1
|
Gorbachev IA, Smirnov AV, Glukhovskoy EG, Kolesov VV, Ivanov GR, Kuznetsova IE. Morphology of Mixed Langmuir and Langmuir-Schaefer Monolayers with Covered CdSe/CdS/ZnS Quantum Dots and Arachidic Acid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14105-14113. [PMID: 34793676 DOI: 10.1021/acs.langmuir.1c02345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The process of formation of a Langmuir-Schaefer (LS) matrix based on a mixed monolayer of arachidic acid (AA) and 8 nm CdSe/CdS/ZnS quantum dots (QDs) stabilized by molecules of trioctylphosphine oxide (TOPO) was investigated. The change in the morphology, monolayer compressibility, and area per elementary cell of the created mixed monolayers, depending on the ratio of the components, was studied. It is shown that the change in the morphology of Langmuir-Blodgett (LB) monolayers begins to occur at a ratio between the number of QDs and AA molecules of 1:24. Dendrimeric structures with a thickness of the order of 30-40 nm appear in the mixed monolayer when LB film deposition was carried out above the collapse surface pressure of a Langmuir film from only TOPO-covered QDs. Information on the dependence of the morphology of such structures on the molar ratio of the components is necessary for the production of ordered 2D nanostructures containing 0D and 1D objects with quantum bonds. Such nanostructures can be used in nanoelectronic and optoelectronic devices as a sensitive sensor element. The obtained results would be relevant for any type of spherical shape nanoparticles.
Collapse
Affiliation(s)
- Ilya A Gorbachev
- Kotel'nikov Institute of Radio Engineering and Electronics of Russian Academy of Science, Mokhovaya str. 11, bld.7, Moscow 125009, Russia
| | - Andrey V Smirnov
- Kotel'nikov Institute of Radio Engineering and Electronics of Russian Academy of Science, Mokhovaya str. 11, bld.7, Moscow 125009, Russia
| | | | - Vladimir V Kolesov
- Kotel'nikov Institute of Radio Engineering and Electronics of Russian Academy of Science, Mokhovaya str. 11, bld.7, Moscow 125009, Russia
| | - George R Ivanov
- University Laboratory "Nanoscience and Nanotechnology", University of Architecture, Civil Engineering and Geodesy, blvd. Hr. Smirnenski 1, Sofia 1164, Bulgaria
| | - Iren E Kuznetsova
- Kotel'nikov Institute of Radio Engineering and Electronics of Russian Academy of Science, Mokhovaya str. 11, bld.7, Moscow 125009, Russia
| |
Collapse
|
2
|
Kagan CR, Bassett LC, Murray CB, Thompson SM. Colloidal Quantum Dots as Platforms for Quantum Information Science. Chem Rev 2020; 121:3186-3233. [DOI: 10.1021/acs.chemrev.0c00831] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
3
|
Bodik M, Jergel M, Majkova E, Siffalovic P. Langmuir films of low-dimensional nanomaterials. Adv Colloid Interface Sci 2020; 283:102239. [PMID: 32854017 DOI: 10.1016/j.cis.2020.102239] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 02/08/2023]
Abstract
A large number of low-dimensional nanomaterials having different shapes and being dispersible in solvents open a fundamental question if there is a universal deposition technique for the monolayer formation. A monolayer formation of various nanomaterials at the air-water interface, also known as a Langmuir film, is a well-established technique even for the large group of the recently developed low-dimensional nanomaterials. In this review, we cover the monolayer formation of the zero-dimensional, one-dimensional and two-dimensional nanomaterials. Thanks to the formation of a Langmuir layer at the thermodynamic equilibrium, by using a suitable nanomaterial dispersion and subphase, the monolayers can be formed from all kinds of materials, ranging from the graphene oxide to the semiconducting quantum dots. In this review, we will discuss the basic requirements for the successful formation of monolayers and summarize the recent scientific advances in the field of Langmuir films.
