1
|
Chen CY, Wang CM, Li HH, Chan HH, Liao WS. Wafer-scale bioactive substrate patterning by chemical lift-off lithography. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:311-320. [PMID: 29441274 PMCID: PMC5789397 DOI: 10.3762/bjnano.9.31] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/17/2018] [Indexed: 05/06/2023]
Abstract
The creation of bioactive substrates requires an appropriate interface molecular environment control and adequate biological species recognition with minimum nonspecific attachment. Herein, a straightforward approach utilizing chemical lift-off lithography to create a diluted self-assembled monolayer matrix for anchoring diverse biological probes is introduced. The strategy encompasses convenient operation, well-tunable pattern feature and size, large-area fabrication, high resolution and fidelity control, and the ability to functionalize versatile bioarrays. With the interface-contact-induced reaction, a preformed alkanethiol self-assembled monolayer on a Au surface is ruptured and a unique defect-rich diluted matrix is created. This post lift-off region is found to be suitable for insertion of a variety of biological probes, which allows for the creation of different types of bioactive substrates. Depending on the modifications to the experimental conditions, the processes of direct probe insertion, molecular structure change-required recognition, and bulky biological species binding are all accomplished with minimum nonspecific adhesion. Furthermore, multiplexed arrays via the integration of microfluidics are also achieved, which enables diverse applications of as-prepared substrates. By embracing the properties of well-tunable pattern feature dimension and geometry, great local molecular environment control, and wafer-scale fabrication characteristics, this chemical lift-off process has advanced conventional bioactive substrate fabrication into a more convenient route.
Collapse
Affiliation(s)
- Chong-You Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chang-Ming Wang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Hsiang-Hua Li
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Hong-Hseng Chan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Ssu Liao
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
2
|
Xu X, Wang L, Huang Y, Gao W, Li K, Jiang W. Model-Guided Interface Probe Arrangement for Sensitive Protein Detection. Anal Chem 2016; 88:9885-9889. [DOI: 10.1021/acs.analchem.6b02972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaowen Xu
- Key
Laboratory for Colloid and Interface Chemistry of Education Ministry,
School of Chemistry and Chemical Engineering and ‡School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Lei Wang
- Key
Laboratory for Colloid and Interface Chemistry of Education Ministry,
School of Chemistry and Chemical Engineering and ‡School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Yongqi Huang
- Key
Laboratory for Colloid and Interface Chemistry of Education Ministry,
School of Chemistry and Chemical Engineering and ‡School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Wushuang Gao
- Key
Laboratory for Colloid and Interface Chemistry of Education Ministry,
School of Chemistry and Chemical Engineering and ‡School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Kan Li
- Key
Laboratory for Colloid and Interface Chemistry of Education Ministry,
School of Chemistry and Chemical Engineering and ‡School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Wei Jiang
- Key
Laboratory for Colloid and Interface Chemistry of Education Ministry,
School of Chemistry and Chemical Engineering and ‡School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
3
|
Cao HH, Nakatsuka N, Serino AC, Liao WS, Cheunkar S, Yang H, Weiss PS, Andrews AM. Controlled DNA Patterning by Chemical Lift-Off Lithography: Matrix Matters. ACS NANO 2015; 9:11439-54. [PMID: 26426585 DOI: 10.1021/acsnano.5b05546] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nucleotide arrays require controlled surface densities and minimal nucleotide-substrate interactions to enable highly specific and efficient recognition by corresponding targets. We investigated chemical lift-off lithography with hydroxyl- and oligo(ethylene glycol)-terminated alkanethiol self-assembled monolayers as a means to produce substrates optimized for tethered DNA insertion into post-lift-off regions. Residual alkanethiols in the patterned regions after lift-off lithography enabled the formation of patterned DNA monolayers that favored hybridization with target DNA. Nucleotide densities were tunable by altering surface chemistries and alkanethiol ratios prior to lift-off. Lithography-induced conformational changes in oligo(ethylene glycol)-terminated monolayers hindered nucleotide insertion but could be used to advantage via mixed monolayers or double-lift-off lithography. Compared to thiolated DNA self-assembly alone or with alkanethiol backfilling, preparation of functional nucleotide arrays by chemical lift-off lithography enables superior hybridization efficiency and tunability.
