1
|
Mapile AN, Scatena LF. Bulking up: the impact of polymer sterics on emulsion stability. SOFT MATTER 2024; 20:7471-7483. [PMID: 39258873 DOI: 10.1039/d4sm00772g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Encapsulation of hydrophobic active ingredients is critical for targeted drug delivery as water-insoluble drugs dominate the pharmaceutical marketplace. We previously demonstrated hexadecane-in-water emulsions stabilized with a pH-tunable polymer, poly(acrylic acid) (PAA), via a steric layer preventing particle aggregation. Using vibrational sum frequency scattering spectroscopy (VSFSS), here we probe the influence of steric hindrance on emulsion colloidal stability by tailoring the molecular weight of PAA and by adding an additional methyl group to the polymer backbone via poly(methacrylic acid) (PMAA) at pH 2, 4, and 6. At low polymer molecular weight (2 and 10 kDa), PAA adsorption is entropy driven and akin to surfactant-mediated stabilization. With 450 kDa PAA, the longer polymer chain emphasizes enthalpically favored polymer-oil interactions to initially coat the surface, and forms layers at increasing molecular weight (1000 and 4000 kDa). PMAA exhibits better oil-solubility than PAA at low concentrations but cannot accommodate the steric hindrance at higher concentrations leading to disorder. Finally, we connect our molecular-level understanding of PAA ordering with temperature-dependent dynamic light scattering experiments and observe that emulsions coated with PAA at pH 2 and 4 maintain colloidal stability from 0-90 °C, making PAA a promising polymer for hydrophobic drug delivery.
Collapse
Affiliation(s)
- Ashley N Mapile
- University of Oregon Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR 97403, USA.
| | - Lawrence F Scatena
- University of Oregon Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
2
|
Kurapati R, Natarajan U. Complex role of chemical nature and tacticity in the adsorption free energy of carboxylic acid polymers at the oil-water interface: molecular dynamics simulations. Phys Chem Chem Phys 2023; 25:27783-27797. [PMID: 37814803 DOI: 10.1039/d3cp02754f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Scientific understanding of the molecular structure and adsorption of polymers at oil-water liquid interfaces is very limited. In this study the adsorption free energy at the oil (CCl4)-water interface was estimated using umbrella sampling molecular dynamics simulations for six carboxylate type vinyl polymers differing in hydrophobic nature and tacticity: isotactic and syndiotactic poly(acrylic acid) (i-PAA, s-PAA), isotactic and syndiotactic poly(methacrylic acid) (i-PMA, s-PMA), and atactic and syndiotactic poly(ethylacrylic acid) (a-PEA, s-PEA). ΔGads values are in the order i-PMA < a-PEA < s-PEA < s-PAA < i-PAA < s-PMA. The results show the significant and complex influence of the chemical nature as well as tacticity of the polymer on its adsorption free energy as related to hydrogen bonding and orientation of bonds with respect to oil and water phases. The influence of tacticity is found to be the highest for PMA, which is interpreted to occur due to the balance between interactions among side groups and those occurring between side groups and solvent. Interactions between side-groups are crucial for determining the conformation of PAA (most hydrophilic) and the solvation of the side-group in water is crucial for determining the conformation of PEA (most hydrophobic). The adsorption of PMA represents the transition between these two dominating effects. The molecular contributions to the enthalpy of adsorption indicate that adsorption is favored mainly through two interactions: polymer-CCl4 and water-water.
Collapse
Affiliation(s)
- Raviteja Kurapati
- Macromolecular Modeling and Simulation Laboratory, Department of Chemical Engineering, Indian Institute of Technology (IIT) Madras, Chennai, 600036, India.
| | - Upendra Natarajan
- Macromolecular Modeling and Simulation Laboratory, Department of Chemical Engineering, Indian Institute of Technology (IIT) Madras, Chennai, 600036, India.
