1
|
Dergunov SA, Pinkhassik E. Bilayer-Templated Two-Dimensional RAFT Polymerization for Directed Assembly of Polymer Nanostructures. Angew Chem Int Ed Engl 2020; 59:18405-18411. [PMID: 32558032 DOI: 10.1002/anie.202006793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Indexed: 11/08/2022]
Abstract
Co-localization of monomers, crosslinkers, and chain-transfer agents (CTA) within self-assembled bilayers in an aqueous suspension enabled the successful directed assembly of nanocapsules using a reversible addition-fragmentation chain transfer (RAFT) process without compromising the polymerization kinetics. This study uncovered substantial influence of the organized medium on the course of the reaction, including differential reactivity based on placement and mobility of monomers, crosslinkers, and CTAs within the bilayer.
Collapse
Affiliation(s)
- Sergey A Dergunov
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269, USA
| | - Eugene Pinkhassik
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269, USA
| |
Collapse
|
2
|
Dergunov SA, Pinkhassik E. Bilayer‐Templated Two‐Dimensional RAFT Polymerization for Directed Assembly of Polymer Nanostructures. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sergey A. Dergunov
- Department of Chemistry University of Connecticut 55 North Eagleville Road Storrs CT 06269 USA
| | - Eugene Pinkhassik
- Department of Chemistry University of Connecticut 55 North Eagleville Road Storrs CT 06269 USA
| |
Collapse
|
3
|
Dergunov SA, Richter AG, Kim MD, Pingali SV, Urban VS, Pinkhassik E. Deciphering and Controlling Structural and Functional Parameters of the Shells in Vesicle-Templated Polymer Nanocapsules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13020-13030. [PMID: 31403799 DOI: 10.1021/acs.langmuir.9b01495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Vesicle-templated nanocapsules are prepared by polymerization of hydrophobic acrylic monomers and cross-linkers in the hydrophobic interior of self-assembled bilayers. Understanding the mechanism of capsule formation and the influence of synthetic parameters on the structural features and functional performance of nanocapsules is critical for the rational design of functional nanodevices, an emerging trend of application of the nanocapsule platform. This study investigated the relationship between basic parameters of the formulation and synthesis of nanocapsules and structural and functional characteristics of the resulting structures. Variations in the monomer/surfactant ratio, temperature of polymerization, and the molar fraction of the free-radical initiators were investigated with a multipronged approach, including shell thickness measurements using small-angle neutron scattering, evaluation of the structural integrity of nanocapsules with scanning electron microscopy, and determination of the retention of entrapped molecules using absorbance and fluorescence spectroscopy. Surprisingly, the thickness of the shells did not correlate with the monomer/surfactant ratio, supporting the hypothesis of substantial stabilization of the surfactant bilayer with loaded monomers. Decreasing the temperature of polymerization had no effect on the spherical structure of nanocapsules but resulted in progressively lower retention of entrapped molecules, suggesting that a spherical skeleton of nanocapsule forms rapidly, followed by filling the gaps to create the structure without pinholes. Lower content of initiators resulted in slower reactions, outlining the baseline conditions for practical synthetic protocols. Taken together, these findings provide insights into the formation of nanocapsules and offer methods for controlling the properties of nanocapsules in viable synthetic methods.