Collapse
Affiliation(s)
- Huan H Cao
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Nako Nakatsuka
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Andrew C Serino
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Wei-Ssu Liao
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Sarawut Cheunkar
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Hongyan Yang
- Department of Psychiatry and Biobehavioral Health, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Paul S Weiss
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Anne M Andrews
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
- Department of Psychiatry and Biobehavioral Health, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles , Los Angeles, California 90095, United States
| |
Collapse
|
4
|
Lou J, Liu S, Tu W, Dai Z. Graphene quantums dots combined with endonuclease cleavage and bidentate chelation for highly sensitive electrochemiluminescent DNA biosensing. Anal Chem 2015; 87:1145-51. [PMID: 25523862 DOI: 10.1021/ac5037318] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel strategy for highly sensitive electrochemiluminescence (ECL) detection of DNA was proposed based on site-specific cleavage of BamHI endonuclease combined with the excellent ECL activity of graphene quantum dots (GQDs) and bidentate chelation of the dithiocarbamate DNA (DTC-DNA) probe assembly. The difference between photoluminescence and ECL spectral peaks suggested that a negligible defect existed on the GQDs surface for generation of an ECL signal. The formed DTC-DNA was directly attached to the gold surface by bidentate anchoring (S-Au-S bonds), which conferred a strong affinity between the ligands and the gold surface, increasing the robustness of DNA immobilization on the gold surface. BamHI endonuclease site-specifically recognized and cleaved the duplex symmetrical sequence, which made the double-stranded DNA fragments and GQDs break off from the electrode surface, inducing a decrease of the ECL signal. Using hepatitis C virus-1b genotype complementary DNA (HCV-1b cDNA) as a model, a novel signal-off ECL DNA biosensor was developed based on variation of the ECL intensity before and after digestion of the DNA hybrid. Electrochemical impedance spectroscopy confirmed the successful fabrication of the ECL DNA biosensor. This ECL biosensor for HCV-1b cDNA determination exhibited a linear range from 5 fM to 100 pM with a detection limit of 0.45 fM at a signal-to-noise ratio of 3 and showed satisfactory selectivity and good stability, which validated the feasibility of the designed strategy. The proposed strategy may be conveniently combined with other specific biological recognition events for expansion of the biosensing application, especially in clinical diagnoses.
Collapse
Affiliation(s)
- Jing Lou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University , Nanjing, 210023, P. R. China
| | | | | | | |
Collapse
|
5
|
Josephs EA, Ye T. Electric-field dependent conformations of single DNA molecules on a model biosensor surface. NANO LETTERS 2012; 12:5255-5261. [PMID: 22963660 DOI: 10.1021/nl3024356] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Despite the variety of nucleic acid sensors developed, we still do not have definite answers to some questions that are important to the molecular binding and, ultimately, the sensitivity and reliability of the sensors. How do the DNA probes distribute on the surface at the nanoscale? As the functionalized surfaces are highly heterogeneous, how are the conformations affected when the probe molecules interact with defects? How do DNA molecules respond to electric fields on the surface, which are applied in a variety of detection methods? With in situ electrochemical atomic force microscopy and careful tailoring of nanoscale surface interactions, we are able to observe the nanoscale conformations of individual DNA molecules on a model biosensor surface: thiolated DNA on a gold surface passivated with a hydroxyl-terminated alkanethiol self-assembled monolayer. We find that under applied electric fields, the conformations are highly sensitive to the choice of the alkanethiol molecule. Depending on the monolayer and the nature of the defects, the DNA molecules may either adopt a highly linear or a highly curved conformation. These unusual structures are difficult to observe through existing "ensemble" characterizations of nucleic acid sensors. These findings provide a step toward correlating target-binding affinity, selectivity, and kinetics to the nanoscale chemical structure of and around the probe molecules in practical nucleic acid devices.
