1
|
Moazeni M, Reza Maracy M, Ghazavi R, Bedia J, Andrew Lin KY, Ebrahimi A. Removal of triclosan from aqueous matrixes: A systematic review with detailed meta-analysis. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
2
|
Márquez-Ríos E, Robles-García MÁ, Rodríguez-Félix F, Aguilar-López JA, Reynoso-Marín FJ, Tapia-Hernández JA, Cinco-Moroyoqui FJ, Ceja-Andrade I, González-Vega RI, Barrera-Rodríguez A, Aguilar-Martínez J, Omar-Rueda-Puente E, Del-Toro-Sánchez CL. Effect of Ionic Liquids in the Elaboration of Nanofibers of Cellulose Bagasse from Agave tequilana Weber var. azul by Electrospinning Technique. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2819. [PMID: 36014684 PMCID: PMC9412263 DOI: 10.3390/nano12162819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 05/16/2023]
Abstract
The objective of this paper was to report the effect of ionic liquids (ILs) in the elaboration of nanofibers of cellulose bagasse from Agave tequilana Weber var. azul by the electrospinning method. The ILs used were 1-butyl-3-methylimidazolium chloride (BMIMCl), and DMSO was added as co-solvent. To observe the effect of ILs, this solvent was compared with the organic solvent TriFluorAcetic acid (TFA). The nanofibers were characterized by transmission electron microscopy (TEM), X-ray, Fourier transform-infrared using attenuated total reflection (FTIR-ATR) spectroscopy, and thermogravimetric analysis (TGA). TEM showed different diameters (ranging from 35 to 76 nm) of cellulose nanofibers with ILs (CN ILs). According to X-ray diffraction, a notable decrease of the crystalline structure of cellulose treated with ILs was observed, while FTIR-ATR showed two bands that exhibit the physical interaction between cellulose nanofibers and ILs. TGA revealed that CN ILs exhibit enhanced thermal properties due to low or null cellulose crystallinity. CN ILs showed better characteristics in all analyses than nanofibers elaborated with TFA organic solvent. Therefore, CN ILs provide new alternatives for cellulose bagasse. Due to their small particle size, CN ILs could have several applications, including in food, pharmaceutical, textile, and material areas, among others.
Collapse
Affiliation(s)
- Enrique Márquez-Ríos
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Hermosillo 83000, Sonora, Mexico
| | - Miguel Ángel Robles-García
- Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Universidad de Gaudalajara, Av. Universidad 1115, Ocotlán 47820, Jalisco, Mexico
| | - Francisco Rodríguez-Félix
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Hermosillo 83000, Sonora, Mexico
| | - José Antonio Aguilar-López
- Departamento de Genómica Alimentaria, Universidad de la Ciénega del Estado de Michoacán de Ocampo (UCEMICH), Avenida Universidad 3000, Colonia Lomas de la Universidad, Sahuayo 59103, Michoacan, Mexico
| | - Francisco Javier Reynoso-Marín
- Departamento de Genómica Alimentaria, Universidad de la Ciénega del Estado de Michoacán de Ocampo (UCEMICH), Avenida Universidad 3000, Colonia Lomas de la Universidad, Sahuayo 59103, Michoacan, Mexico
| | - José Agustín Tapia-Hernández
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Hermosillo 83000, Sonora, Mexico
| | - Francisco Javier Cinco-Moroyoqui
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Hermosillo 83000, Sonora, Mexico
| | - Israel Ceja-Andrade
- Departamento de Física, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. M. García-Barragán 1451, Guadalajara 44430, Jalisco, Mexico
| | - Ricardo Iván González-Vega
- Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Universidad de Gaudalajara, Av. Universidad 1115, Ocotlán 47820, Jalisco, Mexico
| | - Arturo Barrera-Rodríguez
- Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Gaudalajara, Av. Universidad 1115, Ocotlán 47820, Jalisco, Mexico
| | - Jacobo Aguilar-Martínez
- Departemento de Ciencias Tecnológicas, Centro Universitario de la Ciénega, Universidad de Gaudalajara, Av. Universidad 1115, Ocotlán 47820, Jalisco, Mexico
| | - Edgar Omar-Rueda-Puente
- Departamento de Agricultura y Ganadería, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Hermosillo 83000, Sonora, Mexico
| | - Carmen Lizette Del-Toro-Sánchez
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Hermosillo 83000, Sonora, Mexico
| |
Collapse
|
3
|
Preparations and Properties of Ionic Liquid-Assisted Electrospun Biodegradable Polymer Fibers. Polymers (Basel) 2022; 14:polym14122308. [PMID: 35745884 PMCID: PMC9231014 DOI: 10.3390/polym14122308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
Enhanced awareness of the environment and environmental conservation has inspired researchers to search for replacements for the use of volatile organic compounds in the processing of polymers. Recently, ionic liquids have been utilized as solvents for solvating natural and synthetic biodegradable polymers since they are non-volatile, recyclable, and non-flammable. They have also been utilized to prepare electrospun fibers from biodegradable polymers. In this concise review, examples of natural and synthetic biodegradable polymers that are generally employed as materials for the preparation of electrospun fibers are shown. In addition, examples of ionic liquids that are utilized in the electrospinning of biodegradable polymers are also displayed. Furthermore, the preparations of biodegradable polymer electrospinning solutions utilizing ionic liquids are demonstrated. Additionally, the properties of electrospun biodegradable polymer fibers assisted by different ionic liquids are also concisely reviewed. Besides this, the information acquired from this review provides a much deeper understanding of the preparation of electrospinning solutions and the essential properties of electrospun biodegradable polymer fibers. In summary, this concise review discovered that different functions (solvent or additive) of ionic liquids could provide distinct properties to electrospun fibers.