Collapse
Affiliation(s)
- Sergey A Dergunov
- Department of Chemistry , University of Connecticut , 55 North Eagleville Rd. , Storrs , Connecticut 06269-3060 , United States
| | - Andrew George Richter
- Department of Physics and Astronomy , Valparaiso University , Valparaiso , Indiana 46383 , United States
| | - Mariya D Kim
- Department of Chemistry , University of Connecticut , 55 North Eagleville Rd. , Storrs , Connecticut 06269-3060 , United States
| | - Sai Venkatesh Pingali
- Center for Structural Molecular Biology , Oak Ridge National Laboratory , P.O. Box 2008 MS-6430, Oak Ridge , Tennessee 37831-6430 , United States
| | - Volker S Urban
- Center for Structural Molecular Biology , Oak Ridge National Laboratory , P.O. Box 2008 MS-6430, Oak Ridge , Tennessee 37831-6430 , United States
| | - Eugene Pinkhassik
- Department of Chemistry , University of Connecticut , 55 North Eagleville Rd. , Storrs , Connecticut 06269-3060 , United States
| |
Collapse
|
4
|
Dergunov SA, Kim MD, Shmakov SN, Pinkhassik E. Building Functional Nanodevices with Vesicle-Templated Porous Polymer Nanocapsules. Acc Chem Res 2019; 52:189-198. [PMID: 30561994 DOI: 10.1021/acs.accounts.8b00442] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Vesicle-templated nanocapsules offer a unique combination of properties enabled by robust shells with single-nanometer thickness containing programmed uniform pores capable of fast and selective mass transfer. These capsules emerged as a versatile platform for creating functional devices, such as nanoreactors, nanosensors, and containers for the delivery of drugs and imaging agents. Nanocapsules are synthesized by a directed assembly method using self-assembled bilayers of vesicles as temporary scaffolds. In this approach, hydrophobic building blocks are loaded into the hydrophobic interior of vesicles formed from lipids or surfactants. Pore-forming templates are codissolved with the monomers and cross-linkers in the interior of the bilayer. The polymerization forms a cross-linked shell with embedded pore-forming templates. Removal of the surfactant scaffold and pore-forming templates leads to free-standing nanocapsules with shells containing uniform imprinted nanopores. Development of reliable and scalable synthetic methods for the modular construction of capsules with tunable properties has opened the opportunity to pursue practical applications of nanocapsules. In this Account, we discuss how unique properties of vesicle-templated nanocapsules translate into the creation of functional nanodevices. Specifically, we focus the conversation on applications aiming at the delivery of drugs and imaging agents, creation of fast-acting and selective nanoreactors, and fabrication of nanoprobes for sensing and imaging. We present a brief overview of the synthesis of nanocapsules with an emphasis on recent developments leading to robust synthetic methods including the synthesis under physiological conditions and creation of biodegradable nanocapsules. We then highlight unique properties of nanocapsules essential for practical applications, such as precise control of pore size and chemical environment, selective permeability, and ultrafast transport through the pores. We discuss new motifs for catch and release of small molecules with porous nanocapsules based on controlling the microenvironment inside the nanocapsules, regulating the charge on the orifice of nanopores in the shells, and reversible synergistic action of host and guest forming a supramolecular complex in nanocapsules. We demonstrate successful creation of fast-acting and selective nanoreactors by encapsulation of diverse homogeneous and nanoparticle catalysts. Due to unhindered flow of substrates and products through the nanopores, encapsulation did not compromise catalytic efficiency and, in fact, improved the stability of entrapped catalysts. We present robust nanoprobes based on nanocapsules with entrapped sensing agents and show how the encapsulation resulted in selective measurements with fast response times in challenging conditions, such as small volumes and complex mixtures. Throughout this Account, we highlight the advantages of encapsulation and discuss the opportunities for future design of nanodevices.
Collapse
Affiliation(s)
- Sergey A. Dergunov
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| | - Mariya D. Kim
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| | - Sergey N. Shmakov
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| | - Eugene Pinkhassik
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
5
|
Omlid SM, Dergunov SA, Isor A, Sulkowski KL, Petroff JT, Pinkhassik E, McCulla RD. Evidence for diffusing atomic oxygen uncovered by separating reactants with a semi-permeable nanocapsule barrier. Chem Commun (Camb) 2019; 55:1706-1709. [DOI: 10.1039/c8cc06715e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ground-state atomic oxygen [O(3P)] is an oxidant whose formation in solution was proposed but never proven.