| |
Collapse
|
3
|
Kurapati R, Natarajan U. Tacticity and Ionization Effects on Adsorption Behavior of Poly(acrylic acid) and Poly(methacrylic acid) at the CCl 4–H 2O Interface Revealed by MD Simulations. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Raviteja Kurapati
- Macromolecular Modeling and Simulation Laboratory, Department of Chemical Engineering, Indian Institute of Technology (IIT) Madras, Chennai600036, India
| | - Upendra Natarajan
- Macromolecular Modeling and Simulation Laboratory, Department of Chemical Engineering, Indian Institute of Technology (IIT) Madras, Chennai600036, India
| |
Collapse
|
4
|
Kurapati R, Natarajan U. New insights into adsorption structure and hydration of polymer at oil-water interface obtained by molecular dynamics simulations: Isotactic poly(methacrylic acid). POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
5
|
Lin L, Chowdhury AU, Ma YZ, Sacci RL, Katsaras J, Hong K, Collier CP, Carrillo JMY, Doughty B. Ion Pairing and Molecular Orientation at Liquid/Liquid Interfaces: Self-Assembly and Function. J Phys Chem B 2022; 126:2316-2323. [PMID: 35289625 DOI: 10.1021/acs.jpcb.2c01148] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Molecular orientation plays a pivotal role in defining the functionality and chemistry of interfaces, yet accurate measurements probing this important feature are few, due, in part, to technical and analytical limitations in extracting information from molecular monolayers. For example, buried liquid/liquid interfaces, where a complex and poorly understood balance of inter- and intramolecular interactions impart structural constraints that facilitate the formation of supramolecular assemblies capable of new functions, are difficult to probe experimentally. Here, we use vibrational sum-frequency generation spectroscopy, numerical polarization analysis, and atomistic molecular dynamics simulations to probe molecular orientations at buried oil/aqueous interfaces decorated with amphiphilic oligomers. We show that the orientation of self-assembled oligomers changes upon the addition of salts in the aqueous phase. The evolution of these structures can be described by competitive ion effects in the aqueous phase altering the orientations of the tails extending into the oil phase. These specific anionic effects occur via interfacial ion pairing and associated changes in interfacial solvation and hydrogen-bonding networks. These findings provide more quantitative insight into orientational changes encountered during self-assembly and pave the way for the design of functional interfaces for chemical separations, neuromorphic computing applications, and related biomimetic systems.
Collapse
Affiliation(s)
- Lu Lin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Azhad U Chowdhury
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Robert L Sacci
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - John Katsaras
- Labs and Soft Matter Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.,Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - C Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jan-Michael Y Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
6
|
Gordon BP, Lindquist GA, Crawford ML, Wren SN, Moore FG, Scatena LF, Richmond GL. Diol it up: The influence of NaCl on methylglyoxal surface adsorption and hydration state at the air–water interface. J Chem Phys 2020; 153:164705. [DOI: 10.1063/5.0017803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Brittany P. Gordon
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, USA
- Department of Chemistry, University of California, Irvine, 1214 Natural Sciences II, Irvine, California 92697, USA
| | - Grace A. Lindquist
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, USA
| | - Michael L. Crawford
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, USA
| | - Sumi N. Wren
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, USA
- Environment and Climate Change Canada (ECCC), Air Quality Research Division, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Frederick G. Moore
- Department of Physics, Whitman College, Walla Walla, Washington 99362, USA
| | - Lawrence F. Scatena
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, USA
| | - Geraldine L. Richmond
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
7
|
Gordon BP, Moore FG, Scatena LF, Richmond GL. On the Rise: Experimental and Computational Vibrational Sum Frequency Spectroscopy Studies of Pyruvic Acid and Its Surface-Active Oligomer Species at the Air–Water Interface. J Phys Chem A 2019; 123:10609-10619. [DOI: 10.1021/acs.jpca.9b08854] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Brittany P. Gordon
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, United States
| | - Frederick G. Moore
- Department of Physics, Whitman College, Walla Walla, Washington 99362, United States
| | - Lawrence F. Scatena
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, United States
| | - Geraldine L. Richmond
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
8
|
Gordon BP, Moore FG, Scatena LF, Valley NA, Wren SN, Richmond GL. Model Behavior: Characterization of Hydroxyacetone at the Air-Water Interface Using Experimental and Computational Vibrational Sum Frequency Spectroscopy. J Phys Chem A 2018; 122:3837-3849. [PMID: 29608301 DOI: 10.1021/acs.jpca.8b01193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Small atmospheric aldehydes and ketones are known to play a significant role in the formation of secondary organic aerosols (SOA). However, many of them are difficult to experimentally isolate, as they tend to form hydration and oligomer species. Hydroxyacetone (HA) is unusual in this class as it contributes to SOA while existing predominantly in its unhydrated monomeric form. This allows HA to serve as a valuable model system for similar secondary organic carbonyls. In this paper the surface behavior of HA at the air-water interface has been investigated using vibrational sum frequency (VSF) spectroscopy and Wilhelmy plate surface tensiometry in combination with computational molecular dynamics simulations and density functional theory calculations. The experimental results demonstrate that HA has a high degree of surface activity and is ordered at the interface. Furthermore, oriented water is observed at the interface, even at high HA concentrations. Spectral features also reveal the presence of both cis and trans HA conformers at the interface, in differing orientations. Molecular dynamics results indicate conformer dependent shifts in HA orientation between the subsurface (∼5 Å deep) and surface. Together, these results provide a picture of a highly dynamic, but statistically ordered, interface composed of multiple HA conformers with solvated water. These results have implications for HA's behavior in aqueous particles, which may affect its role in the atmosphere and SOA formation.