Collapse
|
4
|
Yadav RK, Otten M, Wang W, Cortes CL, Gosztola DJ, Wiederrecht GP, Gray SK, Odom TW, Basu JK. Strongly Coupled Exciton-Surface Lattice Resonances Engineer Long-Range Energy Propagation. NANO LETTERS 2020; 20:5043-5049. [PMID: 32470309 DOI: 10.1021/acs.nanolett.0c01236] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Achieving propagation lengths in hybrid plasmonic systems beyond typical values of tens of micrometers is important for quantum plasmonics applications. We report long-range optical energy propagation due to excitons in semiconductor quantum dots (SQDs) being strongly coupled to surface lattice resonance (SLRs) in silver nanoparticle arrays. Photoluminescence (PL) measurements provide evidence of an exciton-SLR (ESLR) mode extending at least 600 μm from the excitation region. We also observe additional energy propagation with range well beyond the ESLR mode and with dependency on the coupling strength, g, between SQDs and SLR. Cavity quantum electrodynamics calculations capture the nature of the PL spectra for consistent g values, while coupled dipole calculations show a SQD number-dependent electric field decay profile consistent with the experimental spatial PL profile. Our results suggest an exciting direction wherein SLRs mediate long-range interactions between SQDs, having possible applications in optoelectronics, sensing, and quantum information science.
Collapse
Affiliation(s)
| | - Matthew Otten
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Weijia Wang
- Graduate Program in Applied Physics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Cristian L Cortes
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - David J Gosztola
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Gary P Wiederrecht
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Stephen K Gray
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Teri W Odom
- Graduate Program in Applied Physics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jaydeep K Basu
- Department of Physics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
5
|
Popow-Stellmaszyk J, Bajorowicz B, Malankowska A, Wysocka M, Klimczuk T, Zaleska-Medynska A, Lesner A. Design, Synthesis, and Enzymatic Evaluation of Novel ZnO Quantum Dot-Based Assay for Detection of Proteinase 3 Activity. Bioconjug Chem 2018; 29:1576-1583. [DOI: 10.1021/acs.bioconjchem.8b00100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | | | | | | | - Tomasz Klimczuk
- Department of Solid State Physics, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Gdansk 80-233, Poland
| | | | | |
Collapse
|
6
|
Uddin SMN, Nagao Y. Multilayer Growth of Porphyrin-Based Polyurea Thin Film Using Solution-Based Molecular Layer Deposition Technique. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12777-12784. [PMID: 29022718 DOI: 10.1021/acs.langmuir.7b03450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Controllable synthesis of organic thin film materials on solid surfaces is a challenging issue in the research field of surface science, as it is affected by several physical parameters. In this work, we demonstrated a solution-based molecular layer deposition (MLD) approach to prepare porphyrin-based covalent organic molecular networks on a 3-aminopropyl trimethoxysilane (APTMS) modified substrate surface using the urea coupling reaction between 1,4-phenylene diisocyanate (1,4-PDI) and 5,10,15,20-tetrakis-(4-aminophenyl) porphyrin (H2TAPP) at room temperature (22 ± 2 °C). Multilayer growth was investigated under different relative humidity (RH) conditions of the reaction chamber. Sequential molecular growth at low relative humidity (≤10% RH) was observed using UV-vis absorption spectroscopy and atomic force microscopy (AFM). The high-RH condition shows limited film growth. Infrared spectroscopy (IR) and X-ray photoelectron spectroscopy (XPS) revealed the polyurea bond formation in sequential multilayer thin films, demonstrating that stepwise multilayer film growth was achieved using the urea coupling reaction.