Collapse
Affiliation(s)
- Eric A Josephs
- School of Engineering, University of California, Merced, California 95343, USA
| | | |
Collapse
|
6
|
Wang L, Wang X, Chen X, Liu J, Liu S, Zhao C. Development of an electrochemical DNA biosensor with the DNA immobilization based on in situ generation of dithiocarbamate ligands. Bioelectrochemistry 2012; 88:30-5. [PMID: 22763422 DOI: 10.1016/j.bioelechem.2012.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 01/12/2012] [Accepted: 04/09/2012] [Indexed: 11/26/2022]
Abstract
In this article, a simple and effective strategy for DNA immobilization on gold electrode surface is developed. The amine-modified oligonucleotide was firstly reacted with CS(2) and then in situ generated dithiocarbamate group functionalized probe DNA (DTC-DNA) was directly attached onto the gold surface by bidentate anchoring points. The DNA biosensor fabrication process was characterized by cyclic voltammetry and electrochemical impedance spectroscopy with the use of Fe(CN)(6)(3-/4-) as a redox indicator. The hybridization of DTC-DNA with complementary target DNA could be well distinguished with the use of Co(phen)(3)(3+) as an electrochemical indicator. The fabricated electrochemical DNA biosensor could achieve a detection limit of about 0.1nM toward complementary target DNA. Also, the current strategy is readily operated with less time consumed and lower cost compared with those commonly used strategies.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | | | | | | | | | | |
Collapse
|
7
|
Castronovo M, Lucesoli A, Parisse P, Kurnikova A, Malhotra A, Grassi M, Grassi G, Scaggiante B, Casalis L, Scoles G. Two-dimensional enzyme diffusion in laterally confined DNA monolayers. Nat Commun 2011; 2:297. [PMID: 21540839 DOI: 10.1038/ncomms1296] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 03/30/2011] [Indexed: 02/08/2023] Open
Abstract
Addressing the effects of confinement and crowding on biomolecular function may provide insight into molecular mechanisms within living organisms, and may promote the development of novel biotechnology tools. Here, using molecular manipulation methods, we investigate restriction enzyme reactions with double-stranded (ds)DNA oligomers confined in relatively large (and flat) brushy matrices of monolayer patches of controlled, variable density. We show that enzymes from the contacting solution cannot access the dsDNAs from the top-matrix interface, and instead enter at the matrix sides to diffuse two-dimensionally in the gap between top- and bottom-matrix interfaces. This is achieved by limiting lateral access with a barrier made of high-density molecules that arrest enzyme diffusion. We put forward, as a possible explanation, a simple and general model that relates these data to the steric hindrance in the matrix, and we briefly discuss the implications and applications of this strikingly new phenomenon.
Collapse
Affiliation(s)
- Matteo Castronovo
- Department of Biology, Temple University, 1900 North 12th Street, Philadelphia, Philadelphia 19122, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Jiang KR, Huang JL, Chen CC, Su HJ, Wu JC. Effect of co-axially hybridized gene targets on hybridization efficiency of microarrayed DNA probes. J Taiwan Inst Chem Eng 2011; 42:5-12. [PMID: 32362954 PMCID: PMC7185593 DOI: 10.1016/j.jtice.2010.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 04/19/2010] [Accepted: 04/25/2010] [Indexed: 11/25/2022]
Abstract
The effect of relative size of two co-axially hybridized gene targets on the hybridization efficiency was studied for two DNA probe configurations and various probe concentrations. Each of two sets of microarrayed probes contained a pair of DNA probes and a pair of their complementary samples labeled with two distinct fluorescent dyes. The sequence of each probe is especially designed so that two targets are simultaneously complementary to two adjacent sections of the probe. The molecular steric effect on the hybridization efficiency is investigated by comparing the dye signals between configurations of one-target and two-target hybridization scenarios. The results show that a low probe concentration gives better hybridization efficiency and the first-hybridization conducted by a shorter-size DNA target improves the hybridization efficiency of the second target coupling onto the same probe.
Collapse
Affiliation(s)
- Kai Ren Jiang
- Chemical Engineering Department, Chung Yuan Christian University, Chung Li, Tao Yuan 32023, Taiwan
| | - Jie-Len Huang
- Biomedical Engineering Center, Industrial Technology Research Institute, Chu Tung, Hsin Chu 31040, Taiwan
| | - Chia-Chun Chen
- Biomedical Engineering Center, Industrial Technology Research Institute, Chu Tung, Hsin Chu 31040, Taiwan
| | - Hung-Ju Su
- Biomedical Engineering Center, Industrial Technology Research Institute, Chu Tung, Hsin Chu 31040, Taiwan
| | - Jui-Chuang Wu
- Chemical Engineering Department, Chung Yuan Christian University, Chung Li, Tao Yuan 32023, Taiwan
| |
Collapse
|
9
|
Solomun T, Mix R, Sturm H. Immobilization of silanized DNA on glass: influence of the silane tether on the DNA hybridization. ACS APPLIED MATERIALS & INTERFACES 2010; 2:2171-2174. [PMID: 20735089 DOI: 10.1021/am100263t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Two trifunctional (trimethoxy and triethoxy) and one difunctional (methyldimethoxy) 3-mercaptopropyl-alkoxysilanes were covalently tethered to thiolated DNA oligonucleotides in solution. After deposition as microarrays onto glass, the immobilized DNA probes were tested for hybridization ability by a florescence-based method. The results demonstrate a large enhancement in the fluorescence signal when the functionality of the silane tether is reduced from three to two. An XPS analyses revealed that this is not due to a higher DNA surface density. FTIR spectra of the spin-coated silanes showed that the trifunctional silanes form branched and cyclic siloxane moieties, whereas the difunctional silane generates predominantly short straight siloxane chains. Therefore, the propensity of trifunctional silanes to form more complex networks leads to conformations of the bound DNA which are less favorable for the specific interaction with the complementary strand. The data implicate that further significant improvements in the DNA hybridization ability are possible by adroit choice of the silane system.