Collapse
Affiliation(s)
- Sara M. Omlid
- Department of Chemistry
- Saint Louis University
- St. Louis
- USA
| | | | - Ankita Isor
- Department of Chemistry
- Saint Louis University
- St. Louis
- USA
| | | | | | | | | |
Collapse
|
6
|
Dergunov SA. Facile Synthesis of Chiral Polymers with Defined Architecture via Cooperative Assembly of Confined Templates. ACS Macro Lett 2018; 7:1322-1327. [PMID: 35651254 DOI: 10.1021/acsmacrolett.8b00776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Herein is presented the synergistically self-assembled system as biomimetic polymerization media. This approach allows the facile synthesis of chiral amino acid-based polymers with high molecular weight and low dispersity inside of the bilayer of catanionic vesicles by using a conventional radical polymerization under moderate conditions.
Collapse
Affiliation(s)
- Sergey A. Dergunov
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
7
|
Abstract
Hollow polymer nanocapsules (HPNs) have gained tremendous interest in recent years due to their numerous desirable properties compared to their solid counterparts.
Collapse
Affiliation(s)
- Kyle C. Bentz
- Department of Chemistry
- University of Florida
- Gainesville
- USA
| | | |
Collapse
|
8
|
Kim MD, Dergunov SA, Pinkhassik E. Controlling the Encapsulation of Charged Molecules in Vesicle-Templated Nanocontainers through Electrostatic Interactions with the Bilayer Scaffold. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7732-7740. [PMID: 28679052 DOI: 10.1021/acs.langmuir.7b01706] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This work addresses the challenge of creating hollow nanocapsules with a controlled quantity of encapsulated molecules. Such nanocontainers or nanorattle-like structures represent an attractive platform for building functional devices, including nanoreactors and nanosensors. By taking advantage of the electrostatic attraction between oppositely charged cargo molecules and the surface of the templating bilayer of catanionic vesicles, formed by mixing single-tailed cationic and anionic surfactants, we were able to achieve a substantial increase in the local concentration of molecules inside the vesicle-templated nanocapsules. Control of electrostatic interactions through changes in the formulation of catanionic vesicles or the pH of the solution enabled fine tuning of the encapsulation efficiency in capturing ionic solutes. The ability to control the quantity of entrapped molecules greatly expands the application of nanocontainers in the creation of functional nanodevices.
Collapse
Affiliation(s)
- Mariya D Kim
- Department of Chemistry, University of Connecticut , 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| | - Sergey A Dergunov
- Department of Chemistry, University of Connecticut , 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| | - Eugene Pinkhassik
- Department of Chemistry, University of Connecticut , 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
9
|
Richter AG, Dergunov SA, Kim MD, Shmakov SN, Pingali SV, Urban VS, Liu Y, Pinkhassik E. Unraveling the Single-Nanometer Thickness of Shells of Vesicle-Templated Polymer Nanocapsules. J Phys Chem Lett 2017; 8:3630-3636. [PMID: 28715200 DOI: 10.1021/acs.jpclett.7b01149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Vesicle-templated nanocapsules have emerged as a viable platform for diverse applications. Shell thickness is a critical structural parameter of nanocapsules, where the shell plays a crucial role providing mechanical stability and control of permeability. Here we used small-angle neutron scattering (SANS) to determine the thickness of freestanding and surfactant-stabilized nanocapsules. Despite being at the edge of detectability, we were able to show the polymer shell thickness to be typically 1.0 ± 0.1 nm, which places vesicle-templated nanocapsules among the thinnest materials ever created. The extreme thinness of the shells has implications for several areas: mass-transport through nanopores is relatively unimpeded; pore-forming molecules are not limited to those spanning the entire bilayer; the internal volume of the capsules is maximized; and insight has been gained on how polymerization occurs in the confined geometry of a bilayer scaffold, being predominantly located at the phase-separated layer of monomers and cross-linkers between the surfactant leaflets.
