1
|
Brett MW, Gordon CK, Hardy J, Davis NJLK. The Rise and Future of Discrete Organic-Inorganic Hybrid Nanomaterials. ACS PHYSICAL CHEMISTRY AU 2022; 2:364-387. [PMID: 36855686 PMCID: PMC9955269 DOI: 10.1021/acsphyschemau.2c00018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hybrid nanomaterials (HNs), the combination of organic semiconductor ligands attached to nanocrystal semiconductor quantum dots, have applications that span a range of practical fields, including biology, chemistry, medical imaging, and optoelectronics. Specifically, HNs operate as discrete, tunable systems that can perform prompt fluorescence, energy transfer, singlet fission, upconversion, and/or thermally activated delayed fluorescence. Interest in HNs has naturally grown over the years due to their tunability and broad spectrum of applications. This Review presents a brief introduction to the components of HNs, before expanding on the characterization and applications of HNs. Finally, the future of HN applications is discussed.
Collapse
|
2
|
Chen M, Nguyen TT, Varongchayakul N, Grazon C, Chern M, Baer RC, Lecommandoux S, Klapperich CM, Galagan JE, Dennis AM, Grinstaff MW. Surface Immobilized Nucleic Acid-Transcription Factor Quantum Dots for Biosensing. Adv Healthc Mater 2020; 9:e2000403. [PMID: 32691962 DOI: 10.1002/adhm.202000403] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/17/2020] [Indexed: 12/23/2022]
Abstract
Immobilization of biosensors on surfaces is a key step toward development of devices for real-world applications. Here the preparation, characterization, and evaluation of a surface-bound transcription factor-nucleic acid complex for analyte detection as an alternative to conventional systems employing aptamers or antibodies are described. The sensor consists of a gold surface modified with thiolated Cy5 fluorophore-labeled DNA and an allosteric transcription factor (TetR) linked to a quantum dot (QD). Upon addition of anhydrotetracycline (aTc)-the analyte-the TetR-QDs release from the surface-bound DNA, resulting in loss of the Förster resonance energy transfer signal. The sensor responds in a dose-dependent manner over the relevant range of 0-200 µm aTc with a limit of detection of 80 nm. The fabrication of the sensor and the subsequent real-time quantitative measurements establish a framework for the design of future surface-bound, affinity-based biosensors using allosteric transcription factors for molecular recognition.
Collapse
Affiliation(s)
- Mingfu Chen
- Department of Biomedical Engineering Boston University Boston MA 02215 USA
| | - Thuy T. Nguyen
- Department of Biomedical Engineering Boston University Boston MA 02215 USA
| | | | - Chloé Grazon
- Department of Chemistry Boston University Boston MA 02215 USA
- CNRS Bordeaux INP LCPO UMR 5629 Univ. Bordeaux Pessac F‐33600 France
| | - Margaret Chern
- Division of Materials Science and Engineering Boston University Boston MA 02215 USA
| | - R. C. Baer
- Department of Microbiology Boston University Boston MA 02118 USA
| | | | - Catherine M. Klapperich
- Department of Biomedical Engineering Boston University Boston MA 02215 USA
- Division of Materials Science and Engineering Boston University Boston MA 02215 USA
| | - James E. Galagan
- Department of Biomedical Engineering Boston University Boston MA 02215 USA
- Department of Microbiology Boston University Boston MA 02118 USA
| | - Allison M. Dennis
- Department of Biomedical Engineering Boston University Boston MA 02215 USA
- Division of Materials Science and Engineering Boston University Boston MA 02215 USA
| | - Mark W. Grinstaff
- Department of Biomedical Engineering Boston University Boston MA 02215 USA
- Department of Chemistry Boston University Boston MA 02215 USA
- Division of Materials Science and Engineering Boston University Boston MA 02215 USA
| |
Collapse
|
3
|
Vyshnava SS, Pandluru G, Kanderi DK, Panjala SP, Banapuram S, Paramasivam K, Anupalli RR, Bontha RR, Dowlatabad MR. Gram scale synthesis of QD450 core–shell quantum dots for cellular imaging and sorting. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01261-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Capitao D, Sahli R, Raouafi N, Limoges B, Fave C, Schöllhorn B. Electro-assisted Deposition of Binary Self-Assembled 1,2-Dithiolane Monolayers on Gold with Predictable Composition. ChemElectroChem 2016. [DOI: 10.1002/celc.201600260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dany Capitao
- Laboratoire d'Electrochimie Moléculaire, UMR CNRS 7591; Université Paris Diderot, Sorbonne Paris Cité, Bâtiment Lavoisier; 15 rue Jean-Antoine de Baïf 75205 Paris Cedex 13 France
| | - Rihab Sahli
- Laboratoire d'Electrochimie Moléculaire, UMR CNRS 7591; Université Paris Diderot, Sorbonne Paris Cité, Bâtiment Lavoisier; 15 rue Jean-Antoine de Baïf 75205 Paris Cedex 13 France
- Laboratoire de Chimie Analytique et d'Electrochimie; Département de Chimie, Faculté des Sciences de Tunis; Université El-Manar; 2092 Tunis El-Manar Tunisia
| | - Noureddine Raouafi
- Laboratoire de Chimie Analytique et d'Electrochimie; Département de Chimie, Faculté des Sciences de Tunis; Université El-Manar; 2092 Tunis El-Manar Tunisia
| | - Benoit Limoges
- Laboratoire d'Electrochimie Moléculaire, UMR CNRS 7591; Université Paris Diderot, Sorbonne Paris Cité, Bâtiment Lavoisier; 15 rue Jean-Antoine de Baïf 75205 Paris Cedex 13 France
| | - Claire Fave
- Laboratoire d'Electrochimie Moléculaire, UMR CNRS 7591; Université Paris Diderot, Sorbonne Paris Cité, Bâtiment Lavoisier; 15 rue Jean-Antoine de Baïf 75205 Paris Cedex 13 France
| | - Bernd Schöllhorn
