherical polyelectrolyte brushes (SPB) consisting of a solid polystyrene (PS) core and a densely grafted poly(2-aminoethyl methacrylate hydrochloride) (PAEMH) shell was studied by small-angle X-ray scattering (SAXS). The observed dynamics of adsorption of BSA onto SPB by time-resolved SAXS can be divided into two stages. In the first stage (tens of milliseconds), the added proteins as in-between bridge instantaneously caused the aggregation of SPB. Then BSA penetrated into the brush layer driven by electrostatic attractions, and reached equilibrium in the second stage (tens of seconds). The amount of BSA immobilized onto brush layer reached the maximum when pH was increased to about 6.1 and BSA concentration to 10 g/L. The cationic SPB were confirmed to provide stronger adsorption capacity for BSA compared to anionic ones.
Collapse
Affiliation(s)
- Weihua Wang
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology , Shanghai 200237, People's Republic of China.,Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Li Li
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | - Katja Henzler
- Paul Scherer Institute , Laboratory for Synchrotron Radiation and Femtochemistry, 5232 Villigen PSI, Switzerland
| | - Yan Lu
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , Hahn-Meitner-Platz 1, 14109 Berlin, Germany.,Institut für Phzsik, Humboldt-Universität zu Berlin , 12489 Berlin, Germany
| | - Junyou Wang
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | - Haoya Han
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | - Yuchuan Tian
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | - Yunwei Wang
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | - Zhiming Zhou
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | - Gudrun Lotze
- European Synchrotron Radiation Facility , F-38043, Grenoble, France
| | | | - Matthias Ballauff
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , Hahn-Meitner-Platz 1, 14109 Berlin, Germany.,Institut für Phzsik, Humboldt-Universität zu Berlin , 12489 Berlin, Germany
| | - Xuhong Guo
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology , Shanghai 200237, People's Republic of China.,Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Shihezi University , Xinjiang 832000, People's Republic of China
| |
Collapse
|
6
|
Su C. Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites: A review of recent literature. JOURNAL OF HAZARDOUS MATERIALS 2017; 322:48-84. [PMID: 27477792 PMCID: PMC7306924 DOI: 10.1016/j.jhazmat.2016.06.060] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 05/12/2023]
Abstract
This review focuses on environmental implications and applications of engineered magnetite (Fe3O4) nanoparticles (MNPs) as a single phase or a component of a hybrid nanocomposite that exhibits superparamagnetism and high surface area. MNPs are synthesized via co-precipitation, thermal decomposition and combustion, hydrothermal process, emulsion, microbial process, and green approaches. Aggregation/sedimentation and transport of MNPs depend on surface charge of MNPs and geochemical parameters such as pH, ionic strength, and organic matter. MNPs generally have low toxicity to humans and ecosystem. MNPs are used for constructing chemical/biosensors and for catalyzing a variety of chemical reactions. MNPs are used for air cleanup and carbon sequestration. MNP nanocomposites are designed as antimicrobial agents for water disinfection and flocculants for water treatment. Conjugated MNPs are widely used for adsorptive/separative removal of organics, dyes, oil, arsenic, phosphate, molybdate, fluoride, selenium, Cr(VI), heavy metal cations, radionuclides, and rare earth elements. MNPs can degrade organic/inorganic contaminants via chemical reduction or catalyze chemical oxidation in water, sediment, and soil. Future studies should further explore mechanisms of MNP interactions with other nanomaterials and contaminants, economic and green approaches of MNP synthesis, and field scale demonstration of MNP utilization.
Collapse
Affiliation(s)
- Chunming Su
- Ground Water and Ecosystems Restoration Division, National Risk Management Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK 74820, USA.
| |
Collapse
|
7
|
Adsorption of enzymes to stimuli-responsive polymer brushes: Influence of brush conformation on adsorbed amount and biocatalytic activity. Colloids Surf B Biointerfaces 2016; 146:737-45. [DOI: 10.1016/j.colsurfb.2016.07.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/04/2016] [Accepted: 07/04/2016] [Indexed: 11/30/2022]
|
8
|
Guo J, Wang N, Peng L, Wu J, Ye Q, Feng A, Wang Z, Zhang C, Xing XH, Yuan J. Electrochemically-responsive magnetic nanoparticles for reversible protein adsorption. J Mater Chem B 2016; 4:4009-4016. [DOI: 10.1039/c6tb00259e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrochemically-responsive magnetic hybrid nanoparticles are designed and prepared to achieve electrochemically-controlled reversible separation of proteins.
Collapse
|
9
|
Qin L, Xu Y, Han H, Liu M, Chen K, Wang S, Wang J, Xu J, Li L, Guo X. β-Lactoglobulin (BLG) binding to highly charged cationic polymer-grafted magnetic nanoparticles: Effect of ionic strength. J Colloid Interface Sci 2015; 460:221-9. [DOI: 10.1016/j.jcis.2015.08.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/18/2015] [Accepted: 08/22/2015] [Indexed: 01/01/2023]
|
10
|
Qu Z, Xu H, Gu H. Synthesis and Biomedical Applications of Poly((meth)acrylic acid) Brushes. ACS APPLIED MATERIALS & INTERFACES 2015; 7:14537-14551. [PMID: 26067846 DOI: 10.1021/acsami.5b02912] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Poly((meth)acrylic acid) (P(M)AA) brushes possess a number of distinctive properties that are particularly attractive for biomedical applications. This minireview summarizes recent advances in the synthesis and biomedical applications of P(M)AA brushes and brushes containing P(M)AA segments. First, we review different surface-initiated polymerization (SIP) methods, with a focus on recent progress in the surface-initiated controlled/living radical polymerization (SI-CLRP) techniques used to generate P(M)AA brushes with a tailored structure. Next, we discuss biomolecule immobilization methods for P(M)AA brushes, including physical adsorption, covalent binding, and affinity interactions. Finally, typical biomedical applications of P(M)AA brushes are reviewed, and their performance is discussed based on their unique properties. We conclude that P(M)AA brushes are promising biomaterials, and more potential biomedical applications are expected to emerge with the further development of synthetic techniques and increased understanding of their interactions with biological systems.
Collapse
Affiliation(s)
- Zhenyuan Qu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Hong Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Hongchen Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| |
Collapse
|
11
|
Tunable immobilization of protein in anionic spherical polyelectrolyte brushes as observed by small-angle X-ray scattering. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3684-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|