Collapse
Affiliation(s)
- Andrew G Richter
- Department of Physics and Astronomy, Valparaiso University , Valparaiso, Indiana 46383, United States
| | - Sergey A Dergunov
- Department of Chemistry, University of Connecticut , 55 North Eagleville Rd, Storrs, Connecticut 06269-3060, United States
| | - Mariya D Kim
- Department of Chemistry, University of Connecticut , 55 North Eagleville Rd, Storrs, Connecticut 06269-3060, United States
| | - Sergey N Shmakov
- Department of Chemistry, University of Connecticut , 55 North Eagleville Rd, Storrs, Connecticut 06269-3060, United States
| | - Sai Venkatesh Pingali
- Center for Structural Molecular Biology, Oak Ridge National Laboratory , P.O. Box 2008 MS-6430, Oak Ridge, Tennessee 37831-6430, United States
| | - Volker S Urban
- Center for Structural Molecular Biology, Oak Ridge National Laboratory , P.O. Box 2008 MS-6430, Oak Ridge, Tennessee 37831-6430, United States
| | - Yun Liu
- Department of Chemical and Biological Engineering, University of Delaware , Newark, Delaware 19716, United States
- Center for Neutron Science, National Institute of Standards and Technology , 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Eugene Pinkhassik
- Department of Chemistry, University of Connecticut , 55 North Eagleville Rd, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
10
|
Iocozzia J, Lin Z. A Clean and Simple Route to Soft, Biocompatible Nanocapsules via UV-Cross-Linkable Azido-Hyperbranched Polyglycerol. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- James Iocozzia
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhiqun Lin
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
11
|
de Vries WC, Grill D, Tesch M, Ricker A, Nüsse H, Klingauf J, Studer A, Gerke V, Ravoo BJ. Reversible Stabilisierung von Vesikeln: redox-responsive Polymer-Nanocontainer für den Transport in das Zellinnere. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702620] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wilke C. de Vries
- Organisch-Chemisches Institut und Center for Soft Nanoscience; Westfälische Wilhelms-Universität Münster; Correnstraße 40 48149 Münster Deutschland
| | - David Grill
- Institut für Medizinische Biochemie, Zentrum für Molekularbiologie der Entzündung; Westfälische Wilhelms-Universität Münster; Von-Esmarch-Straße 56 48149 Münster Deutschland
| | - Matthias Tesch
- Organisch-Chemisches Institut und Center for Soft Nanoscience; Westfälische Wilhelms-Universität Münster; Correnstraße 40 48149 Münster Deutschland
| | - Andrea Ricker
- Institut für Medizinische Physik und Biophysik; Westfälische Wilhelms-Universität Münster; Robert-Koch-Straße 31 48149 Münster Deutschland
| | - Harald Nüsse
- Institut für Medizinische Physik und Biophysik; Westfälische Wilhelms-Universität Münster; Robert-Koch-Straße 31 48149 Münster Deutschland
| | - Jürgen Klingauf
- Institut für Medizinische Physik und Biophysik; Westfälische Wilhelms-Universität Münster; Robert-Koch-Straße 31 48149 Münster Deutschland
| | - Armido Studer
- Organisch-Chemisches Institut und Center for Soft Nanoscience; Westfälische Wilhelms-Universität Münster; Correnstraße 40 48149 Münster Deutschland
| | - Volker Gerke
- Institut für Medizinische Biochemie, Zentrum für Molekularbiologie der Entzündung; Westfälische Wilhelms-Universität Münster; Von-Esmarch-Straße 56 48149 Münster Deutschland
| | - Bart Jan Ravoo
- Organisch-Chemisches Institut und Center for Soft Nanoscience; Westfälische Wilhelms-Universität Münster; Correnstraße 40 48149 Münster Deutschland
| |
Collapse
|
12
|
de Vries WC, Grill D, Tesch M, Ricker A, Nüsse H, Klingauf J, Studer A, Gerke V, Ravoo BJ. Reversible Stabilization of Vesicles: Redox-Responsive Polymer Nanocontainers for Intracellular Delivery. Angew Chem Int Ed Engl 2017; 56:9603-9607. [DOI: 10.1002/anie.201702620] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/18/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Wilke C. de Vries
- Organic Chemistry Institute and Center for Soft Nanoscience; Westfälische Wilhelms-Universität Münster; Correnstrasse 40 48149 Münster Germany
| | - David Grill