- Laboratoire d'Electrochimie Moléculaire, UMR CNRS 7591; Université Paris Diderot, Sorbonne Paris Cité, Bâtiment Lavoisier; 15 rue Jean-Antoine de Baïf 75205 Paris Cedex 13 France
| |
Collapse
|
5
|
Goto TE, Lopes CC, Nader HB, Silva AC, Dantas NO, Siqueira JR, Caseli L. CdSe magic-sized quantum dots incorporated in biomembrane models at the air–water interface composed of components of tumorigenic and non-tumorigenic cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1533-40. [DOI: 10.1016/j.bbamem.2016.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/08/2016] [Accepted: 04/19/2016] [Indexed: 10/21/2022]
|
6
|
Hildebrandt N, Spillmann CM, Algar WR, Pons T, Stewart MH, Oh E, Susumu K, Díaz SA, Delehanty JB, Medintz IL. Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. Chem Rev 2016; 117:536-711. [DOI: 10.1021/acs.chemrev.6b00030] [Citation(s) in RCA: 457] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Niko Hildebrandt
- NanoBioPhotonics
Institut d’Electronique Fondamentale (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, 91400 Orsay, France
| | | | - W. Russ Algar
- Department
of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Thomas Pons
- LPEM;
ESPCI Paris, PSL Research University; CNRS; Sorbonne Universités, UPMC, F-75005 Paris, France
| | | | - Eunkeu Oh
- Sotera Defense Solutions, Inc., Columbia, Maryland 21046, United States
| | - Kimihiro Susumu
- Sotera Defense Solutions, Inc., Columbia, Maryland 21046, United States
| | - Sebastian A. Díaz
- American Society for Engineering Education, Washington, DC 20036, United States
| | | | | |
Collapse
|
7
|
Tang JJ, Sun JF, Lui R, Zhang ZM, Liu JF, Xie JW. New Surface-Enhanced Raman Sensing Chip Designed for On-Site Detection of Active Ricin in Complex Matrices Based on Specific Depurination. ACS APPLIED MATERIALS & INTERFACES 2016; 8:2449-2455. [PMID: 26719952 DOI: 10.1021/acsami.5b12860] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Quick and accurate on-site detection of active ricin has very important realistic significance in view of national security and defense. In this paper, optimized single-stranded oligodeoxynucleotides named poly(21dA), which function as a depurination substrate of active ricin, were screened and chemically attached on gold nanoparticles (AuNPs, ∼100 nm) via the Au-S bond [poly(21dA)-AuNPs]. Subsequently, poly(21dA)-AuNPs were assembled on a dihydrogen lipoic-acid-modified Si wafer (SH-Si), thus forming the specific surface-enhanced Raman spectroscopy (SERS) chip [poly(21dA)-AuNPs@SH-Si] for depurination of active ricin. Under optimized conditions, active ricin could specifically hydrolyze multiple adenines from poly(21dA) on the chip. This depurination-induced composition change could be conveniently monitored by measuring the distinct attenuation of the SERS signature corresponding to adenine. To improve sensitivity of this method, a silver nanoshell was deposited on post-reacted poly(21dA)-AuNPs, which lowered the limit of detection to 8.9 ng mL(-1). The utility of this well-controlled SERS chip was successfully demonstrated in food and biological matrices spiked with different concentrations of active ricin, thus showing to be very promising assay for reliable and rapid on-site detection of active ricin.
Collapse
Affiliation(s)
- Ji-Jun Tang
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences , Beijing 100850, People's Republic of China
| | - Jie-Fang Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
| | - Rui Lui
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
| | - Zong-Mian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
| | - Jing-Fu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, People's Republic of China
- Institute of Environment and Health, Jianghan University , Wuhan, Hubei 430056, People's Republic of China
| | - Jian-Wei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences , Beijing 100850, People's Republic of China
| |
Collapse
|
8
|
Saleh TM, Connell BJ, Kucukkaya I, Abd-El-Aziz AS. Increasing the Biological Stability Profile of a New Chemical Entity, UPEI-104, and Potential Use as a Neuroprotectant Against Reperfusion-Injury. Brain Sci 2015; 5:130-43. [PMID: 25906324 PMCID: PMC4493460 DOI: 10.3390/brainsci5020130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/01/2015] [Accepted: 04/13/2015] [Indexed: 11/16/2022] Open
Abstract
Previous work in our laboratory demonstrated the utility of synthetic combinations of two naturally occurring, biologically active compounds. In particular, we combined two known anti-oxidant compounds, lipoic acid and apocynin, covalently linked via an ester bond (named UPEI-100). In an animal model of ischemia-reperfusion injury (tMCAO), UPEI-100 was shown to produce equivalent neuroprotection compared to each parent compound, but at a 100-fold lower dose. However, it was determined that UPEI-100 was undetectable in any tissue samples almost immediately following intravenous injection. Therefore, the present investigation was done to determine if biological stability of UPEI-100 could be improved by replacing the ester bond with a more bio cleavage-resistant bond, an ether bond (named UPEI-104). We then compared the stability of UPEI-104 to the original parent compound UPEI-100 in human plasma as well as liver microsomes. Our results demonstrated that both UPEI-100 and UPEI-104 could be detected in human plasma for over 120 min; however, only UPEI-104 was detectable for an average of 7 min following incubation with human liver microsomes. This increased stability did not affect the biological activity of UPEI-104 as measured using our tMCAO model. Our results suggest that combining compounds using an ether bond can improve stability while maintaining biological activity.
