1
|
Volkova A, Semenyuk P. Tyrosine phosphorylation of recombinant hirudin increases affinity to thrombin and antithrombotic activity. Proteins 2024; 92:329-342. [PMID: 37860993 DOI: 10.1002/prot.26616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/22/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Thrombin is one of the key enzymes of the blood coagulation system and a promising target for the development of anticoagulants. One of the most specific natural thrombin inhibitors is hirudin, contained in the salivary glands of medicinal leeches. The medicinal use of recombinant hirudin is limited because of the lack of sulfation on Tyr63, resulting in a 10-fold decrease in activity compared to native (sulfated) hirudin. In the present work, a set of hirudin derivatives was tested for affinity to thrombin: phospho-Tyr63, Tyr63(carboxymethyl)Phe, and Tyr63Glu mutants, which mimic Tyr63 sulfation and Gln65Glu mutant and lysine-succinylated hirudin, which enhance the overall negative charge of hirudin, as well as sulfo-hirudin and desulfo-hirudin as references. Using steered molecular dynamics simulations with subsequent umbrella sampling, phospho-hirudin was shown to exhibit the highest affinity to thrombin among all hirudin analogs, including native sulfo-hirudin; succinylated hirudin was also prospective. Phospho-hirudin exhibited the highest antithrombotic activity in in vitro assay in human plasma. Taking into account the modern methods for obtaining phospho-hirudin and succinylated hirudin, they are prospective as anticoagulants in clinical practice.
Collapse
Affiliation(s)
- Alina Volkova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Pavel Semenyuk
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
2
|
Abstract
Phosphorylation is a reversible, enzyme-controlled posttranslational process affecting approximately one-third of all proteins in eukaryotic cells at any given time. Any deviation in the degree and/or site of phosphorylation leads to an abnormal conformation of proteins, resulting in a decline or loss of their function. Knowledge of phosphorylation-related pathways is essential for understanding the understanding of the disease pathogenesis and for the design of new therapeutic strategies. Recent availability of various kinases at an affordable price differs in activity, specificity, and stability and provides the opportunity of studying and modulating this reaction in vitro. We can exploit this knowledge for other applications. There is an enormous potential to produce fully decorated and active recombinant proteins, either for biomedical or cosmetic applications. Closely related is the possibility to exploit current achievements and develop new safe and efficacious vaccines, drugs, and immunomodulators. In this review, we outlined the current enzyme-based possibilities for in vitro phosphorylation of peptides and recombinant proteins and the added value that immobilized kinases provide.
Collapse
|
3
|
Metal–organic frameworks (MOFs) based electrochemical biosensors for early cancer diagnosis in vitro. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213948] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Jennings CS, Rossman JS, Hourihan BA, Marshall RJ, Forgan RS, Blight BA. Immobilising giant unilamellar vesicles with zirconium metal-organic framework anchors. SOFT MATTER 2021; 17:2024-2027. [PMID: 33599656 DOI: 10.1039/d0sm02188a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lipid bilayer vesicles have provided a window into the function and fundamental properties of cells. However, as is the case for most living and soft matter, vesicles do not remain still. This necessitates some microscopy experiments to include a preparatory immobilisation step. Here, we describe a straightforward method to immobilise giant unilamellar vesicles (GUVs) using zirconium-based metal-organic frameworks (MOFs) and demonstrate that GUVs bound in this way will stay in position on a timescale of minutes to hours.