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation; Westfälische Wilhelms-Universität Münster; Von-Esmarch-Strasse 56 48149 Münster Germany
| | - Matthias Tesch
- Organic Chemistry Institute and Center for Soft Nanoscience; Westfälische Wilhelms-Universität Münster; Correnstrasse 40 48149 Münster Germany
| | - Andrea Ricker
- Institute of Medical Physics and Biophysics; Westfälische Wilhelms-Universität Münster; Robert-Koch-Strasse 31 48149 Münster Germany
| | - Harald Nüsse
- Institute of Medical Physics and Biophysics; Westfälische Wilhelms-Universität Münster; Robert-Koch-Strasse 31 48149 Münster Germany
| | - Jürgen Klingauf
- Institute of Medical Physics and Biophysics; Westfälische Wilhelms-Universität Münster; Robert-Koch-Strasse 31 48149 Münster Germany
| | - Armido Studer
- Organic Chemistry Institute and Center for Soft Nanoscience; Westfälische Wilhelms-Universität Münster; Correnstrasse 40 48149 Münster Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation; Westfälische Wilhelms-Universität Münster; Von-Esmarch-Strasse 56 48149 Münster Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience; Westfälische Wilhelms-Universität Münster; Correnstrasse 40 48149 Münster Germany
| |
Collapse
|
13
|
Dergunov SA, Khabiyev AT, Shmakov SN, Kim MD, Ehterami N, Weiss MC, Birman VB, Pinkhassik E. Encapsulation of Homogeneous Catalysts in Porous Polymer Nanocapsules Produces Fast-Acting Selective Nanoreactors. ACS NANO 2016; 10:11397-11406. [PMID: 28024370 DOI: 10.1021/acsnano.6b06735] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanoreactors were created by entrapping homogeneous catalysts in hollow nanocapsules with 200 nm diameter and semipermeable nanometer-thin shells. The capsules were produced by the polymerization of hydrophobic monomers in the hydrophobic interior of the bilayers of self-assembled surfactant vesicles. Controlled nanopores in the shells of nanocapsules ensured long-term retention of the catalysts coupled with the rapid flow of substrates and products in and out of nanocapsules. The study evaluated the effect of encapsulation on the catalytic activity and stability of five different catalysts. Comparison of kinetics of five diverse reactions performed in five different solvents revealed the same reaction rates for free and encapsulated catalysts. Identical reaction kinetics confirmed that placement of catalysts in the homogeneous interior of polymer nanocapsules did not compromise catalytic efficiency. Encapsulated organometallic catalysts showed no loss of metal ions from nanocapsules suggesting stabilization of the complexes was provided by nanocapsules. Controlled permeability of the shells of nanocapsules enabled size-selective catalytic reactions.
Collapse
Affiliation(s)
- Sergey A Dergunov
- Department of Chemistry, University of Connecticut , 55 North Eagleville Rd, Storrs, Connecticut 06269-3060, United States
| | - Alibek T Khabiyev
- Kazakh National Research Technical University , 22 Satpayev St., Almaty 050013, Kazakhstan
| | - Sergey N Shmakov
- Department of Chemistry, University of Connecticut , 55 North Eagleville Rd, Storrs, Connecticut 06269-3060, United States
| | - Mariya D Kim
- Department of Chemistry, University of Connecticut , 55 North Eagleville Rd, Storrs, Connecticut 06269-3060, United States
| | - Nasim Ehterami
- Department of Chemistry, Saint Louis University , 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Mary Clare Weiss
- Department of Chemistry, Saint Louis University , 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Vladimir B Birman
- Department of Chemistry, Washington University in St. Louis , One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Eugene Pinkhassik
- Department of Chemistry, University of Connecticut , 55 North Eagleville Rd, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
14
|
Dergunov SA, Ehterami N, Pinkhassik E. Rotaxane‐Like Structures Threaded through the Pores of Hollow Porous Nanocapusles. Chemistry 2016; 22:14137-40. [DOI: 10.1002/chem.201602731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Sergey A. Dergunov
- Department of Chemistry University of Connecticut 55 North Eagleville Road Storrs CT 06269 (USA)
| | - Nasim Ehterami