Collapse
Affiliation(s)
- Tarek M Saleh
- Department of Biomedical Sciences, Atlantic Veterinary College, Charlottetown, PE C1A 4P3, Canada.
| | - Barry J Connell
- Department of Biomedical Sciences, Atlantic Veterinary College, Charlottetown, PE C1A 4P3, Canada.
| | - Inan Kucukkaya
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Alaa S Abd-El-Aziz
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
9
|
Doughan S, Han Y, Uddayasankar U, Krull UJ. Solid-phase covalent immobilization of upconverting nanoparticles for biosensing by luminescence resonance energy transfer. ACS APPLIED MATERIALS & INTERFACES 2014; 6:14061-14068. [PMID: 25046803 DOI: 10.1021/am503391m] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Monodisperse water-soluble upconverting nanoparticles (UCNPs) were immobilized onto modified glass substrates for development of biosensing surfaces that operated using luminescence resonance energy transfer (LRET). Amine modified UCNPs were prepared from oleic acid capped UCNPs by ligand exchange using o-phosphorylethanolamine (PEA). PEA-UCNPs were covalently immobilized on aldehyde functionalized coverslips. Environmental scanning electron microscopy (ESEM) images indicated a homogeneous distribution of UCNPs on surfaces with a high immobilization density of approximately 1.3 × 10(11) UCNP cm(-2). This is the first account of covalent immobilization of UCNPs for bioassay and biosensor development where the density is on par with the high immobilization densities reported for other types of nanoparticles. The functionality and stability of the immobilized NPs were demonstrated by examining an LRET-based bioassay. The well-known sandwich assay for the detection of thrombin was selected as a model in which UCNPs were used as donors and quantum dots (QDs) as acceptors. The closely packed UCNPs on the glass surface showed a 2.5-fold enhancement in assay sensitivity compared to less-densely packed surfaces. In addition, a 1.5-fold enhancement in energy transfer efficiency was shown for solid-phase compared to solution-phase LRET.
Collapse
Affiliation(s)
- Samer Doughan
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga , 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | | | | | | |
Collapse
|
10
|
Noor MO, Petryayeva E, Tavares AJ, Uddayasankar U, Algar WR, Krull UJ. Building from the “Ground” Up: Developing interfacial chemistry for solid-phase nucleic acid hybridization assays based on quantum dots and fluorescence resonance energy transfer. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2013.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Uddayasankar U, Krull UJ. Analytical performance of molecular beacons on surface immobilized gold nanoparticles of varying size and density. Anal Chim Acta 2013; 803:113-22. [DOI: 10.1016/j.aca.2013.07.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 06/28/2013] [Accepted: 07/27/2013] [Indexed: 10/26/2022]
|
12
|
Sáez L, Molina J, Florea DI, Planells EM, Cabeza MC, Quintero B. Characterization of L-cysteine capped CdTe quantum dots and application to test Cu(II) deficiency in biological samples from critically ill patients. Anal Chim Acta 2013; 785:111-8. [PMID: 23764451 DOI: 10.1016/j.aca.2013.04.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/18/2013] [Accepted: 04/26/2013] [Indexed: 01/10/2023]
Abstract
The catalytic activity of copper ion gives, from the physiological point of view, a central role in many biological processes. Variations in the composition and location of cellular copper have been addressed given their physiological and pathological consequences. In this paper L-cysteine capped CdTe quantum dots is used for the fluorimetric determination of Cu(II) in biological samples from healthy individuals and patients admitted to the Intensive Care Units (ICU). An acceptable homogeneity in the CdTe QDs size has been obtained with an average value of 3 nm. No significant alterations in the spectral properties were observed for 2 months when stored in vacutainers at 6°C and a concentration of approximately 2 μM. Data from oxidative stress markers such superoxide dismutase, total antioxidant capacity and DNA damage can be correlated with a Cu(II) deficiency for the ICU patients as measured by flame-atomic absorption spectroscopy (FAAS) and inductively coupled plasma source mass spectrometry (ICP-MS). Aqueous solutions 0.3 μM of L-cysteine capped CdTe QDs in MOPS buffer (6 mM, pH 7.4) used at 21°C in the range 15-60 min after preparation of the sample for the measurements of fluorescence gives contents in Cu(II) for erythrocytes in good agreement with those obtained in FAAS and ICP-MS but the comparative ease of use makes the fluorimetric technique more suitable than the other two techniques for routine analysis.