Collapse
Affiliation(s)
- S M Nizam Uddin
- School of Materials Science, Japan Advanced Institute of Science and Technology , 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Yuki Nagao
- School of Materials Science, Japan Advanced Institute of Science and Technology , 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
7
|
Oćwieja M, Matras-Postołek K, Maciejewska-Prończuk J, Morga M, Adamczyk Z, Sovinska S, Żaba A, Gajewska M, Król T, Cupiał K, Bredol M. Formation and stability of manganese-doped ZnS quantum dot monolayers determined by QCM-D and streaming potential measurements. J Colloid Interface Sci 2017; 503:186-197. [PMID: 28525826 DOI: 10.1016/j.jcis.2017.04.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 12/23/2022]
Abstract
Manganese-doped ZnS quantum dots (QDs) stabilized by cysteamine hydrochloride were successfully synthesized. Their thorough physicochemical characteristics were acquired using UV-Vis absorption and photoluminescence spectroscopy, X-ray diffraction, dynamic light scattering (DLS), transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS) and Fourier transform infrared (FT-IR) spectroscopy. The average particle size, derived from HR-TEM, was 3.1nm, which agrees with the hydrodynamic diameter acquired by DLS, that was equal to 3-4nm, depending on ionic strength. The quantum dots also exhibited a large positive zeta potential varying between 75 and 36mV for ionic strength of 10-4 and 10-2M, respectively (at pH 6.2) and an intense luminescent emission at 590nm. The quantum yield was equal to 31% and the optical band gap energy was equal to 4.26eV. The kinetics of QD monolayer formation on silica substrates (silica sensors and oxidized silicon wafers) under convection-controlled transport was quantitatively evaluated by the quartz crystal microbalance (QCM) and the streaming potential measurements. A high stability of the monolayer for ionic strength 10-4 and 10-2M was confirmed in these measurements. The experimental data were adequately reflected by the extended random sequential adsorption model (eRSA). Additionally, thorough electrokinetic characteristics of the QD monolayers and their stability for various ionic strengths and pH were acquired by streaming potential measurements carried out under in situ conditions. These results were quantitatively interpreted in terms of the three-dimensional (3D) electrokinetic model that furnished bulk zeta potential of particles for high ionic strengths that is impractical by other experimental techniques. It is concluded that these results can be used for designing of biosensors of controlled monolayer structure capable to bind various ligands via covalent as well as electrostatic interactions.
Collapse
Affiliation(s)
- Magdalena Oćwieja
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Katarzyna Matras-Postołek
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, 31-155 Krakow, Poland.
| | - Julia Maciejewska-Prończuk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Maria Morga
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Zbigniew Adamczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Svitlana Sovinska
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, 31-155 Krakow, Poland
| | - Adam Żaba
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, 31-155 Krakow, Poland
| | - Marta Gajewska
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Tomasz Król
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, 31-155 Krakow, Poland
| | - Klaudia Cupiał
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, 31-155 Krakow, Poland
| | - Michael Bredol
- Muenster University of Applied Sciences, Department of Chemical Engineering, Stegerwaldstr. 39, 48-565 Steinfurt, Germany
| |
Collapse
|
8
|
Niu K, Li Y, Bai R, Qu Y, Song Y. Anion-exchange reactions: facile and general access to sensitive photoelectrochemical platforms for biomarker immunosensing. J Mater Chem B 2017; 5:5145-5151. [DOI: 10.1039/c7tb00998d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The combination of CdSe NCs with biocatalytic precipitation provides a highly sensitive immunosensing strategy.
Collapse
Affiliation(s)
- Kaili Niu
- Department of Chemistry
- Northeastern University
- Shenyang 110004
- China
| | - Yuzhen Li
- Department of Chemistry
- Northeastern University
- Shenyang 110004
- China
| | - Ruili Bai
- Department of Chemistry
- Northeastern University
- Shenyang 110004
- China
| | - Yongfang Qu
- Department of Chemistry
- Northeastern University
- Shenyang 110004
- China
| | - Yanyan Song
- Department of Chemistry
- Northeastern University
- Shenyang 110004
- China
| |
Collapse
|
9
|
Hildebrandt N, Spillmann CM, Algar WR, Pons T, Stewart MH, Oh E, Susumu K, Díaz SA, Delehanty JB, Medintz IL. Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. Chem Rev 2016; 117:536-711. [DOI: 10.1021/acs.chemrev.6b00030] [Citation(s) in RCA: 457] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Niko Hildebrandt
- NanoBioPhotonics
Institut d’Electronique Fondamentale (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, 91400 Orsay, France
| | | | - W. Russ Algar
- Department
of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Thomas Pons
- LPEM;
ESPCI Paris, PSL Research University; CNRS; Sorbonne Universités, UPMC, F-75005 Paris, France
| | | | - Eunkeu Oh
- Sotera Defense Solutions, Inc., Columbia, Maryland 21046, United States
| | - Kimihiro Susumu
- Sotera Defense Solutions, Inc., Columbia, Maryland 21046, United States
| | - Sebastian A. Díaz
- American Society for Engineering Education, Washington, DC 20036, United States
| | | | | |
Collapse
|
10
|
Abstract
Luminescent films have received great interest for chemo-/bio-sensing applications due to their distinct advantages over solution-based probes, such as good stability and portability, tunable shape and size, non-invasion, real-time detection, extensive suitability in gas/vapor sensing, and recycling. On the other hand, they can achieve selective and sensitive detection of chemical/biological species using special luminophores with a recognition moiety or the assembly of common luminophores and functional materials. Nowadays, the extensively used assembly techniques include drop-casting/spin-coating, Langmuir-Blodgett (LB), self-assembled monolayers (SAMs), layer-by-layer (LBL), and electrospinning. Therefore, this review summarizes the recent advances in luminescent films with these assembly techniques and their applications in chemo-/bio-sensing. We mainly focused on the discussion of the relationship between the sensing properties of the films and their architecture. Furthermore, we discussed some critical challenges existing in this field and possible solutions that have been or are being developed to overcome these challenges.
Collapse
Affiliation(s)
- Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | | | | | | |
Collapse
|
11
|
Zaitsev S, Solovyeva D. Supramolecular nanostructures based on bacterial reaction center proteins and quantum dots. Adv Colloid Interface Sci 2015; 218:34-47. [PMID: 25660688 DOI: 10.1016/j.cis.2015.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 11/25/2022]
Abstract
Design of the nanostructures based on membrane proteins (the key functional elements of biomembranes) and colloid nanoparticles is a fascinating field at the interface of biochemistry and colloids, nanotechnology and biomedicine. The review discusses the main achievements in the field of ultrathin films prepared from bacterial reaction center proteins and light-harvesting complexes, as well as these complexes tagged with quantum dots. The principles of preparation of these thin films and their structure and properties at different interfaces are described; as well as their characteristics estimated using a combination of the modern interfacial techniques (absorption and fluorescence spectroscopy, atomic force and Brewster angle microscopy, etc.) are discussed. Further approaches to develop the nanostructures based on the membrane proteins and quantum dots are suggested. These supramolecular nanostructures are promising prototypes of the materials for photovoltaic, optoelectronic and biosensing applications.
Collapse
|
12
|
Alejo T, Merchán MD, Velázquez MM. Adsorption of quantum dots onto polymer and Gemini surfactant films: a quartz crystal microbalance study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:9977-9984. [PMID: 25093530 DOI: 10.1021/la5024955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We used quartz crystal microbalance with dissipation to study the mechanical properties, the kinetics of adsorption, and the amount of CdSe quantum dots (QDs) adsorbed onto a SiO2 sensor, referred as bare sensor, onto the sensor modified with a film of the polymer poly(maleic anhydride-alt-1-octadecene), PMAO, or with a film of the Gemini surfactant ethyl-bis(dimethyl octadecyl ammonium bromide), abbreviated as 18-2-18. Results showed that when the sensor is coated with polymer or surfactant molecules, the coverage increases compared with that obtained for the bare sensor. On the other hand, rheological properties and kinetics of adsorption of QDs are driven by QD nanoparticles. Thus, the QD films present elastic behavior, and the elasticity values are independent of the molecule used as coating and similar to the elasticity value obtained for QDs films on the bare sensor. The QD adsorption is a two-step mechanism in which the fastest process is attributed to the QD adsorption onto the solid substrate and the slowest one is ascribed to rearrangement movements of the nanoparticles adsorbed at the surface.
Collapse
Affiliation(s)
- T Alejo
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca . 37008 Salamanca, Spain
| | | | | |
Collapse
|
13
|
Chatterjee K, Sarkar S, Jagajjanani Rao K, Paria S. Core/shell nanoparticles in biomedical applications. Adv Colloid Interface Sci 2014; 209:8-39. [PMID: 24491963 DOI: 10.1016/j.cis.2013.12.008] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 12/19/2013] [Accepted: 12/19/2013] [Indexed: 12/21/2022]
Abstract
Nanoparticles have several exciting applications in different areas and biomedial field is not an exception of that because of their exciting performance in bioimaging, targeted drug and gene delivery, sensors, and so on. It has been found that among several classes of nanoparticles core/shell is most promising for different biomedical applications because of several advantages over simple nanoparticles. This review highlights the development of core/shell nanoparticles-based biomedical research during approximately past two decades. Applications of different types of core/shell nanoparticles are classified in terms of five major aspects such as bioimaging, biosensor, targeted drug delivery, DNA/RNA interaction, and targeted gene delivery.
Collapse
|
14
|
Yao J, Yang M, Duan Y. Chemistry, Biology, and Medicine of Fluorescent Nanomaterials and Related Systems: New Insights into Biosensing, Bioimaging, Genomics, Diagnostics, and Therapy. Chem Rev 2014; 114:6130-78. [DOI: 10.1021/cr200359p] [Citation(s) in RCA: 592] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jun Yao
- Research
Center of Analytical Instrumentation, Analytical and Testing Center,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Mei Yang
- Research
Center of Analytical Instrumentation, Analytical and Testing Center,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yixiang Duan
- Research
Center of Analytical Instrumentation, Analytical and Testing Center,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Research
Center of Analytical Instrumentation, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
15
|
Das S, Satpati B, Chauhan H, Deka S, Gopinath CS, Bala T. Preferential growth of Au on CdSe quantum dots using Langmuir–Blodgett technique. RSC Adv 2014. [DOI: 10.1039/c4ra11715h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oleyl amine capped CdSe quantum dots are allowed to form monolayer on aqueous HAuCl4 subphase and Langmuir–Blodgett technique is used judicially to grow Au tips in a directed fashion on CdSe quantum dots.
Collapse
Affiliation(s)
- Subhasis Das
- Department of Chemistry and Centre for Research in Nanoscience and Nanotechnology (CRNN)
- University of Calcutta
- Kolkata-700009, India
| | - Biswarup Satpati
- Surface Physics and Material Science Division
- Saha Institute of Nuclear Physics
- Kolkata-64, India
| | - Himani Chauhan
- Department of Chemistry
- University of Delhi
- New Delhi-110007, India
| | - Sasanka Deka
- Department of Chemistry
- University of Delhi
- New Delhi-110007, India
| | - Chinnakonda S. Gopinath
- Catalysis Division and Center of Excellence on Surface Science
- CSIR – National Chemical Laboratory
- Pune-411 008, India
| | - Tanushree Bala
- Department of Chemistry and Centre for Research in Nanoscience and Nanotechnology (CRNN)
- University of Calcutta
- Kolkata-700009, India
| |
Collapse
|
16
|
Sharma A, Pandey CM, Matharu Z, Soni U, Sapra S, Sumana G, Pandey MK, Chatterjee T, Malhotra BD. Nanopatterned cadmium selenide Langmuir-Blodgett platform for leukemia detection. Anal Chem 2012; 84:3082-9. [PMID: 22380657 DOI: 10.1021/ac202265a] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We present results of the studies relating to preparation of Langmuir-Blodgett (LB) monolayers of tri-n-octylphosphine oxide-capped cadmium selenide quantum dots (QCdSe) onto indium-tin oxide (ITO) coated glass substrate. The monolayer behavior has been studied at the air-water interface under various subphase conditions. This nanopatterned platform has been explored to fabricate an electrochemical DNA biosensor for detection of chronic myelogenous leukemia (CML) by covalently immobilizing the thiol-terminated oligonucleotide probe sequence via a displacement reaction. The results of electrochemical response studies reveal that this biosensor can detect target DNA in the range of 10(-6) to 10(-14) M within 120 s, has a shelf life of 2 months, and can be used about 8 times. Further, this nucleic acid sensor has been found to distinguish the CML-positive and the control negative clinical patient samples.
Collapse
Affiliation(s)
- Aditya Sharma
- Department of Science & Technology Centre on Biomolecular Electronics, Biomedical Instrumentation Section, Materials Physics & Engineering Division, National Physical Laboratory (Council of Scientific & Industrial Research), Dr K. S. Krishnan Marg, New Delhi 110012, India
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lee DR, Hong SC, Park SH. Controlled Assembly of Gold Nanoprism and Hexagonal Nanoplate Films for Surface Enhanced Raman Scattering. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.10.3575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Rauf S, Glidle A, Cooper JM. Layer-by-layer quantum dot constructs using self-assembly methods. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:16934-16940. [PMID: 20936803 DOI: 10.1021/la103385s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We describe the creation of CdSe/ZnS quantum dot assemblies using layer-by-layer construction strategies, using self-assembly. In the first approach, a dithiol linker was used to make multilayers of CdSe/ZnS quantum dots, while in the second biotin- and streptavidin-conjugated CdSe/ZnS quantum dots were used to make multilayer constructs. Both the chemical bonding nature and fluorescence spectroscopic properties of quantum dot films were characterized using X-ray photoelectron spectroscopy (XPS) and fluorescence spectroscopy.
Collapse
Affiliation(s)
- Sakandar Rauf
- Department of Electronics and Electrical Engineering, Oakfield Avenue, University of Glasgow, UK G12 8LT.
| | | | | |
Collapse
|
19
|
Selvan ST, Tan TTY, Yi DK, Jana NR. Functional and multifunctional nanoparticles for bioimaging and biosensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:11631-11641. [PMID: 19961213 DOI: 10.1021/la903512m] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Herein, we describe the synthesis of functional and multifunctional nanoparticles (NPs), derived from our recent work, for bioimaging and biosensing applications. The functionalized NPs involve quantum dots (QDs), magnetic particles (MPs) and noble metal NPs for the aforementioned applications. A diverse silica coating approaches (reverse microemulsion and thin silanization) are delineated for the design of water-soluble NPs. We also review the synthesis of silica-coated bifunctional NPs consisting of MPs and QDs for live cell imaging of human liver cancer cells (HepG2) and mouse fibroblast cells (NIH-3T3). Using silica coated NPs, various NPs that are functionalized with antibody, oligonucleotide, biotin and dextran are efficiently used for protein detection.
Collapse
|
20
|
Algar WR, Tavares AJ, Krull UJ. Beyond labels: A review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal Chim Acta 2010; 673:1-25. [DOI: 10.1016/j.aca.2010.05.026] [Citation(s) in RCA: 406] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 05/17/2010] [Accepted: 05/17/2010] [Indexed: 01/08/2023]
|
21
|
Lambert K, Capek RK, Bodnarchuk MI, Kovalenko MV, Van Thourhout D, Heiss W, Hens Z. Langmuir-Schaefer deposition of quantum dot multilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:7732-6. [PMID: 20121263 DOI: 10.1021/la904474h] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The application of colloidal nanocrystals in various devices requires their assembly into well-defined mono- or multilayers. We explore the possibilities of the Langmuir-Schaefer technique to make such layers, using CdSe quantum dots as a model system. The layer quality is assessed using atomic force microscopy, transmission electron microscopy, and UV-vis absorption spectroscopy. For hydrophobic substrates, we find that the Langmuir-Schaefer technique is an excellent tool for controlled multilayer production. With hydrophilic substrates, dewetting induces a cellular superstructure. Combination with photolithography leads to micropatterned multilayers, and combination of different nanocrystal sizes allows for the formation of 2D binary superstructures.
Collapse
Affiliation(s)
- Karel Lambert
- Physics and Chemistry of Nanostructures, Ghent University, Krijgslaan 281-S3, 9000 Gent, Belgium
| | | | | | | | | | | | | |
Collapse
|
22
|
Wu Z, Zhou H, Zhang S, Zhang X, Shen G, Yu R. Pendulum-type optical DNA nanodevice. Chem Commun (Camb) 2010; 46:2232-4. [PMID: 20234916 DOI: 10.1039/b919585h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A pendulum-type DNA nanoswitch, which can perform a reversible on/off molecular motion at an about 9.1-nm scale is developed as a proof-of-concept, and the sequence-specific recognition and quantification of target oligonucleotides are demonstrated utilizing this screening scheme.
Collapse
Affiliation(s)
- Zaisheng Wu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China.
| | | | | | | | | | | |
Collapse
|
23
|
Zhou HP, Zhang C, Yan CH. Controllable assembly of diverse rare-earth nanocrystals via the Langmuir-Blodgett technique and the underlying size- and symmetry-dependent assembly kinetics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:12914-12925. [PMID: 19606877 DOI: 10.1021/la9018986] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The Langmuir-Blodgett (LB) technique provides a facile and robust method for the formation of large-area films of various nanoparticles (NPs), including 24.9 nm NaYF(4):Yb,Er nanospheres, 12.0 nm LiYF(4) nanopolyhedra, 14.1 x 1.8 nm triagonal-shaped LaF(3), 12.6 nm square CaF(2), 9.5 x 2.0 nm hexagonal EuF(3), and so forth. The assembly patterns of the deposited films were studied in accordance with the pi-A isotherms. Combined with the TEM observations, several representative stages of assembly process can be distinguished. The scrutiny of the self-assembly process by means of their pi-A isotherms elucidates that the concentration, size, and symmetry of nanoparticles play crucial roles in this process. The concept of "effective concentration", which is defined as the amount of nanoblocks in the "gas phase" rather than the actual number of nanoparticles at the air-water interface, was first proposed as a control parameter to elucidate the possible assembly kinetics. The similarly shaped 12.0 nm LiYF(4) and the 24.9 nm NaYF(4):Yb,Er were selected as the size-dependent examples. The smaller nanoparticles show a strong tendency of congregation to lower the surface energy. Three representative samples, namely, 24.9 nm NaYF(4):Yb,Er nanospheres (O(h)), 14.1 x 1.8 nm oblate triagonal LaF(3) nanosheets (D(3h)), and 41.3 nm x 24.6 nm NaYF(4) rods (D(6h)), were selected as the shape-dependent samples, which showed that the assembly patterns were contributed by the stability arising from the geometry of the nanoparticles, the tendency of aggregation of nanoparticles, and the probable rotation energy during the compression. More importantly, guided by the above assembly kinetics, for the 9.5 x 2.0 nm hexagonal EuF(3), we can effectively acquire the desirable assembly pattern.
Collapse
Affiliation(s)
- Huan-Ping Zhou
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | | | | |
Collapse
|
24
|
Harriman A, Mallon LJ, Elliot KJ, Haefele A, Ulrich G, Ziessel R. Length Dependence for Intramolecular Energy Transfer in Three- and Four-Color Donor−Spacer−Acceptor Arrays. J Am Chem Soc 2009; 131:13375-86. [DOI: 10.1021/ja9038856] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Anthony Harriman
- Molecular Photonics Laboratory, School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom, and Laboratoire de Chimie Organique et Spectroscopies Avancées (LCOSA), Ecole Européenne de Chimie, Polymères et Matériaux, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Laura J. Mallon
- Molecular Photonics Laboratory, School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom, and Laboratoire de Chimie Organique et Spectroscopies Avancées (LCOSA), Ecole Européenne de Chimie, Polymères et Matériaux, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Kristopher J. Elliot
- Molecular Photonics Laboratory, School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom, and Laboratoire de Chimie Organique et Spectroscopies Avancées (LCOSA), Ecole Européenne de Chimie, Polymères et Matériaux, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Alexandre Haefele
- Molecular Photonics Laboratory, School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom, and Laboratoire de Chimie Organique et Spectroscopies Avancées (LCOSA), Ecole Européenne de Chimie, Polymères et Matériaux, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Gilles Ulrich
- Molecular Photonics Laboratory, School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom, and Laboratoire de Chimie Organique et Spectroscopies Avancées (LCOSA), Ecole Européenne de Chimie, Polymères et Matériaux, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Raymond Ziessel
- Molecular Photonics Laboratory, School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom, and Laboratoire de Chimie Organique et Spectroscopies Avancées (LCOSA), Ecole Européenne de Chimie, Polymères et Matériaux, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| |
Collapse
|