Collapse
Affiliation(s)
- Brittany P Gordon
- Department of Chemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403 , United States
| | - Frederick G Moore
- Department of Physics , Whitman College , Walla Walla , Washington 99362 , United States
| | - Lawrence F Scatena
- Department of Chemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403 , United States
| | - Nicholas A Valley
- Department of Chemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403 , United States.,Department of Science and Mathematics , California Northstate University College of Health Sciences , Rancho Cordova , California 95670 , United States
| | - Sumi N Wren
- Department of Chemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403 , United States.,Department of Air Quality Process Research , Environment and Climate Change Canada (ECCC) , Toronto , Ontario M3H 5T4 , Canada
| | - Geraldine L Richmond
- Department of Chemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403 , United States
| |
Collapse
|
9
|
McWilliams LE, Valley NA, Vincent NM, Richmond GL. Interfacial Insights into a Carbon Capture System: CO2 Uptake to an Aqueous Monoethanolamine Surface. J Phys Chem A 2017; 121:7956-7967. [DOI: 10.1021/acs.jpca.7b07742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laura E. McWilliams
- Department
of Chemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Nicholas A. Valley
- California Northstate University College of Health Sciences, Rancho Cordova, California 95670, United States
| | - Nina M. Vincent
- Department
of Chemistry, University of Oregon, Eugene, Oregon 97403, United States
| | | |
Collapse
|
10
|
Palchowdhury S, Bhargava B. Insights into the structure and dynamics at the hexadecane droplet–water interface in the presence of 1-alkanols as emulsifiers: Molecular dynamics studies. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.03.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Valley NA, Richmond GL. Solvation Station: Microsolvation for Modeling Vibrational Sum-Frequency Spectra of Acids at Aqueous Interfaces. J Chem Theory Comput 2015; 11:4780-90. [DOI: 10.1021/acs.jctc.5b00484] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nicholas A. Valley
- Department of Chemistry, University of Oregon, Eugene, Oregon 97403, United States
| | | |
Collapse
|
12
|
McWilliams LE, Valley NA, Wren SN, Richmond GL. A means to an interface: investigating monoethanolamine behavior at an aqueous surface. Phys Chem Chem Phys 2015. [PMID: 26220791 DOI: 10.1039/c5cp02931g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of amine scrubbers to trap carbon dioxide from flue gas streams is one of the most promising avenues for atmospheric carbon dioxide reduction. However, modifications are necessary to efficiently scale these scrubbers for use in fossil fuel plants. Current advances in tailoring amines for CO2 capture involve improvements of bulk kinetic and thermodynamic parameters, with little consideration to surface chemistry and behavior. Aqueous alkanolamine solutions, such as monoethanolamine (MEA), are currently highly favored sorbents in CO2 post-combustion capture. Although numerous studies have explored MEA-CO2 chemistry at the macroscopic scale, few have investigated the role of the interface in the gas adsorption process. Additionally, as these amines become more industrially ubiquitous, their presence on and the need to understand their behavior at atmospheric and environmental surfaces will increase. This study investigates the surface behavior of monoethanolamine at the vapor/water interface, with particular focus on MEA's surface orientation and footprint. Using vibrational sum frequency spectroscopy, surface tensiometry, and computational techniques, MEA is found to adopt a constrained gauche interfacial conformation with its methylene backbone oriented toward the vapor phase and its functional groups solvated in the bulk solution. Computational and experimental analysis agree well, giving a complete picture with vibrational mode assignments and surface orientation of MEA. These findings can assist in the tailoring of amine structures or to facilitate improvements in engineering design to exploit favorable surface chemistry, as well as to serve as a starting point toward understanding aqueous amine surface behavior relevant to environmental systems.
Collapse
|
13
|
Chase HM, Psciuk BT, Strick BL, Thomson RJ, Batista VS, Geiger FM. Beyond local group modes in vibrational sum frequency generation. J Phys Chem A 2015; 119:3407-14. [PMID: 25774902 DOI: 10.1021/acs.jpca.5b02208] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We combine deuterium labeling, density functional theory calculations, and experimental vibrational sum frequency generation spectroscopy into a form of "counterfactual-enabled molecular spectroscopy" for producing reliable vibrational mode assignments in situations where local group mode approximations are insufficient for spectral interpretation and vibrational mode assignments. We demonstrate the method using trans-β-isoprene epoxydiol (trans-β-IEPOX), a first-generation product of isoprene relevant to atmospheric aerosol formation, and one of its deuterium-labeled isotopologues at the vapor/silica interface. We use our method to determine that the SFG responses that we obtain from trans-β-IEPOX are almost exclusively due to nonlocal modes involving multiple C-H groups oscillating at the same frequency as one vibrational mode. We verify our assignments using deuterium labeling and use DFT calculations to predict SFG spectra of additional isotopologues that have not yet been synthesized. Finally, we use our new insight to provide a viable alternative to molecular orientation analysis methods that rely on local mode approximations in cases where the local mode approximation is not applicable.
Collapse
Affiliation(s)
- Hilary M Chase
- †Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Brian T Psciuk
- ‡Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Benjamin L Strick
- †Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Regan J Thomson
- †Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Victor S Batista
- ‡Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Franz M Geiger
- †Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|