Collapse
Affiliation(s)
- Laura Sáez
- Institute of Nutrition and Food Technology and Department of Physiology, Faculty of Pharmacy, Campus Cartuja, University of Granada, Granada, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 2013; 113:1904-2074. [PMID: 23432378 DOI: 10.1021/cr300143v] [Citation(s) in RCA: 824] [Impact Index Per Article: 74.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kim E Sapsford
- Division of Biology, Department of Chemistry and Materials Science, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Petryayeva E, Algar WR, Krull UJ. Adapting fluorescence resonance energy transfer with quantum dot donors for solid-phase hybridization assays in microtiter plate format. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:977-987. [PMID: 23298406 DOI: 10.1021/la304287v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Methods have been developed for the solid-phase detection of nucleic acids using mixed films of quantum dots (QDs) and oligonucleotide probes in microtiter plates. Polystyrene microwells were functionalized with multidentate imidazole ligands to immobilize QDs. Oligonucleotide hybridization was transduced using QDs as donors in fluorescence resonance energy transfer (FRET). One detection channel paired green-emitting QD donors with Cy3 acceptors and served as an internal standard. A second detection channel paired red-emitting QDs with Alexa Fluor 647 acceptors and served as the primary detection channel. A selective assay for multiple targets was demonstrated using a 96-well plate format, which combined the advantages of two-plex QD-FRET with the high-throughput capability and convenience of microtiter plates. The assay had excellent resistance to the nonspecific adsorption of DNA and discriminated between fully complementary and single base-pair mismatched sequences with a contrast ratio >2. Under optimal conditions for a single color (green QD) assay format, the limit of detection (LOD) was 4 nM, and the dynamic range was from 20 to 300 nM. In a two-color assay, the detection channel (red QD) exhibited linear response between 4 and 100 nM and a LOD of 4 nM.
Collapse
Affiliation(s)
- Eleonora Petryayeva
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | | | | |
Collapse
|
15
|
Noor MO, Shahmuradyan A, Krull UJ. Paper-Based Solid-Phase Nucleic Acid Hybridization Assay Using Immobilized Quantum Dots as Donors in Fluorescence Resonance Energy Transfer. Anal Chem 2013; 85:1860-7. [DOI: 10.1021/ac3032383] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- M. Omair Noor
- Chemical
Sensors Group, Department of Chemical and
Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga Ontario, L5L 1C6, Canada
| | - Anna Shahmuradyan
- Chemical
Sensors Group, Department of Chemical and
Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga Ontario, L5L 1C6, Canada
| | - Ulrich J. Krull
- Chemical
Sensors Group, Department of Chemical and
Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga Ontario, L5L 1C6, Canada
| |
Collapse
|
16
|
Mazzio KA, Okamoto K, Li Z, Gutmann S, Strein E, Ginger DS, Schlaf R, Luscombe CK. A one pot organic/CdSe nanoparticle hybrid material synthesis with in situ π-conjugated ligand functionalization. Chem Commun (Camb) 2013; 49:1321-3. [DOI: 10.1039/c2cc38544a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Katherine A Mazzio
- Department of Materials Science and Engineering and Molecular Engineering and Sciences Institute, University of Washington, Box 352120, Seattle, WA 98195-2120, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhang B, Wang X, Liu F, Cheng Y, Shi D. Effective reduction of nonspecific binding by surface engineering of quantum dots with bovine serum albumin for cell-targeted imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:16605-16613. [PMID: 23145555 DOI: 10.1021/la302758g] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Quantum dots (QDs) have been widely used as fluorescent probes in cell-targeted imaging. However, nonspecific binding to cellular membranes has been a major challenge. In this study, a new approach is developed for effective reduction of nonspecific binding by bovine serum albumin (BSA)-coated QDs in cell targeting. The experimental results show efficient transfer of hydrophobic QDs from organic to aqueous phase in the presence of BSA aqueous solution under ultrasonication. This ultrasonication-based approach is facile, rapid, and efficient. Stabilization of QDs is mainly achieved by multiple mercapto groups in BSA macromolecules as multidentate ligands and partially by hydrophobic interaction between BSA and pending fatty ligands on QDs. The water solubility of QDs is enhanced by the surface amino and carboxyl groups, which also provide reaction sites for conjugation of targeting ligands. The BSA-coated QDs, with an overwhelming majority of hydrodynamic diameter size of ca. 18 nm, are colloidally stable under both acidic and basic conditions and found to exhibit strong fluorescent intensities. The nonspecific cellular binding is effectively reduced by BSA-coated QDs, compared with the mercaptopropionic acid (MPA)-coated CdTe QDs. BSA-coated QDs are further functionalized with cyclic Arg-Gly-Asp (cRGD) peptide. The cell assays indicate their high target-selectivity in integrin α(v)β(3)-expressed cell imaging.