- Department of Chemistry Saint Louis University 3501 Laclede Avenue St. Louis MO 63103 USA
| | - Eugene Pinkhassik
- Department of Chemistry University of Connecticut 55 North Eagleville Road Storrs CT 06269 (USA)
| |
Collapse
|
15
|
Dergunov SA, Kim MD, Shmakov SN, Richter AG, Weigand S, Pinkhassik E. Tuning Optical Properties of Encapsulated Clusters of Gold Nanoparticles through Stimuli‐Triggered Controlled Aggregation. Chemistry 2016; 22:7702-5. [DOI: 10.1002/chem.201601072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Sergey A. Dergunov
- Department of Chemistry University of Connecticut 55 North Eagleville Road Storrs 06269 CT USA
| | - Mariya D. Kim
- Department of Chemistry University of Connecticut 55 North Eagleville Road Storrs 06269 CT USA
| | - Sergey N. Shmakov
- Department of Chemistry University of Connecticut 55 North Eagleville Road Storrs 06269 CT USA
| | - Andrew G. Richter
- Department of Physics and Astronomy Valparaiso University Valparaiso IN 46383 USA
| | - Steven Weigand
- DND-CAT Advanced Photon Source, ANL Bldg. 432 9700 S. Cass Ave. Argonne Illinois 60439 USA
| | - Eugene Pinkhassik
- Department of Chemistry University of Connecticut 55 North Eagleville Road Storrs 06269 CT USA
| |
Collapse
|
16
|
Affiliation(s)
- Haotian Sun
- Department of Chemical and Biological Engineering; University at Buffalo, State University of New York; Buffalo NY 14260 USA
| | - Chih-Kuang Chen
- Department of Fiber and Composite Materials; Feng Chia University; No. 100 Wenhwa Road Taichung Taiwan 40724 ROC
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; 3400 North Charles Street Baltimore MD 21218 USA
| | - Chong Cheng
- Department of Chemical and Biological Engineering; University at Buffalo, State University of New York; Buffalo NY 14260 USA
| |
Collapse
|
17
|
El-Toni AM, Habila MA, Labis JP, ALOthman ZA, Alhoshan M, Elzatahry AA, Zhang F. Design, synthesis and applications of core-shell, hollow core, and nanorattle multifunctional nanostructures. NANOSCALE 2016; 8:2510-31. [PMID: 26766598 DOI: 10.1039/c5nr07004j] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
With the evolution of nanoscience and nanotechnology, studies have been focused on manipulating nanoparticle properties through the control of their size, composition, and morphology. As nanomaterial research has progressed, the foremost focus has gradually shifted from synthesis, morphology control, and characterization of properties to the investigation of function and the utility of integrating these materials and chemical sciences with the physical, biological, and medical fields, which therefore necessitates the development of novel materials that are capable of performing multiple tasks and functions. The construction of multifunctional nanomaterials that integrate two or more functions into a single geometry has been achieved through the surface-coating technique, which created a new class of substances designated as core-shell nanoparticles. Core-shell materials have growing and expanding applications due to the multifunctionality that is achieved through the formation of multiple shells as well as the manipulation of core/shell materials. Moreover, core removal from core-shell-based structures offers excellent opportunities to construct multifunctional hollow core architectures that possess huge storage capacities, low densities, and tunable optical properties. Furthermore, the fabrication of nanomaterials that have the combined properties of a core-shell structure with that of a hollow one has resulted in the creation of a new and important class of substances, known as the rattle core-shell nanoparticles, or nanorattles. The design strategies of these new multifunctional nanostructures (core-shell, hollow core, and nanorattle) are discussed in the first part of this review. In the second part, different synthesis and fabrication approaches for multifunctional core-shell, hollow core-shell and rattle core-shell architectures are highlighted. Finally, in the last part of the article, the versatile and diverse applications of these nanoarchitectures in catalysis, energy storage, sensing, and biomedicine are presented.