Collapse
|
10
|
Nguyen TH, Chen KL, Elimelech M. Adsorption Kinetics and Reversibility of Linear Plasmid DNA on Silica Surfaces: Influence of Alkaline Earth and Transition Metal Ions. Biomacromolecules 2010; 11:1225-30. [DOI: 10.1021/bm901427n] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thanh H. Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, Department of Geography and Environmental Engineering, Johns Hopkins University, Baltimore, Maryland 21218, and Department of Chemical Engineering, Environmental Engineering Program, Yale University, New Haven, Connecticut 06520
| | - Kai Loon Chen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, Department of Geography and Environmental Engineering, Johns Hopkins University, Baltimore, Maryland 21218, and Department of Chemical Engineering, Environmental Engineering Program, Yale University, New Haven, Connecticut 06520
| | - Menachem Elimelech
- Department of Civil and Environmental Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, Department of Geography and Environmental Engineering, Johns Hopkins University, Baltimore, Maryland 21218, and Department of Chemical Engineering, Environmental Engineering Program, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
11
|
Kaufmann R, Peled D, Naaman R, Daube SS. Three-dimensional surface patterning by DNA-modifying enzymes. ACS APPLIED MATERIALS & INTERFACES 2009; 1:2320-2324. [PMID: 20355868 DOI: 10.1021/am9004804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Self-assembled patterned multilayers may be fabricated using DNA monolayers and the orchestrated reactions of DNA-modifying enzymes. To demonstrate this approach, DNA monolayers were formed on silicon and cleaved quantitatively with a restriction enzyme. Subsequently, fluorescently labeled nucleotides were covalently incorporated to the cleaved DNA. Nucleotide addition was shown to be highly selective according to the sequence at the cleavage site, and no nonspecific adsorption to the surface was observed. The dual action of the DNA-modifying enzymes was quantitative and could be utilized in the fabrication of multilayered structures. Other DNA-modifying enzymes can be exploited in this manner to enrich the repertoire of self-assembly supramolecular structure fabrication.
Collapse
Affiliation(s)
- R Kaufmann
- Department of Chemical Physics and Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
12
|
Peled D, Daube SS, Naaman R. Selective enzymatic labeling to detect packing-induced denaturation of double-stranded DNA at interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:11842-11846. [PMID: 18800816 DOI: 10.1021/la801437n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The adsorption of DNA on surfaces is a widespread procedure and is a common way for fabrication of biosensors, DNA chips, and nanoelectronic devices. Although the biologically relevant and prevailing in vivo structure of DNA is its double-stranded (dsDNA) conformation, the characterization of DNA on surfaces has mainly focused on single-stranded DNA (ssDNA). Studying the structure of dsDNA on surfaces is of invaluable importance to microarray performance since their effectiveness relies on the ability of two DNA molecules to hybridize and remain stable. In addition, many of the enzymatic transactions performed on DNA require dsDNA, rather than ssDNA, as a substrate. However, it is not established that adsorbed dsDNA remains in its structure and does not denature. Here, two methodologies have been developed for distinguishing between surface-adsorbed single- and double-stranded DNA. We demonstrate that, upon formation of a dense monolayer, the nonthiolated strand comprising the dsDNA is released and the monolayer consists of mostly ssDNA. The fraction of dsDNA within the ssDNA monolayer depends on the length of the oligomers. A likely mechanism leading to this rearrangement is discussed.
Collapse
Affiliation(s)
- Dana Peled
- Department of Chemical Physics and Chemical Research Support, Weizmann Institute, Rehovot 76100, Israel
| | | | | |
Collapse
|