Collapse
Affiliation(s)
- Bingbo Zhang
- The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092, PR China.
| | | | | | | | | |
Collapse
|
18
|
|
19
|
Petryayeva E, Krull UJ. Quantum dot and gold nanoparticle immobilization for biosensing applications using multidentate imidazole surface ligands. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:13943-13951. [PMID: 22992133 DOI: 10.1021/la302985x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A facile approach for modification of solid substrates with multidentate imidazole ligands was developed for immobilization of high densities of quantum dots (QDs) that were capped with hydrophilic thiol-based ligands, and for immobilization of noble metal nanoparticles. Imidazole polymer was synthesized using poly(acrylic acid) as a backbone, and grafted on amine functionalized substrate in a two-step approach. The polymer-modified surface was characterized using ellipsometry, water contact angle, and X-ray photoelectron spectroscopy. Fluorescence spectroscopy and scanning electron microscopy were used to evaluate nanoparticle immobilization. Homogeneous, high density (ca. 5 × 10(11) cm(-2)) QD films formed via self-assembly were obtained within 4-6 h. Similarly, the imidazole polymer was also shown to be effective for immobilization of gold nanoparticles as a uniform film. By making use of the pH-sensitive affinity of the imidazole rings to zinc on the surface of QDs, it was possible to achieve regeneration of functional ligands suitable for subsequent immobilization of new QDs. Immobilized QDs were used as a platform for bioconjugation with oligonucleotides and peptides. The transduction of nucleic acid hybridization and enzyme activity using QDs as energy donors in interfacial fluorescence resonance energy transfer (FRET) indicated that the immobilization strategy preserved the functional properties of the QDs. The multidentate imidazole ligands used for QD immobilization offer the highest denticity of binding in comparison to the currently available approaches without compromise in their optical properties and ability to interact with biomolecules in solution.
Collapse
Affiliation(s)
- Eleonora Petryayeva
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | | |
Collapse
|
20
|
Guan LY, Li YQ, Lin S, Zhang MZ, Chen J, Ma ZY, Zhao YD. Characterization of CdTe/CdSe quantum dots-transferrin fluorescent probes for cellular labeling. Anal Chim Acta 2012; 741:86-92. [PMID: 22840708 DOI: 10.1016/j.aca.2012.06.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
Abstract
In this paper, we prepared three types of transferrin-quantum dots conjugates (QDs-Tf) using three different methods (electrostatic interaction, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) coupling, denatured transferrin (dTf) coating). Fluorescence emission spectra, surface characteristics, zeta potentials of quantum dots (QDs) and QDs-Tf fluorescent probes were characterized by spectrophotometer, capillary electrophoresis, and dynamic light scattering. Fluorescent imaging of HeLa cells was also performed by QDs and QDs-Tf fluorescent probes. It was found that the fluorescence imaging performances of QDs-Tf probes prepared by electrostatic interaction and EDC coupling were better compared with the one prepared by dTf coating. Then a real-time single cell detection system was established to quantitatively evaluate cell labeling effects of QDs-Tf fluorescent probes. It was found that for cell labeling efficiency, the proportion of cells labeled by quantum dot probes to a group of cells, QDs-Tf probe prepared by EDC coupling showed the highest labeling efficiency (85.55±3.88%), followed by electrostatic interaction (78.86±9.57%), and dTf coating showed the lowest (40.09±10.2%). This efficiency order was confirmed by flow cytometry results. This study demonstrated the relationship between conjugation methods and the resultant QDs-Tf probes and provided a foundation for choosing appropriate QDs-Tf probes in cell labeling.
Collapse
Affiliation(s)
- Li-Yun Guan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Department of Biomedical Engineering, Wuhan, HuBei 430074, PR China
| | | | | | | | | | | | | |
Collapse
|
21
|
Wu C, Wang Y, Han X, Hu X, Cheng Q, Han B, Liu Q, Ren T, He Y, Sun S, Ma H. Site-selective assembly of quantum dots on patterned self-assembled monolayers fabricated by laser direct-writing. NANOTECHNOLOGY 2012; 23:235302. [PMID: 22595703 DOI: 10.1088/0957-4484/23/23/235302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A simple and efficient route for quantum dot (QDs) patterning using self-assembled monolayers (SAMs) as templates is described. By means of a laser direct-writing (LDW) technique, SAMs of octadecylphosphonic acid formed by adsorption on native oxide layer of titanium film were patterned through laser-induced ablation of the SAM molecules. This technique allows the creation of chemical-specific patterns accompanied by slight change in the topography. Using atomic force microscopy and friction force microscopy, the dependence of feature size and characteristics on the irradiation dose was demonstrated. Upon immersion of a substrate with patterned SAMs bearing thiol as the terminal group into a dispersion of QDs resulted in the assembly of QDs on the specific thiol-terminated areas. Patterns of QDs with different photoluminescent wavelength were generated. The LDW technique, which is convenient and flexible due to its path-directed and maskless fabrication process, provided a new powerful approach for patterning materials on surfaces for various applications.