Collapse
Affiliation(s)
- Christopher S Jennings
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| | - Jeremy S Rossman
- School of Biosciences, University of Kent, Canterbury, CT2 7NH, UK
| | - Braeden A Hourihan
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| | - Ross J Marshall
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Ross S Forgan
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Barry A Blight
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| |
Collapse
|
5
|
Wang L, Yang Y, Liu Y, Ning L, Xiang Y, Li G. Bridging exosome and liposome through zirconium–phosphate coordination chemistry: a new method for exosome detection. Chem Commun (Camb) 2019; 55:2708-2711. [DOI: 10.1039/c9cc00220k] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An exosomes–zirconium–liposomes sandwich structure is proposed to detect exosomes by using zirconium–phosphate coordination chemistry with lower cost, no modified label, and simplicity.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences
- Nanjing University
- Nanjing
- P. R. China
| | - Yucai Yang
- Department of Oncology, the Second Affiliated Hospital of Anhui Medical University
- Hefei
- P. R. China
| | - Yunfei Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences
- Nanjing University
- Nanjing
- P. R. China
| | - Limin Ning
- College of Medicine and Life Sciences, Nanjing University of Chinese Medicine
- Nanjing
- P. R. China
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences
- Nanjing University
- Nanjing
- P. R. China
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences
- Nanjing University
- Nanjing
- P. R. China
- Center for Molecular Recognition and Biosensing
| |
Collapse
|
6
|
Zhang ZH, Duan FH, Tian JY, He JY, Yang LY, Zhao H, Zhang S, Liu CS, He LH, Chen M, Chen DM, Du M. Aptamer-Embedded Zirconium-Based Metal-Organic Framework Composites Prepared by De Novo Bio-Inspired Approach with Enhanced Biosensing for Detecting Trace Analytes. ACS Sens 2017; 2:982-989. [PMID: 28750523 DOI: 10.1021/acssensors.7b00236] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A series of Zr-based metal-organic framework (MOF) composites embedded with three kinds of aptamer strands (509-MOF@Apt) were achieved by a one-step de novo synthetic approach. A platform for ultrasensitive detection of analytes, namely, thrombin, kanamycin, and carcinoembryonic antigen (CEA), was also established. Considering the conformational changes caused by the binding interactions between aptamer strands and targeted molecules, the label-free electrochemical aptasensors based on 509-MOF@Apt composites could be developed to detect various target molecules. By comparing the common fabrication approaches of aptasensors, a distinct determination mechanism was presented through analysis of the electrochemical measurements on different interaction behaviors between probe aptamer strands and 509-MOF materials. The optimized aptasensors based on 509-MOFs@Apt demonstrated excellent sensitivity (with the detection limit of 0.40, 0.37, and 0.21 pg mL-1 for CEA, thrombin, and kanamycin, respectively), stability, repeatability, and applicability. This work will provide a new platform for direct and feasible detection in biosensing related to clinical diagnostics and therapeutics, and further, extend the scope of potential applications for MOF materials.
Collapse
Affiliation(s)
- Zhi-Hong Zhang
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Feng-He Duan
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Jia-Yue Tian
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Jun-Ying He
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Long-Yu Yang
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Hui Zhao
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Shuai Zhang
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Chun-Sen Liu
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Ling-Hao He
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Min Chen
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Di-Ming Chen
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Miao Du
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| |
Collapse
|
7
|
Forato F, Liu H, Benoit R, Fayon F, Charlier C, Fateh A, Defontaine A, Tellier C, Talham DR, Queffélec C, Bujoli B. Comparison of Zirconium Phosphonate-Modified Surfaces for Immobilizing Phosphopeptides and Phosphate-Tagged Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5480-5490. [PMID: 27166821 DOI: 10.1021/acs.langmuir.6b01020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Different routes for preparing zirconium phosphonate-modified surfaces for immobilizing biomolecular probes are compared. Two chemical-modification approaches were explored to form self-assembled monolayers on commercially available primary amine-functionalized slides, and the resulting surfaces were compared to well-characterized zirconium phosphonate monolayer-modified supports prepared using Langmuir-Blodgett methods. When using POCl3 as the amine phosphorylating agent followed by treatment with zirconyl chloride, the result was not a zirconium-phosphonate monolayer, as commonly assumed in the literature, but rather the process gives adsorbed zirconium oxide/hydroxide species and to a lower extent adsorbed zirconium phosphate and/or phosphonate. Reactions giving rise to these products were modeled in homogeneous-phase studies. Nevertheless, each of the three modified surfaces effectively immobilized phosphopeptides and phosphopeptide tags fused to an affinity protein. Unexpectedly, the zirconium oxide/hydroxide modified surface, formed by treating the amine-coated slides with POCl3/Zr(4+), afforded better immobilization of the peptides and proteins and efficient capture of their targets.
