• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4641567)   Today's Articles (2945)   Subscriber (50408)
For: Li Z, Kathiraser Y, Ashok J, Oemar U, Kawi S. Simultaneous tuning porosity and basicity of nickel@nickel-magnesium phyllosilicate core-shell catalysts for CO₂ reforming of CH₄. Langmuir 2014;30:14694-14705. [PMID: 25397692 DOI: 10.1021/la503340s] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Number Cited by Other Article(s)
1
Kim BJ, Park HR, Lee YL, Ahn SY, Kim KJ, Hong GR, Roh HS. Customized Ni-MgO-ZrO2 catalysts for the dry reforming of methane using coke oven gas: Optimizing the MgO content. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
2
Park KS, Kwon JH, Yu JS, Jeong SY, Jo DH, Chung CH, Bae JW. Catalytically stable monodispersed multi-core Ni-Co nanoparticles encapsulated with SiO2 shells for dry reforming of CH4 with CO2. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
3
Han K, Wang S, Hu N, Shi W, Wang F. Alloying Ni-Cu Nanoparticles Encapsulated in SiO2 Nanospheres for Synergistic Catalysts in CO2 Reforming with Methane Reaction. ACS APPLIED MATERIALS & INTERFACES 2022;14:23487-23495. [PMID: 35576615 DOI: 10.1021/acsami.2c03757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
4
Sintering resistant cubic ceria yolk Ni phyllosilicate shell catalyst for methane dry reforming. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
5
Shi C, Wang S, Ge X, Deng S, Chen B, Shen J. A review of different catalytic systems for dry reforming of methane: Conventional catalysis-alone and plasma-catalytic system. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101462] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
6
Recent Developments in Dielectric Barrier Discharge Plasma-Assisted Catalytic Dry Reforming of Methane over Ni-Based Catalysts. Catalysts 2021. [DOI: 10.3390/catal11040455] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]  Open
7
Copper Phyllosilicates-Derived Catalysts in the Production of Alcohols from Hydrogenation of Carboxylates, Carboxylic Acids, Carbonates, Formyls, and CO2: A Review. Catalysts 2021. [DOI: 10.3390/catal11020255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]  Open
8
Xue Y, Xu L, Chen M, Wu CE, Cheng G, Wang N, Hu X. Constructing Ni-based confinement catalysts with advanced performances toward the CO2 reforming of CH4: state-of-the-art review and perspectives. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01039e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
9
Smart Designs of Anti-Coking and Anti-Sintering Ni-Based Catalysts for Dry Reforming of Methane: A Recent Review. REACTIONS 2020. [DOI: 10.3390/reactions1020013] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]  Open
10
Jangam A, Das S, Dewangan N, Hongmanorom P, Hui WM, Kawi S. Conversion of CO2 to C1 chemicals: Catalyst design, kinetics and mechanism aspects of the reactions. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.08.049] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
11
Comparative study on the activities of different MgO surfaces in CO2 activation and hydrogenation. Catal Today 2020. [DOI: 10.1016/j.cattod.2020.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
12
Jing JY, Wei ZH, Zhang YB, Bai HC, Li WY. Carbon dioxide reforming of methane over MgO-promoted Ni/SiO2 catalysts with tunable Ni particle size. Catal Today 2020. [DOI: 10.1016/j.cattod.2020.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
13
Wang F, Wang Y, Zhang L, Zhu J, Han B, Fan W, Xu L, Yu H, Cai W, Li Z, Deng Z, Shi W. Performance enhancement of methane dry reforming reaction for syngas production over Ir/Ce0.9La0.1O2-nanorods catalysts. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.06.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
14
Wang F, Han K, Yu W, Zhao L, Wang Y, Wang X, Yu H, Shi W. Low Temperature CO2 Reforming with Methane Reaction over CeO2-Modified Ni@SiO2 Catalysts. ACS APPLIED MATERIALS & INTERFACES 2020;12:35022-35034. [PMID: 32644767 DOI: 10.1021/acsami.0c09371] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
15
Beheshti Askari A, al Samarai M, Morana B, Tillmann L, Pfänder N, Wandzilak A, Watts B, Belkhou R, Muhler M, DeBeer S. In Situ X-ray Microscopy Reveals Particle Dynamics in a NiCo Dry Methane Reforming Catalyst under Operating Conditions. ACS Catal 2020;10:6223-6230. [PMID: 32551182 PMCID: PMC7295368 DOI: 10.1021/acscatal.9b05517] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/30/2020] [Indexed: 02/03/2023]
16
Kim Y, Kwon S, Song Y, Na K. Catalytic CO2 hydrogenation using mesoporous bimetallic spinel oxides as active heterogeneous base catalysts with long lifetime. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2019.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