Collapse
Affiliation(s)
- Chong Wu
- National Center for Nanoscience and Technology, Graduate School of Chinese Academy of Sciences, 11 Beiyitiao, Zhongguancun, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cui Y, Gong X, Zhu S, Li Y, Su W, Yang Q, Chang J. An effective modified method to prepare highly luminescent, highly stable water-soluble quantum dots and its preliminary application in immunoassay. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c1jm13461b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
23
|
Tavares AJ, Noor MO, Vannoy CH, Algar WR, Krull UJ. On-Chip Transduction of Nucleic Acid Hybridization Using Spatial Profiles of Immobilized Quantum Dots and Fluorescence Resonance Energy Transfer. Anal Chem 2011; 84:312-9. [DOI: 10.1021/ac2025943] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Anthony J. Tavares
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359
Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | - M. Omair Noor
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359
Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | - Charles H. Vannoy
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359
Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | - W. Russ Algar
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359
Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | - Ulrich J. Krull
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359
Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
24
|
Noor MO, Krull UJ. Microfluidics for the deposition of density gradients of immobilized oligonucleotide probes; developing surfaces that offer spatial control of the stringency of DNA hybridization. Anal Chim Acta 2011; 708:1-10. [DOI: 10.1016/j.aca.2011.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 09/30/2011] [Accepted: 10/03/2011] [Indexed: 01/06/2023]
|
25
|
Vannoy CH, Tavares AJ, Noor MO, Uddayasankar U, Krull UJ. Biosensing with quantum dots: a microfluidic approach. SENSORS (BASEL, SWITZERLAND) 2011; 11:9732-63. [PMID: 22163723 PMCID: PMC3231262 DOI: 10.3390/s111009732] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/04/2011] [Accepted: 10/17/2011] [Indexed: 01/09/2023]
Abstract
Semiconductor quantum dots (QDs) have served as the basis for signal development in a variety of biosensing technologies and in applications using bioprobes. The use of QDs as physical platforms to develop biosensors and bioprobes has attracted considerable interest. This is largely due to the unique optical properties of QDs that make them excellent choices as donors in fluorescence resonance energy transfer (FRET) and well suited for optical multiplexing. The large majority of QD-based bioprobe and biosensing technologies that have been described operate in bulk solution environments, where selective binding events at the surface of QDs are often associated with relatively long periods to reach a steady-state signal. An alternative approach to the design of biosensor architectures may be provided by a microfluidic system (MFS). A MFS is able to integrate chemical and biological processes into a single platform and allows for manipulation of flow conditions to achieve, by sample transport and mixing, reaction rates that are not entirely diffusion controlled. Integrating assays in a MFS provides numerous additional advantages, which include the use of very small amounts of reagents and samples, possible sample processing before detection, ultra-high sensitivity, high throughput, short analysis time, and in situ monitoring. Herein, a comprehensive review is provided that addresses the key concepts and applications of QD-based microfluidic biosensors with an added emphasis on how this combination of technologies provides for innovations in bioassay designs. Examples from the literature are used to highlight the many advantages of biosensing in a MFS and illustrate the versatility that such a platform offers in the design strategy.
Collapse
Affiliation(s)
- Charles H. Vannoy
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd. North, Mississauga, Ontario L5L 1C6, Canada; E-Mails: (C.H.V.); (A.J.T.); (M.O.N.); (U.U.)
| | | | | | | | - Ulrich J. Krull
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd. North, Mississauga, Ontario L5L 1C6, Canada; E-Mails: (C.H.V.); (A.J.T.); (M.O.N.); (U.U.)
| |
Collapse
|
26
|
Algar WR, Krull UJ. Interfacial chemistry and the design of solid-phase nucleic acid hybridization assays using immobilized quantum dots as donors in fluorescence resonance energy transfer. SENSORS (BASEL, SWITZERLAND) 2011; 11:6214-36. [PMID: 22163951 PMCID: PMC3231443 DOI: 10.3390/s110606214] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 05/26/2011] [Accepted: 06/07/2011] [Indexed: 11/26/2022]
Abstract
The use of quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET) offer several advantages for the development of multiplexed solid-phase QD-FRET nucleic acid hybridization assays. Designs for multiplexing have been demonstrated, but important challenges remain in the optimization of these systems. In this work, we identify several strategies based on the design of interfacial chemistry for improving sensitivity, obtaining lower limits of detection (LOD) and enabling the regeneration and reuse of solid-phase QD-FRET hybridization assays. FRET-sensitized emission from acceptor dyes associated with hybridization events at immobilized QD donors provides the analytical signal in these assays. The minimization of active sensing area reduces background from QD donor PL and allows the resolution of smaller amounts of acceptor emission, thus lowering the LOD. The association of multiple acceptor dyes with each hybridization event can enhance FRET efficiency, thereby improving sensitivity. Many previous studies have used interfacial protein layers to generate selectivity; however, transient destabilization of these layers is shown to prevent efficient regeneration. To this end, we report a protein-free interfacial chemistry and demonstrate the specific detection of as little as 2 pmol of target, as well as an improved capacity for regeneration.
Collapse
Affiliation(s)
- W. Russ Algar
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd. North, Mississauga, ON L5L 1C6, Canada; E-Mail:
| | - Ulrich J. Krull
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd. North, Mississauga, ON L5L 1C6, Canada; E-Mail:
| |
Collapse
|
27
|
Yang L, Ren X, Meng X, Li H, Tang F. Optical analysis of lactate dehydrogenase and glucose by CdTe quantum dots and their dual simultaneous detection. Biosens Bioelectron 2011; 26:3488-93. [PMID: 21376562 DOI: 10.1016/j.bios.2011.01.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/24/2011] [Accepted: 01/24/2011] [Indexed: 01/14/2023]
Abstract
Biomolecules detection by size-controlled quantum dots (QDs) was promising in developing clinic diagnostic techniques. In this work, a novel bioanalytical platform was developed to detect the activity of nicotinamide adenine dinucleotide (NAD) dependent enzyme, lactate dehydrogenase (LDH), and the concentration of glucose by the changes of fluorescence intensities of the QDs based on the electron transfer between QDs and sensitive biomolecules. The fluorescence intensities of the QDs was firstly quenched by NAD and then intensified with increasing amounts of the LDH because of the consumption of the NAD by the biocatalyzed reaction. Also the glucose led to the decline of fluorescence due to the formation of hydrogen peroxide (H(2)O(2)) which was the product of the glucose reacting with the glucose oxidase (GOD). The linear calibration plots of the activity of LDH and glucose were obtained from 250 to 6000 U/L and 1.67 to 6.67 mM, respectively. The detection system was also successfully applied to detect LDH and glucose in human serum samples. This analysis process was very convenient and simple because the QDs need not to be modified by any organic or biological molecules before they were used into the system. Moreover, the established method had great potential in detection of the physiological level of some biomolecules in clinical diagnostics of various diseases.