Collapse
Affiliation(s)
- Florian Forato
- Chimie et Interdisciplinarité: Synthèse Analyse Modélisation (CEISAM), Université de Nantes, CNRS, UMR 6230 , 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Hao Liu
- Department of Chemistry, University of Florida , Gainesville, Florida 32611-7200, United States
| | - Roland Benoit
- CRMD-CNRS, 1B rue de la férollerie, 45071 Orléans Cedex 2, France
| | - Franck Fayon
- CNRS, CEMHTI UPR3079, Université de Orléans , F-45071 Orléans, France
| | - Cathy Charlier
- Fonctionnalité et Ingénierie des Protéines (UFIP), Université de Nantes, CNRS, UMR 6286 , 2 rue de la Houssinière BP 92208, 44322 Nantes Cedex 3, France
| | - Amina Fateh
- Fonctionnalité et Ingénierie des Protéines (UFIP), Université de Nantes, CNRS, UMR 6286 , 2 rue de la Houssinière BP 92208, 44322 Nantes Cedex 3, France
| | - Alain Defontaine
- Fonctionnalité et Ingénierie des Protéines (UFIP), Université de Nantes, CNRS, UMR 6286 , 2 rue de la Houssinière BP 92208, 44322 Nantes Cedex 3, France
| | - Charles Tellier
- Fonctionnalité et Ingénierie des Protéines (UFIP), Université de Nantes, CNRS, UMR 6286 , 2 rue de la Houssinière BP 92208, 44322 Nantes Cedex 3, France
| | - Daniel R Talham
- Department of Chemistry, University of Florida , Gainesville, Florida 32611-7200, United States
| | - Clémence Queffélec
- Chimie et Interdisciplinarité: Synthèse Analyse Modélisation (CEISAM), Université de Nantes, CNRS, UMR 6230 , 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Bruno Bujoli
- Chimie et Interdisciplinarité: Synthèse Analyse Modélisation (CEISAM), Université de Nantes, CNRS, UMR 6230 , 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| |
Collapse
|
8
|
Goux M, Fateh A, Defontaine A, Cinier M, Tellier C. In vivo phosphorylation of a peptide tag for protein purification. Biotechnol Lett 2016; 38:767-72. [DOI: 10.1007/s10529-016-2040-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/06/2016] [Indexed: 01/31/2023]
|
9
|
Zhang GY, Deng SY, Cai WR, Cosnier S, Zhang XJ, Shan D. Magnetic zirconium hexacyanoferrate(II) nanoparticle as tracing tag for electrochemical DNA assay. Anal Chem 2015; 87:9093-100. [PMID: 26259126 DOI: 10.1021/acs.analchem.5b02395] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Novel multifunctional magnetic zirconium hexacyanoferrate nanoparticles (ZrHCF MNPs) were prepared, which consisted of magnetic beads (MBs) inner core and zirconium hexacyanoferrate(II) (ZrHCF) outer shell. As an artificial peroxidase, the ZrHCF MNPs exhibited remarkable electrocatalytic properties in the reduction of H2O2 at 0.2 V vs saturated calomel electrode (SCE). On the basis of the bonding interaction between Zr (IV) of the shell ZrHCF framework and phosphonate groups, the 5'-phosphorylated ssDNA probes with a consecutive stretch of guanines as a spacer could be incorporated in ZrHCF MNPs easily. Thus, DNA-grafted ZrHCF MNPs could be simply obtained by magnetic separation. The prepared nanoelectrocatalyst was further used as signal nanoprobe for the ultrasensitive electrochemical DNA assay. Under optimal conditions, the proposed biosensor presents high sensitivity for detecting target DNA with a linear range from 1.0 fM to 1.0 nM and a low detection limit of 0.43 fM. Moreover, it exhibits good performance with excellent selectivity, high stability, and acceptable fabrication reproducibility.
Collapse
Affiliation(s)
- Guang-Yao Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology , Nanjing, Jiangsu 210094, China
| | - Sheng-Yuan Deng
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology , Nanjing, Jiangsu 210094, China
| | - Wen-Rong Cai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology , Nanjing, Jiangsu 210094, China
| | - Serge Cosnier
- University of Grenoble Alpes-CNRS , DCM UMR 5250, F-38000 Grenoble, France
| | - Xue-Ji Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology , Nanjing, Jiangsu 210094, China
| | - Dan Shan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology , Nanjing, Jiangsu 210094, China
| |
Collapse
|