Collapse
|
4
|
Cellulose-Based Nanofibers Processing Techniques and Methods Based on Bottom-Up Approach-A Review. Polymers (Basel) 2022; 14:polym14020286. [PMID: 35054691 PMCID: PMC8781687 DOI: 10.3390/polym14020286] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/27/2021] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
In the past decades, cellulose (one of the most important natural polymers), in the form of nanofibers, has received special attention. The nanofibrous morphology may provide exceptional properties to materials due to the high aspect ratio and dimensions in the nanometer range of the nanofibers. The first feature may lead to important consequences in mechanical behavior if there exists a particular orientation of fibers. On the other hand, nano-sizes provide a high surface-to-volume ratio, which can have important consequences on many properties, such as the wettability. There are two basic approaches for cellulose nanofibers preparation. The top-down approach implies the isolation/extraction of cellulose nanofibrils (CNFs) and nanocrystals (CNCs) from a variety of natural resources, whereby dimensions of isolates are limited by the source of cellulose and extraction procedures. The bottom-up approach can be considered in this context as the production of nanofibers using various spinning techniques, resulting in nonwoven mats or filaments. During the spinning, depending on the method and processing conditions, good control of the resulting nanofibers dimensions and, consequently, the properties of the produced materials, is possible. Pulp, cotton, and already isolated CNFs/CNCs may be used as precursors for spinning, alongside cellulose derivatives, namely esters and ethers. This review focuses on various spinning techniques to produce submicrometric fibers comprised of cellulose and cellulose derivatives. The spinning of cellulose requires the preparation of spinning solutions; therefore, an overview of various solvents is presented showing their influence on spinnability and resulting properties of nanofibers. In addition, it is shown how bottom-up spinning techniques can be used for recycling cellulose waste into new materials with added value. The application of produced cellulose fibers in various fields is also highlighted, ranging from drug delivery systems, high-strength nonwovens and filaments, filtration membranes, to biomedical scaffolds.
Collapse
|
5
|
Multifunctional Membranes-A Versatile Approach for Emerging Pollutants Removal. MEMBRANES 2022; 12:membranes12010067. [PMID: 35054593 PMCID: PMC8778428 DOI: 10.3390/membranes12010067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023]
Abstract
This paper presents a comprehensive literature review surveying the most important polymer materials used for electrospinning processes and applied as membranes for the removal of emerging pollutants. Two types of processes integrate these membrane types: separation processes, where electrospun polymers act as a support for thin film composites (TFC), and adsorption as single or coupled processes (photo-catalysis, advanced oxidation, electrochemical), where a functionalization step is essential for the electrospun polymer to improve its properties. Emerging pollutants (EPs) released in the environment can be efficiently removed from water systems using electrospun membranes. The relevant results regarding removal efficiency, adsorption capacity, and the size and porosity of the membranes and fibers used for different EPs are described in detail.