Collapse
Affiliation(s)
- Liuqing Yang
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, and Graduate University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | | | | | | | | |
Collapse
|
28
|
Zou W, Du ZJ, Li HQ, Zhang C. Fabrication of surface-modified CdSe quantum dots by self-assembly of a functionalizable comb polymer. POLYM INT 2010. [DOI: 10.1002/pi.3005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Kamat PV, Tvrdy K, Baker DR, Radich EJ. Beyond Photovoltaics: Semiconductor Nanoarchitectures for Liquid-Junction Solar Cells. Chem Rev 2010; 110:6664-88. [DOI: 10.1021/cr100243p] [Citation(s) in RCA: 676] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Prashant V. Kamat
- Radiation Laboratory and Departments of Chemistry & Biochemistry and Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Kevin Tvrdy
- Radiation Laboratory and Departments of Chemistry & Biochemistry and Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - David R. Baker
- Radiation Laboratory and Departments of Chemistry & Biochemistry and Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Emmy J. Radich
- Radiation Laboratory and Departments of Chemistry & Biochemistry and Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
30
|
Muruganandham M, Amutha R, Sillanpää M. Reagents for ZnS hierarchical and non-hierarchical porous self-assembly. ACS APPLIED MATERIALS & INTERFACES 2010; 2:1817-1823. [PMID: 20565130 DOI: 10.1021/am100390u] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Monodispersed highly ordered and homogeneous ZnS microsphere with precisely controlled hierarchical and non-hierarchical surface structure was successfully fabricated in water-ethanol mixed solvent and in water without using any catalysts or templates in a hydrothermal process. The microsphere formation has been facilitated by self-assembly followed by Ostwald ripening process. The products were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy-dispersive X-ray spectrometry (EDX). The XRD results indicated that the cubic phase ZnS formed in hydrothermal process at various reaction times. Introducing ethanol as a co-solvent with water facilitated hierarchical porous surface structure. The influences of various zinc and sulfur precursors, various alcohols as co-solvent, and solvent ratio on the formation of specific surface structured microsphere was investigated. The water-ethanol (1:1) solvent ratio is the minimum required to facilitate hierarchical porous surface structure. The by-products formed during the hydrothermal process are induced specific surface structure in ZnS microsphere. This is the first report on in situ generated by-products being used as a reagent to facilitate surface structured material fabrication. The formed by-products could be used as recyclable reagents to fabricate hierarchical porous ZnS in three consecutive cycles. A plausible growth mechanism of by-product-induced surface structure in different solvent was discussed. The research results may lay down new vistas for the in situ generated by-product-assisted specific surface structured ZnS fabrication.
Collapse
|
31
|
Algar WR, Tavares AJ, Krull UJ. Beyond labels: A review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal Chim Acta 2010; 673:1-25. [DOI: 10.1016/j.aca.2010.05.026] [Citation(s) in RCA: 406] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 05/17/2010] [Accepted: 05/17/2010] [Indexed: 01/08/2023]
|
32
|
Algar WR, Krull UJ. Developing mixed films of immobilized oligonucleotides and quantum dots for the multiplexed detection of nucleic acid hybridization using a combination of fluorescence resonance energy transfer and direct excitation of fluorescence. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:6041-6047. [PMID: 20000340 DOI: 10.1021/la903751m] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Methods have been developed for the simultaneous and selective detection of three target nucleic acid sequences based on mixed films of immobilized quantum dots (QDs) and oligonucleotide probes. CdSe/ZnS QDs were immobilized on optical fibers and conjugated with mixtures of different probe oligonucleotides. Hybridization events were detected using a combination of fluorescence from direct excitation and fluorescence sensitized by resonance energy transfer (FRET). A sandwich assay format was used to associate dye labeled reporter oligonucleotides with probe-target hybrids formed at the surface of the optical fiber. One detection channel utilized direct excitation of Pacific Blue and the two other detection channels were based on FRET. In one strategy, green emitting QDs were used as donors with Cy3 and Rhodamine Red-X acceptors. In a second strategy, green and red emitting QDs were coimmobilized and used as donors with Cy3 and Alexa Fluor 647 acceptors, respectively. Selective three-plex detection was demonstrated with both strategies. Several key design criteria that were explored to optimize the relative signal magnitude between channels included: the ratio of probe associated with direct excitation versus probes associated with FRET; the relative amounts of each FRET probe and corresponding spectral overlap; and the photoluminescence ratio between immobilized green and red emitting QDs (where applicable). Careful selection of probe sequences and lengths were important for the discrimination of single nucleotide polymorphisms in one channel without suppressing binding of target in the other two channels. This work provides a basis for the development of multiplexed biosensors that are ensemble compatible and do not require discrete sensor elements, spatial registration, sorting technology, or single molecule spectroscopy.