17
Zhang B, Tian Y, Chen D, Li L, Li G, Wang L, Zhang X, Liu G. Selective steam reforming of n ‐dodecane over stable subnanometric NiPt clusters encapsulated in Silicalite‐1 zeolite. AIChE J 2020. [DOI: 10.1002/aic.16917] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
18
Preparation, characterization and catalytic application of phyllosilicate: A review. Catal Today 2020. [DOI: 10.1016/j.cattod.2018.12.030] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
19
Lu M, Zhang X, Deng J, Kuboon S, Faungnawakij K, Xiao S, Zhang D. Coking-resistant dry reforming of methane over BN–nanoceria interface-confined Ni catalysts. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00537a] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
20
Wang Z, Chen T, Dewangan N, Li Z, Das S, Pati S, Li Z, Lin JYS, Kawi S. Catalytic mixed conducting ceramic membrane reactors for methane conversion. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00177e] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
21
Das S, Pérez-Ramírez J, Gong J, Dewangan N, Hidajat K, Gates BC, Kawi S. Core–shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chem Soc Rev 2020;49:2937-3004. [DOI: 10.1039/c9cs00713j] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
22
Ojeda-Niño OH, Gracia F, Daza C. Role of Pr on Ni–Mg–Al Mixed Oxides Synthesized by Microwave-Assisted Self-Combustion for Dry Reforming of Methane. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00557] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
23
Shoji S, Peng X, Imai T, Murphin Kumar PS, Higuchi K, Yamamoto Y, Tokunaga T, Arai S, Ueda S, Hashimoto A, Tsubaki N, Miyauchi M, Fujita T, Abe H. Topologically immobilized catalysis centre for long-term stable carbon dioxide reforming of methane. Chem Sci 2019;10:3701-3705. [PMID: 31015913 PMCID: PMC6461125 DOI: 10.1039/c8sc04965c] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/12/2019] [Indexed: 11/21/2022]  Open
24
Feng X, Liu J, Zhang P, Zhang Q, Xu L, Zhao L, Song X, Gao L. Highly coke resistant Mg-Ni/Al2O3 catalyst prepared via a novel magnesiothermic reduction for methane reforming catalysis with CO2: the unique role of Al-Ni intermetallics. NANOSCALE 2019;11:1262-1272. [PMID: 30603751 DOI: 10.1039/c8nr08447e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
25
Mousavi M, Nakhaei Pour A. Performance and structural features of LaNi0.5Co0.5O3 perovskite oxides for the dry reforming of methane: influence of the preparation method. NEW J CHEM 2019. [DOI: 10.1039/c9nj01805k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
26
Fujita T, Peng X, Yamaguchi A, Cho Y, Zhang Y, Higuchi K, Yamamoto Y, Tokunaga T, Arai S, Miyauchi M, Abe H. Nanoporous Nickel Composite Catalyst for the Dry Reforming of Methane. ACS OMEGA 2018;3:16651-16657. [PMID: 31458296 PMCID: PMC6643422 DOI: 10.1021/acsomega.8b02023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/20/2018] [Indexed: 06/10/2023]
27
Li Z, Wang Z, Kawi S. Sintering and Coke Resistant Core/Yolk Shell Catalyst for Hydrocarbon Reforming. ChemCatChem 2018. [DOI: 10.1002/cctc.201801266] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
28
Miao T, Zheng J, Wang J, Xu J, Alharbi NS, Zhang M. Facile synthesis of metal nanoparticles decorated magnetic hierarchical carbon microtubes with polydopamine-derived carbon layer for catalytic applications. Dalton Trans 2018;47:16578-16586. [PMID: 30417920 DOI: 10.1039/c8dt03495h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
29
Yao L, Galvez ME, Hu C, Da Costa P. Synthesis Gas Production via Dry Reforming of Methane over Manganese Promoted Nickel/Cerium–Zirconium Oxide Catalyst. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b04183] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
30
Li G, Cheng H, Zhao H, Lu X, Xu Q, Wu C. Hydrogen production by CO2 reforming of CH4 in coke oven gas over Ni–Co/MgAl2O4 catalysts. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.12.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
31
Design of Ni-ZrO2@SiO2 catalyst with ultra-high sintering and coking resistance for dry reforming of methane to prepare syngas. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.08.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
32
Li Z, Jiang B, Wang Z, Kawi S. High carbon resistant Ni@Ni phyllosilicate@SiO2 core shell hollow sphere catalysts for low temperature CH4 dry reforming. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.07.017] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
33
Li Z, Sibudjing K. Facile Synthesis of Multi-Ni-Core@Ni Phyllosilicate@CeO2 Shell Hollow Spheres with High Oxygen Vacancy Concentration for Dry Reforming of CH4. ChemCatChem 2018. [DOI: 10.1002/cctc.201800335] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