Collapse
|
6
|
|
7
|
Abbas WA, Sharafeldin IM, Omar MM, Allam NK. Novel mineralized electrospun chitosan/PVA/TiO 2 nanofibrous composites for potential biomedical applications: computational and experimental insights. NANOSCALE ADVANCES 2020; 2:1512-1522. [PMID: 36132310 PMCID: PMC9419788 DOI: 10.1039/d0na00042f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/24/2020] [Indexed: 05/29/2023]
Abstract
Electrospun nanofibrous materials serve as potential solutions for several biomedical applications as they possess the ability of mimicking the extracellular matrix (ECM) of tissues. Herein, we report on the fabrication of novel nanostructured composite materials for potential use in biomedical applications that require a suitable environment for cellular viability. Anodized TiO2 nanotubes (TiO2 NTs) in powder form, with different concentrations, were incorporated as a filler material into a blend of chitosan (Cs) and polyvinyl alcohol (PVA) to synthesize composite polymeric electrospun nanofibrous materials. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), nanoindentation, Brunauer-Emmett-Teller (BET) analysis, and MTT assay for cell viability techniques were used to characterize the architectural, structural, mechanical, physical, and biological properties of the fabricated materials. Additionally, molecular dynamics (MD) modelling was performed to evaluate the mechanical properties of the polymeric PVA/chitosan matrix upon reinforcing the structure with TiO2 anatase nanotubes. The Young's modulus, shear and bulk moduli, Poisson's ratio, Lame's constants, and compressibility of these composites have been computed using the COMPASS molecular mechanics force fields. The MD simulations demonstrated that the inclusion of anatase TiO2 improves the mechanical properties of the composite, which is consistent with our experimental findings. The results revealed that the mineralized material improved the mechanical strength and the physical properties of the composite. Hence, the composite material has potential for use in biomedical applications.
Collapse
Affiliation(s)
- Walaa A Abbas
- Energy Materials Laboratory (EML), School of Sciences and Engineering (SSE), The American University in Cairo (AUC) New Cairo 11835 Egypt
| | - Icell M Sharafeldin
- Energy Materials Laboratory (EML), School of Sciences and Engineering (SSE), The American University in Cairo (AUC) New Cairo 11835 Egypt
| | - Mostafa M Omar
- Energy Materials Laboratory (EML), School of Sciences and Engineering (SSE), The American University in Cairo (AUC) New Cairo 11835 Egypt
| | - Nageh K Allam
- Energy Materials Laboratory (EML), School of Sciences and Engineering (SSE), The American University in Cairo (AUC) New Cairo 11835 Egypt
| |
Collapse
|
8
|
Shi X, Zhang X, Ma L, Xiang C, Li L. TiO 2-Doped Chitosan Microspheres Supported on Cellulose Acetate Fibers for Adsorption and Photocatalytic Degradation of Methyl Orange. Polymers (Basel) 2019; 11:E1293. [PMID: 31382392 PMCID: PMC6723085 DOI: 10.3390/polym11081293] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 01/06/2023] Open
Abstract
Chitosan/cellulose acetate (CS/CA) used as a biopolymer systema, with the addition of TiO2 as photocatalyst (C-T/CA) were fabricated by alternating electrospinning/electrospraying technology. The uniform dispersion of TiO2 and its recovery after the removal of methyl orange (MO) was achieved by incorporating TiO2 in CS electrosprayed hemispheres. The effects of pH values, contact time, and the amount of TiO2 on adsorption and photocatalytic degradation for MO of the C-T/CA were investigated in detail. When TiO2 content was 3 wt %, the highest MO removal amount for fiber membranes (C-T-3/CA) reached 98% at pH value 4 and MO concentration of 40 mg/L. According to the data analysis, the pseudo-second-order kinetic and Freundlich isotherm model were well fitted to kinetic and equilibrium data of MO removal. Especially for C-T-3/CA, the fiber membrane exhibited multiple layers of adsorption. All these results indicated that adsorption caused by electrostatic interaction and photocatalytic degradation were involved in the MO removal process. This work provides a potential method for developing a novel photocatalyst with excellent catalytic activity, adsorbing capability and recycling use.
Collapse
Affiliation(s)
- Xuejuan Shi
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Xiaoxiao Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Liang Ma
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Chunhui Xiang
- Department of Apparel, Events and Hospitality Management, 31 MacKay Hall, Iowa State University, Ames, IA 50011, USA
| | - Lili Li
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130022, China.
| |
Collapse
|
9
|
Ding J, Zhang J, Li J, Li D, Xiao C, Xiao H, Yang H, Zhuang X, Chen X. Electrospun polymer biomaterials. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.01.002] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Liu F, McMaster M, Mekala S, Singer K, Gross RA. Grown Ultrathin Bacterial Cellulose Mats for Optical Applications. Biomacromolecules 2018; 19:4576-4584. [DOI: 10.1021/acs.biomac.8b01269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fei Liu
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, New York 12180, United States
| | - Michael McMaster
- Department of Physics, Case Western Reserve University, 2076 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Shekar Mekala
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, New York 12180, United States
| | - Kenneth Singer
- Department of Physics, Case Western Reserve University, 2076 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Richard A. Gross
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, New York 12180, United States
| |
Collapse
|
11
|
Xiong Q, Bai Q, Li C, He Y, Shen Y, Uyama H. A cellulose acetate/Amygdalus pedunculata shell-derived activated carbon composite monolith for phenol adsorption. RSC Adv 2018; 8:7599-7605. [PMID: 35539128 PMCID: PMC9078407 DOI: 10.1039/c7ra13017a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/12/2018] [Indexed: 01/19/2023] Open
Abstract
Amygdalus pedunculata is expected to be a good candidate plant for desert reclamation (“greening”) since it has notable tolerance to cold and drought and can grow in a wide range of areas with different soil types and moisture contents. In this study, we have developed a single-step method to fabricate a cellulose acetate (CA)/A. pedunculata shell (APS)-derived activated carbon (AC) composite monolith by thermally induced phase separation (TIPS) for removal of toxic phenol from aqueous solution. The composite monolith was easily fabricated by TIPS of a CA solution in the presence of the dispersed AC, in which AC was well loaded onto the monolithic skeleton of CA. The as-obtained monolith showed a maximum adsorption capacity of 45 mg g−1 at the initial phenol concentration of 0.8 mg mL−1. The present composite can be prepared with an arbitrary shape by a facile method from cheap materials, and is more convenient to recycle than powder adsorbents. Therefore, the present CA/APS-derived AC composite monolith has great potential as a promising adsorbent of low cost with convenient separation for toxic phenol-containing wastewater. In this study, we have developed a single-step method to fabricate a cellulose acetate (CA)/APS-derived activated carbon (AC) composite monolith by thermally induced phase separation (TIPS) for removal of toxic phenol from aqueous solution. ![]()
Collapse
Affiliation(s)
- Qiancheng Xiong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- China
| | - Qiuhong Bai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- China
| | - Yuanyuan He
- College of Pharmaceutical Engineering
- Shaanxi Fashion Engineering University
- Xi'an 712046
- China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- China
| | - Hiroshi Uyama
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- China
| |
Collapse
|
12
|
Joshi TP, Zhang G, Koju R, Qi Z, Liu R, Liu H, Qu J. The removal efficiency and insight into the mechanism of para arsanilic acid adsorption on Fe-Mn framework. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:713-722. [PMID: 28577406 DOI: 10.1016/j.scitotenv.2017.05.219] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/11/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
Para arsanilic acid (p-ASA) is extensively used as feed additives in poultry industry, resulting contaminates soil and natural water sources through the use of poultry litter as a fertilizer in croplands. Thus, removal of p-ASA prior to its entering environments is significant to control their environmental risk. Herein, we studied Fe-Mn framework and cubic Fe(OH)3 as promising novel adsorbents for the removal of p-ASA from aqueous solution. The chemical and micro-structural properties of Fe-Mn framework and cubic Fe(OH)3 materials were characterized by X-ray diffraction patterns (XRD), nitrogen adsorption (SBET), zeta (ζ-) potential, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectra (XPS). The maximum adsorption capacity for p-ASA on Fe-Mn framework and cubic Fe(OH)3 was determined to be 1.3mmolg-1 and 0.72mmolg-1 at pH4.0, respectively. Adsorption of p-ASA decreased gradually with increasing pH indicated that adsorption was strongly pH dependent. Azophenylarsonic acid was identified as an oxidation intermediate product of p-ASA after adsorption on Fe-Mn framework. Plausible removal mechanism for p-ASA by Fe-Mn framework was proposed. The obtained results gain insight into the potential applicability of Fe-Mn framework, which can be potentially important for the removal of p-ASA from water.
Collapse
Affiliation(s)
- Tista Prasai Joshi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gong Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Rashmi Koju
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zenglu Qi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiping Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huijuan Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Ranjan S, Dasgupta N, Srivastava P, Ramalingam C. A spectroscopic study on interaction between bovine serum albumin and titanium dioxide nanoparticle synthesized from microwave-assisted hybrid chemical approach. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 161:472-81. [DOI: 10.1016/j.jphotobiol.2016.06.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 06/10/2016] [Indexed: 10/21/2022]
|
14
|
Abstract
Luminescent films have received great interest for chemo-/bio-sensing applications due to their distinct advantages over solution-based probes, such as good stability and portability, tunable shape and size, non-invasion, real-time detection, extensive suitability in gas/vapor sensing, and recycling. On the other hand, they can achieve selective and sensitive detection of chemical/biological species using special luminophores with a recognition moiety or the assembly of common luminophores and functional materials. Nowadays, the extensively used assembly techniques include drop-casting/spin-coating, Langmuir-Blodgett (LB), self-assembled monolayers (SAMs), layer-by-layer (LBL), and electrospinning. Therefore, this review summarizes the recent advances in luminescent films with these assembly techniques and their applications in chemo-/bio-sensing. We mainly focused on the discussion of the relationship between the sensing properties of the films and their architecture. Furthermore, we discussed some critical challenges existing in this field and possible solutions that have been or are being developed to overcome these challenges.
Collapse
Affiliation(s)
- Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | | | | | | |
Collapse
|
15
|
Dasgupta N, Ranjan S, Patra D, Srivastava P, Kumar A, Ramalingam C. Bovine serum albumin interacts with silver nanoparticles with a "side-on" or "end on" conformation. Chem Biol Interact 2016; 253:100-11. [PMID: 27180205 DOI: 10.1016/j.cbi.2016.05.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 04/16/2016] [Accepted: 05/10/2016] [Indexed: 10/21/2022]
Abstract
As the nanoparticles (NPs) enter into the biological interface, they have to encounter immediate and first exposure to many proteins of different concentrations. The physicochemical interaction of NPs and proteins is greatly influenced not only by the number and type of proteins; but also the surface chemistry of NPs. To analyze the effects of NPs on proteins, the interaction between bovine serum albumin (BSA) and silver nanoparticles (AgNPs) at different concentrations were investigated. The interaction, BSA conformations, kinetics and adsorption were analyzed by UV-Visible spectrophotometer, dynamic light scattering (DLS), FT-IR spectroscopy and fluorescence quenching. DLS, FTIR and UV-visible spectrophotometric analysis confirms the interaction with minor alterations in size of the protein. Fluorescence quenching analysis confirms the side-on or end-on interaction of 1.5 molecules of BSA to AgNP. Further, pseudo-second order kinetics was determined with equilibrium contact-time of 30 min. The data of the present study determines the detailed evaluation of BSA adsorption on AgNP along with mechanism, kinetics and isotherm of the adsorption.
Collapse
Affiliation(s)
- Nandita Dasgupta
- Nano-food Research Group, Instrumental and Food Analysis Laboratory, Industrial Biotechnology Division, School of BioSciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Shivendu Ranjan
- Nano-food Research Group, Instrumental and Food Analysis Laboratory, Industrial Biotechnology Division, School of BioSciences and Technology, VIT University, Vellore, Tamil Nadu, India; Research Wing, Veer Kunwar Singh Memorial Trust, Chapra, Bihar, India; Xpert Arena Technological Services Pvt. Ltd., Chapra, India.
| | - Dhabaleswar Patra
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Priyanka Srivastava
- Division of Biomedical Sciences, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Ashutosh Kumar
- Institute of Life Sciences, School of Science and Technology, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Chidambaram Ramalingam
- Nano-food Research Group, Instrumental and Food Analysis Laboratory, Industrial Biotechnology Division, School of BioSciences and Technology, VIT University, Vellore, Tamil Nadu, India.
| |
Collapse
|
16
|
Gao JF, Si CY, Li HY. Role of functional groups on protonated de-oiled soybean involved in triclosan biosorption from aqueous solution. RSC Adv 2016. [DOI: 10.1039/c6ra06702f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The contribution of functional groups such as amine, carboxyl, sulfhydryl, phosphate and lipids on protonated de-oiled soybean (PDOS) to triclosan (TCS) biosorption was evaluated by means of chemical modification.
Collapse
Affiliation(s)
- Jing-Feng Gao
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
- China
| | - Chun-Ying Si
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
- China
| | - Hong-Yu Li
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
- China
| |
Collapse
|
17
|
Zhijiang C, Yi X, Haizheng Y, Jia J, Liu Y. Poly(hydroxybutyrate)/cellulose acetate blend nanofiber scaffolds: Preparation, characterization and cytocompatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 58:757-67. [DOI: 10.1016/j.msec.2015.09.048] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/11/2015] [Accepted: 09/10/2015] [Indexed: 10/23/2022]
|