Collapse
Affiliation(s)
- W Russ Algar
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, North, Mississauga, Ontario, L5L 1C6, Canada
| | | |
Collapse
|
33
|
Semiconductor Nanocrystals Hybridized with Functional Ligands: New Composite Materials with Tunable Properties. MATERIALS 2010. [PMCID: PMC5525183 DOI: 10.3390/ma3010614] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Semiconductor nanocrystals hybridized with functional ligands represent an important new class of composite nanomaterials. The development of these new nanoscale building blocks has intensified over the past few years and offer significant advantages in a wide array of applications. Functional ligands allow for incorporation of nanocrystals into areas where their unique photophysics can be exploited. Energy and charge transfer between the ligands and the nanocrystal also result in enhanced physical properties that can be tuned by the choice of ligand architecture. Here, progress in the development and applications involving this new class of composite materials will be discussed.
Collapse
|
34
|
Algar WR, Krull UJ. Multiplexed Interfacial Transduction of Nucleic Acid Hybridization Using a Single Color of Immobilized Quantum Dot Donor and Two Acceptors in Fluorescence Resonance Energy Transfer. Anal Chem 2009; 82:400-5. [DOI: 10.1021/ac902221d] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- W. Russ Algar
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto, Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | - Ulrich J. Krull
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto, Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
35
|
Bioconjugated quantum dots as fluorescent probes for bioanalytical applications. Anal Bioanal Chem 2009; 396:229-40. [DOI: 10.1007/s00216-009-3033-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 07/24/2009] [Accepted: 07/30/2009] [Indexed: 10/20/2022]
|
36
|
Algar WR, Krull UJ. Toward a multiplexed solid-phase nucleic acid hybridization assay using quantum dots as donors in fluorescence resonance energy transfer. Anal Chem 2009; 81:4113-20. [PMID: 19358559 DOI: 10.1021/ac900421p] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Solid-phase assays using immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET) have been developed for the selective detection of nucleic acids. QDs were immobilized on optical fibers and conjugated with probe oligonucleotides. Hybridization with acceptor labeled target oligonucleotides generated FRET-sensitized acceptor fluorescence that was used as the analytical signal. A sandwich assay was also introduced and avoided the need for target labeling. Green and red emitting CdSe/ZnS QDs were used as donors with Cy3 and Alexa Fluor 647 acceptors, respectively. Quantitative measurements were made via spectrofluorimetry or fluorescence microscopy. Detection limits as low as 1 nM were obtained, and the discrimination of single nucleotide polymorphisms (SNPs) with contrast ratios as high as 31:1 was possible. The assays retained their selectivity and at least 50% of their signal when tested in bovine serum and against a large background of noncomplementary genomic DNA. Mixed films of the two colors of QD and two probe oligonucleotide sequences were prepared for multiplexed solid-phase hybridization assays. It was possible to simultaneously detect two target sequences with retention of selectivity, including SNP discrimination. This research provides an important precedent and framework for the future development of QD-based bioassays and biosensors.
Collapse
Affiliation(s)
- W Russ Algar
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada
| | | |
Collapse
|
37
|
Algar WR, Krull UJ. Interfacial transduction of nucleic acid hybridization using immobilized quantum dots as donors in fluorescence resonance energy transfer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:633-638. [PMID: 19115878 DOI: 10.1021/la803082f] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Fluorescence resonance energy transfer (FRET) using immobilized quantum dots (QDs) as energy donors was explored as a transduction method for the detection of nucleic acid hybridization at an interface. This research was motivated by the success of the QD-FRET-based transduction of nucleic acid hybridization in solution-phase assays. This new work represents a fundamental step toward the assembly of a biosensor, where immobilization of the selective chemistry on a surface is desired. After immobilizing QD-probe oligonucleotide conjugates on optical fibers, a demonstration of the retention of selectivity was achieved by the introduction of acceptor (Cy3)-labeled single-stranded target oligonucleotides. Hybridization generated the proximity required for FRET, and the resulting fluorescence spectra provided an analytical signal proportional to the amount of target. This research provides an important framework for the future development of nucleic acid biosensors based on QDs and FRET. The most important findings of this work are that (1) a QD-FRET solid-phase hybridization assay is viable and (2) a passivating layer of denatured bovine serum albumin alleviates nonspecific adsorption, ultimately resulting in (3) the potential for a reusable assay format and mismatch discrimination. In this, the first incarnation of a solid-phase QD-FRET hybridization assay, the limit of detection was found to be 5 nM, and the dynamic range was almost 2 orders of magnitude. Selective discrimination of the target was shown using a three-base-pairs mismatch from a fully complementary sequence. Despite a gradual loss of signal, reuse of the optical fibers over multiple cycles of hybridization and dehybridization was possible. Directions for further improvement of the analytical performance by optimizing the design of the QD-probe oligonucleotide interface are identified.
Collapse
Affiliation(s)
- W Russ Algar
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | | |
Collapse
|