1
|
Souza PMP, Carballares D, Lopez-Carrobles N, Gonçalves LRB, Lopez-Gallego F, Rodrigues S, Fernandez-Lafuente R. Enzyme-support interactions and inactivation conditions determine Thermomyces lanuginosus lipase inactivation pathways: Functional and florescence studies. Int J Biol Macromol 2021; 191:79-91. [PMID: 34537296 DOI: 10.1016/j.ijbiomac.2021.09.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 01/28/2023]
Abstract
Lipase from Thermomyces lanuginosus (TLL) has been covalently immobilized on heterofunctional octyl-vinyl agarose. That way, the covalently immobilized enzymes will have identical orientation. Then, it has blocked using hexyl amine (HEX), ethylenediamine (EDA), Gly and Asp. The initial activity/stability of the different biocatalysts was very different, being the most stable the biocatalyst blocked with Gly. These biocatalysts had been utilized to analyze if the enzyme activity could decrease differently along thermal inactivation courses depending on the utilized substrate (that is, if the enzyme specificity was altered during its inactivation using 4 different substrates to determine the activity), and if this can be altered by the nature of the blocking agent and the inactivation conditions (we use pH 5, 7 and 9). Results show great changes in the enzyme specificity during inactivation (e.g., activity versus triacetin was much more quickly lost than versus the other substrates), and how this was modulated by the immobilization protocol and inactivation conditions. The difference in the changes induced by immobilization and inactivation were confirmed by fluorescence studies. That is, the functional and structural analysis of partially inactivated immobilized enzyme showed that their inactivation pathway is strongly depended on the support features and inactivation conditions.
Collapse
Affiliation(s)
- Priscila M Paiva Souza
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Federal University of Ceará, Food Engineering Department, Campus do Pici, Bloco 858, Fortaleza, CE CEP 60440-900, Brazil
| | - Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain
| | | | - Luciana R B Gonçalves
- Federal University of Ceará, Chemical Engineering Department, Campus do Pici, Bloco 709, Fortaleza, CE CEP 60440-900, Brazil
| | - Fernando Lopez-Gallego
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, Donostia, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| | - Sueli Rodrigues
- Federal University of Ceará, Food Engineering Department, Campus do Pici, Bloco 858, Fortaleza, CE CEP 60440-900, Brazil.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Center of Excellence in Bionanoscience Research, Member of the External Scientific Advisory Academics, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
2
|
Kabir A, Ahmed M. Elucidating the Role of Thermal Flexibility of Hydrogels in Protein Refolding. ACS APPLIED BIO MATERIALS 2020; 3:4253-4262. [DOI: 10.1021/acsabm.0c00324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Modi R, Khamari L, Nandy A, Mukherjee S. Spectroscopic probing of the refolding of an unfolded protein through the formation of mixed-micelles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 216:52-60. [PMID: 30878845 DOI: 10.1016/j.saa.2019.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/17/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
We report the unfolding of the globular protein, Bovine Serum Albumin (BSA) induced by anionic surfactant sodium dodecyl sulfate (SDS) and subsequently monitored the refolding of this denatured BSA using triblock copolymers F127 and P123 through the formation of mixed micelles. Our study exclusively represents the reversibility of this unfolding-refolding process using pluronic triblock copolymers F127/P123 as refolding agents. We confirm the recovery of its native state from its denatured state estimating the α-helical structure of the denatured protein from the CD data which support our steady state fluorescence spectra monitoring the fluorescence of the intrinsic Trp molecules present in BSA. Time resolved study also corroborates the stepwise recovery of the denatured BSA as well as the reversibility of the processes. Isothermal Titration Calorimetry (ITC) data explain the negligible interactions between the triblock copolymers and the native state of BSA. The high binding constant of SDS and triblock copolymers probably play the crucial role in the stepwise recovery of the unfolded BSA followed by reversibility of the refolding processes through the formation of the mixed micelles. The mechanism of mixed-micelle formation has been substantiated by the fact that the Guanidine Hydrochloride denatured BSA does not react with F127/P123 whereby no recovery of the protein was observed.
Collapse
Affiliation(s)
- Riya Modi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 426 066, Madhya Pradesh, India
| | - Laxmikanta Khamari
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 426 066, Madhya Pradesh, India
| | - Atanu Nandy
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 426 066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 426 066, Madhya Pradesh, India.
| |
Collapse
|
4
|
Mondal R, Ghosh N, Paul BK, Mukherjee S. Triblock-Copolymer-Assisted Mixed-Micelle Formation Results in the Refolding of Unfolded Protein. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:896-903. [PMID: 28841376 DOI: 10.1021/acs.langmuir.7b02367] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The present work reports a new strategy for triblock-copolymer-assisted refolding of sodium dodecyl sulfate (SDS)-induced unfolded serum protein human serum albumin (HSA) by mixed-micelle formation of SDS with poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer EO20PO68EO20 (P123) under physiological conditions. The steady-state and time-resolve fluorescence results show that the unfolding of HSA induced by SDS occurs in a stepwise manner through three different phases of binding of SDS, which is followed by a saturation of interaction. Interestingly, the addition of polymeric surfactant P123 to the unfolded protein results in the recovery of ∼87% of its α-helical structure, which was lost during SDS-induced unfolding. This is further corroborated by the return of the steady-state and time-resolved fluorescence decay parameters of the intrinsic tryptophan (Trp214) residue of HSA to the initial nativelike condition. The isothermal titration calorimetry (ITC) data also substantiates that there is almost no interaction between P123 and the native state of the protein. However, the mixed-micelle formation, accompanied by substantial binding affinities, removes the bound SDS molecules from the scaffolds of the unfolded state of the protein. On the basis of our experiments, we conclude that the formation of mixed micelles between SDS and P123 plays a pivotal role in refolding the protein back to its nativelike state.
Collapse
Affiliation(s)
- Ramakanta Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road, Bhauri, Bhopal 426 066, Madhya Pradesh, India
| | - Narayani Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road, Bhauri, Bhopal 426 066, Madhya Pradesh, India
| | - Bijan K Paul
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road, Bhauri, Bhopal 426 066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road, Bhauri, Bhopal 426 066, Madhya Pradesh, India
| |
Collapse
|
5
|
Rueda N, dos Santos CS, Rodriguez MD, Albuquerque TL, Barbosa O, Torres R, Ortiz C, Fernandez-Lafuente R. Reversible immobilization of lipases on octyl-glutamic agarose beads: A mixed adsorption that reinforces enzyme immobilization. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.03.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Rueda N, Albuquerque TL, Bartolome-Cabrero R, Fernandez-Lopez L, Torres R, Ortiz C, Dos Santos JCS, Barbosa O, Fernandez-Lafuente R. Reversible Immobilization of Lipases on Heterofunctional Octyl-Amino Agarose Beads Prevents Enzyme Desorption. Molecules 2016; 21:E646. [PMID: 27196882 PMCID: PMC6273131 DOI: 10.3390/molecules21050646] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/28/2016] [Accepted: 05/09/2016] [Indexed: 01/01/2023] Open
Abstract
Two different heterofunctional octyl-amino supports have been prepared using ethylenediamine and hexylendiamine (OCEDA and OCHDA) and utilized to immobilize five lipases (lipases A (CALA) and B (CALB) from Candida antarctica, lipases from Thermomyces lanuginosus (TLL), from Rhizomucor miehei (RML) and from Candida rugosa (CRL) and the phospholipase Lecitase Ultra (LU). Using pH 5 and 50 mM sodium acetate, the immobilizations proceeded via interfacial activation on the octyl layer, after some ionic bridges were established. These supports did not release enzyme when incubated at Triton X-100 concentrations that released all enzyme molecules from the octyl support. The octyl support produced significant enzyme hyperactivation, except for CALB. However, the activities of the immobilized enzymes were usually slightly higher using the new supports than the octyl ones. Thermal and solvent stabilities of LU and TLL were significantly improved compared to the OC counterparts, while in the other enzymes the stability decreased in most cases (depending on the pH value). As a general rule, OCEDA had lower negative effects on the stability of the immobilized enzymes than OCHDA and while in solvent inactivation the enzyme molecules remained attached to the support using the new supports and were released using monofunctional octyl supports, in thermal inactivations this only occurred in certain cases.
Collapse
Affiliation(s)
- Nazzoly Rueda
- Departamento de Biocatalisis, Instituto de Catálisis-CSIC; C/ Marie Curie 2, Campus UAM-CSIC, Madrid 28049, Spain.
- Escuela de Química, Grupo de investigación en Bioquímica y Microbiología (GIBIM), Edificio Camilo Torres 210, Universidad Industrial de Santander, Bucaramanga 680002, Colombia.
| | - Tiago L Albuquerque
- Departamento de Biocatalisis, Instituto de Catálisis-CSIC; C/ Marie Curie 2, Campus UAM-CSIC, Madrid 28049, Spain.
- Departamento de Engenharia Química, Universidade Federal Do Ceará, Campus Do Pici, CEP 60455-760 Fortaleza, Brazil.
| | - Rocio Bartolome-Cabrero
- Departamento de Biocatalisis, Instituto de Catálisis-CSIC; C/ Marie Curie 2, Campus UAM-CSIC, Madrid 28049, Spain.
| | - Laura Fernandez-Lopez
- Departamento de Biocatalisis, Instituto de Catálisis-CSIC; C/ Marie Curie 2, Campus UAM-CSIC, Madrid 28049, Spain.
| | - Rodrigo Torres
- Escuela de Química, Grupo de investigación en Bioquímica y Microbiología (GIBIM), Edificio Camilo Torres 210, Universidad Industrial de Santander, Bucaramanga 680002, Colombia.
| | - Claudia Ortiz
- Escuela de Microbiología, Universidad Industrial de Santander, Bucaramanga 680002, Colombia.
| | - Jose C S Dos Santos
- Departamento de Biocatalisis, Instituto de Catálisis-CSIC; C/ Marie Curie 2, Campus UAM-CSIC, Madrid 28049, Spain.
- Departamento de Engenharia Química, Universidade Federal Do Ceará, Campus Do Pici, CEP 60455-760 Fortaleza, Brazil.
| | - Oveimar Barbosa
- Departamento de Química, Facultad de Ciencias, Universidad del Tolima, Ibagué 546, Colombia.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatalisis, Instituto de Catálisis-CSIC; C/ Marie Curie 2, Campus UAM-CSIC, Madrid 28049, Spain.
| |
Collapse
|
7
|
Liu H, Dong X, Sun Y. Grafting iminodiacetic acid on silica nanoparticles for facilitated refolding of like-charged protein and its metal-chelate affinity purification. J Chromatogr A 2016; 1429:277-83. [DOI: 10.1016/j.chroma.2015.12.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/10/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
|