Collapse
Affiliation(s)
- Ahmed Mohamed El-Toni
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia. and Central Metallurgical Research and Development Institute, CMRDI, Helwan 11421, Cairo, Egypt
| | - Mohamed A Habila
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Joselito Puzon Labis
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia. and Math-Physics Dept., Mindanao State University, Fatima, General Santos City 9500, Philippines
| | - Zeid A ALOthman
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mansour Alhoshan
- Department of Chemical Engineering and King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed A Elzatahry
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Fan Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
18
|
Sequeira MA, Herrera MG, Quirolo ZB, Dodero VI. Easy directed assembly of only nonionic azoamphiphile builds up functional azovesicles. RSC Adv 2016. [DOI: 10.1039/c6ra20933e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We reported that C12OazoE3OH is a functional molecule which directed assembly in water builds up into functional azovesicles.
Collapse
Affiliation(s)
- M. A. Sequeira
- Instituto de Química del Sur (INQUISUR-CONICET)
- Departamento de Química
- Universidad Nacional del Sur
- 8000FTN Bahía Blanca
- Argentina
| | - M. G. Herrera
- Instituto de Química del Sur (INQUISUR-CONICET)
- Departamento de Química
- Universidad Nacional del Sur
- 8000FTN Bahía Blanca
- Argentina
| | - Z. B. Quirolo
- Instituto de Química del Sur (INQUISUR-CONICET)
- Departamento de Química
- Universidad Nacional del Sur
- 8000FTN Bahía Blanca
- Argentina
| | - V. I. Dodero
- Instituto de Química del Sur (INQUISUR-CONICET)
- Departamento de Química
- Universidad Nacional del Sur
- 8000FTN Bahía Blanca
- Argentina
| |
Collapse
|
19
|
Dong S, Spicer PT, Lucien FP, Zetterlund PB. Synthesis of crosslinked polymeric nanocapsules using catanionic vesicle templates stabilized by compressed CO2. SOFT MATTER 2015; 11:8613-8620. [PMID: 26382324 DOI: 10.1039/c5sm02075a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The synthesis of polymeric nanocapsules in the approximate diameter range 40-100 nm (TEM/SEM) using catanionic surfactant vesicle templates stabilized by subcritical CO2 is demonstrated. Near equimolar aqueous solutions of the surfactants sodium dodecyl sulfate (SDS) and dodecyltrimethylammonium bromide (DTAB) experienced immediate vesicle destabilization and precipitation in the absence of CO2. However, pressurization with CO2 (5 MPa) dramatically enhanced the stability of the initial vesicles, and enabled swelling of the bilayers with hydrophobic monomers via diffusion loading (loading of monomers into preformed bilayers). Subsequent radical crosslinking polymerization of the monomers n-butyl methacrylate/tert-butyl methacrylate/ethylene glycol dimethacrylate contained within the bilayers was conducted at room temperature using UV-initiation under CO2 pressure. The hollow structure of the resultant nano-objects was confirmed by successful encapsulation and retention of the dye Nile Blue. It is demonstrated that using this method, polymeric nanocapsules can be successfully prepared using diffusion loading of up to 94 wt% monomer (rel. to surfactant) stabilized by CO2.
Collapse
Affiliation(s)
- Siming Dong
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Patrick T Spicer
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Frank P Lucien
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Per B Zetterlund
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
20
|
Jia Y, Shmakov SN, Register P, Pinkhassik E. Size-Selective Yolk-Shell Nanoreactors with Nanometer-Thin Porous Polymer Shells. Chemistry 2015. [DOI: 10.1002/chem.201501968] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Miksa B. Recent progress in designing shell cross-linked polymer capsules for drug delivery. RSC Adv 2015. [DOI: 10.1039/c5ra12882j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
This tutorial review highlights the progress made during recent years in the development of the shell cross-linked (SCL) polymer nanocapsules and the impact of the most important scientific ideas on this field of knowledge.
Collapse
Affiliation(s)
- Beata Miksa
- Centre of Molecular and Macromolecular Studies Polish Academy of Science
- Lodz
- Poland
| |
Collapse
|