34
Pang Y, Zhong A, Xu Z, Jiang W, Gu L, Feng X, Ji W, Au CT. How do Core-Shell Structure Features Impact on the Activity/Stability of the Co-based Catalyst in Dry Reforming of Methane? ChemCatChem 2018. [DOI: 10.1002/cctc.201800327] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
35
Khairudin NF, Sukri MFF, Khavarian M, Mohamed AR. Understanding the performance and mechanism of Mg-containing oxides as support catalysts in the thermal dry reforming of methane. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018;9:1162-1183. [PMID: 29719767 PMCID: PMC5905271 DOI: 10.3762/bjnano.9.108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
36
Wang H, Liu M, Ma Y, Gong K, Liu W, Ran R, Weng D, Wu X, Liu S. Simple Strategy Generating Hydrothermally Stable Core–Shell Platinum Catalysts with Tunable Distribution of Acid Sites. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04327] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
37
Károlyi J, Németh M, Evangelisti C, Sáfrán G, Schay Z, Horváth A, Somodi F. Carbon dioxide reforming of methane over Ni–In/SiO2 catalyst without coke formation. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.09.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
38
Li Z, Das S, Hongmanorom P, Dewangan N, Wai MH, Kawi S. Silica-based micro- and mesoporous catalysts for dry reforming of methane. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00622a] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
39
Ashok J, Bian Z, Wang Z, Kawi S. Ni-phyllosilicate structure derived Ni–SiO2–MgO catalysts for bi-reforming applications: acidity, basicity and thermal stability. Catal Sci Technol 2018. [DOI: 10.1039/c7cy02475d] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
40
Li Z, Kawi S. Multi-Ni@Ni phyllosilicate hollow sphere for CO2 reforming of CH4: influence of Ni precursors on structure, sintering, and carbon resistance. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00024g] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
41
Li Z, Wang Z, Jiang B, Kawi S. Sintering resistant Ni nanoparticles exclusively confined within SiO2 nanotubes for CH4 dry reforming. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00767e] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
42
Wang C, Qiu Y, Zhang X, Zhang Y, Sun N, Zhao Y. Geometric design of a Ni@silica nano-capsule catalyst with superb methane dry reforming stability: enhanced confinement effect over the nickel site anchoring inside a capsule shell with an appropriate inner cavity. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01158c] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
43
Bian Z, Kawi S. Sandwich-Like Silica@Ni@Silica Multicore-Shell Catalyst for the Low-Temperature Dry Reforming of Methane: Confinement Effect Against Carbon Formation. ChemCatChem 2017. [DOI: 10.1002/cctc.201701024] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
44
Dou J, Bao Z, Yu F. Mesoporous Ni(OH) 2 /CeNi x O y Composites Derived Ni/CeNi x O y Catalysts for Dry Reforming of Methane. ChemCatChem 2017. [DOI: 10.1002/cctc.201701073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
45
Zhang G, Sun Y, Zhao P, Xu Y, Su A, Qu J. Characteristics of activated carbon modified with alkaline KMnO 4 and its performance in catalytic reforming of greenhouse gases CO 2 /CH 4. J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2017.05.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
46
Gao X, Tan Z, Hidajat K, Kawi S. Highly reactive Ni-Co/SiO2 bimetallic catalyst via complexation with oleylamine/oleic acid organic pair for dry reforming of methane. Catal Today 2017. [DOI: 10.1016/j.cattod.2016.07.013] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
47
Enhanced activity of CO2 methanation over Ni/CeO2-ZrO2 catalysts: Influence of preparation methods. Catal Today 2017. [DOI: 10.1016/j.cattod.2016.07.020] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
48
Zhao X, Cao Y, Li H, Zhang J, Shi L, Zhang D. Sc promoted and aerogel confined Ni catalysts for coking-resistant dry reforming of methane. RSC Adv 2017. [DOI: 10.1039/c6ra27266e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
49
Zhao X, Lu M, Li H, Fang J, Shi L, Zhang D. In situ preparation of Ni nanoparticles in cerium-modified silica aerogels for coking- and sintering-resistant dry reforming of methane. NEW J CHEM 2017. [DOI: 10.1039/c7nj00115k] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
50
Dong F, Zhu Y, Zhao H, Tang Z. Ratio-controlled synthesis of phyllosilicate-like materials as precursors for highly efficient catalysis of the formyl group. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00233e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA