1
|
Chawla U, Jiang Y, Zheng W, Kuang L, Perera SMDC, Pitman MC, Brown MF, Liang H. A Usual G-Protein-Coupled Receptor in Unusual Membranes. Angew Chem Int Ed Engl 2016; 55:588-92. [PMID: 26633591 PMCID: PMC5233722 DOI: 10.1002/anie.201508648] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/02/2015] [Indexed: 12/30/2022]
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of membrane-bound receptors and constitute about 50% of all known drug targets. They offer great potential for membrane protein nanotechnologies. We report here a charge-interaction-directed reconstitution mechanism that induces spontaneous insertion of bovine rhodopsin, the eukaryotic GPCR, into both lipid- and polymer-based artificial membranes. We reveal a new allosteric mode of rhodopsin activation incurred by the non-biological membranes: the cationic membrane drives a transition from the inactive MI to the activated MII state in the absence of high [H(+)] or negative spontaneous curvature. We attribute this activation to the attractive charge interaction between the membrane surface and the deprotonated Glu134 residue of the rhodopsin-conserved ERY sequence motif that helps break the cytoplasmic "ionic lock". This study unveils a novel design concept of non-biological membranes to reconstitute and harness GPCR functions in synthetic systems.
Collapse
Affiliation(s)
- Udeep Chawla
- Department of Chemistry & Biochemistry, Department of Physics University of Arizona, Tucson, AZ 85721 (USA)
| | - Yunjiang Jiang
- Department of Metallurgical & Materials Engineering, Colorado School of Mines, Golden, CO 80401 (USA)
- Current address: Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech, University Health Science Center, Lubbock, TX 79430 (USA)
| | - Wan Zheng
- Department of Metallurgical & Materials Engineering, Colorado School of Mines, Golden, CO 80401 (USA)
| | - Liangju Kuang
- Department of Metallurgical & Materials Engineering, Colorado School of Mines, Golden, CO 80401 (USA)
| | - Suchithranga M D C Perera
- Department of Chemistry & Biochemistry, Department of Physics University of Arizona, Tucson, AZ 85721 (USA)
| | - Michael C Pitman
- Department of Chemistry & Biochemistry, Department of Physics University of Arizona, Tucson, AZ 85721 (USA)
| | - Michael F Brown
- Department of Chemistry & Biochemistry, Department of Physics University of Arizona, Tucson, AZ 85721 (USA).
| | - Hongjun Liang
- Department of Metallurgical & Materials Engineering, Colorado School of Mines, Golden, CO 80401 (USA).
- Current address: Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech, University Health Science Center, Lubbock, TX 79430 (USA).
| |
Collapse
|
2
|
Chawla U, Jiang Y, Zheng W, Kuang L, Perera SMDC, Pitman MC, Brown MF, Liang H. A Usual G-Protein-Coupled Receptor in Unusual Membranes. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508648] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Wang L, Roth JS, Han X, Evans SD. Photosynthetic Proteins in Supported Lipid Bilayers: Towards a Biokleptic Approach for Energy Capture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:3306-3318. [PMID: 25727786 DOI: 10.1002/smll.201403469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/11/2015] [Indexed: 06/04/2023]
Abstract
In nature, plants and some bacteria have evolved an ability to convert solar energy into chemical energy usable by the organism. This process involves several proteins and the creation of a chemical gradient across the cell membrane. To transfer this process to a laboratory environment, several conditions have to be met: i) proteins need to be reconstituted into a lipid membrane, ii) the proteins need to be correctly oriented and functional and, finally, iii) the lipid membrane should be capable of maintaining chemical and electrical gradients. Investigating the processes of photosynthesis and energy generation in vivo is a difficult task due to the complexity of the membrane and its associated proteins. Solid, supported lipid bilayers provide a good model system for the systematic investigation of the different components involved in the photosynthetic pathway. In this review, the progress made to date in the development of supported lipid bilayer systems suitable for the investigation of membrane proteins is described; in particular, there is a focus on those used for the reconstitution of proteins involved in light capture.
Collapse
Affiliation(s)
- Lei Wang
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
- State Key Laboratory of Urban Water Resource and Environment, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Johannes S Roth
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Stephen D Evans
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
4
|
Liang B, Ju Y, Joubert JR, Kaleta EJ, Lopez R, Jones IW, Hall HK, Ratnayaka SN, Wysocki VH, Saavedra SS. Label-free detection and identification of protein ligands captured by receptors in a polymerized planar lipid bilayer using MALDI-TOF MS. Anal Bioanal Chem 2015; 407:2777-89. [PMID: 25694144 PMCID: PMC4417943 DOI: 10.1007/s00216-015-8508-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/10/2015] [Accepted: 01/21/2015] [Indexed: 01/27/2023]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) coupled with affinity capture is a well-established method to extract biological analytes from complex samples followed by label-free detection and identification. Many bioanalytes of interest bind to membrane-associated receptors; however, the matrices and high-vacuum conditions inherent to MALDI-TOF MS make it largely incompatible with the use of artificial lipid membranes with incorporated receptors as platforms for detection of captured proteins and peptides. Here we show that cross-linking polymerization of a planar supported lipid bilayer (PSLB) provides the stability needed for MALDI-TOF MS analysis of proteins captured by receptors embedded in the membrane. PSLBs composed of poly(bis-sorbylphosphatidylcholine) (poly(bis-SorbPC)) and doped with the ganglioside receptors GM1 and GD1a were used for affinity capture of the B subunits of cholera toxin, heat-labile enterotoxin, and pertussis toxin. The three toxins were captured simultaneously, then detected and identified by MS on the basis of differences in their molecular weights. Poly(bis-SorbPC) PSLBs are inherently resistant to nonspecific protein adsorption, which allowed selective toxin detection to be achieved in complex matrices (bovine serum and shrimp extract). Using GM1-cholera toxin subunit B as a model receptor-ligand pair, we estimated the minimal detectable concentration of toxin to be 4 nM. On-plate tryptic digestion of bound cholera toxin subunit B followed by MS/MS analysis of digested peptides was performed successfully, demonstrating the feasibility of using the PSLB-based affinity capture platform for identification of unknown, membrane-associated proteins. Overall, this work demonstrates that combining a poly(lipid) affinity capture platform with MALDI-TOF MS detection is a viable approach for capture and proteomic characterization of membrane-associated proteins in a label-free manner.
Collapse
Affiliation(s)
- Boying Liang
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, AZ 85721, USA
| | | | - James R. Joubert
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, AZ 85721, USA
| | - Erin J. Kaleta
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, AZ 85721, USA
| | - Rodrigo Lopez
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, AZ 85721, USA
| | - Ian W. Jones
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, AZ 85721, USA
| | - Henry K. Hall
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, AZ 85721, USA
| | - Saliya N. Ratnayaka
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, AZ 85721, USA
| | | | - S. Scott Saavedra
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, AZ 85721, USA
| |
Collapse
|
5
|
Full membrane spanning self-assembled monolayers as model systems for UHV-based studies of cell-penetrating peptides. Biointerphases 2015; 10:019009. [PMID: 25708639 DOI: 10.1116/1.4908164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Biophysical studies of the interaction of peptides with model membranes provide a simple yet effective approach to understand the transport of peptides and peptide based drug carriers across the cell membrane. Herein, the authors discuss the use of self-assembled monolayers fabricated from the full membrane-spanning thiol (FMST) 3-((14-((4'-((5-methyl-1-phenyl-35-(phytanyl)oxy-6,9,12,15,18,21,24,27,30,33,37-undecaoxa-2,3-dithiahenpentacontan-51-yl)oxy)-[1,1'-biphenyl]-4-yl)oxy)tetradecyl)oxy)-2-(phytanyl)oxy glycerol for ultrahigh vacuum (UHV) based experiments. UHV-based methods such as electron spectroscopy and mass spectrometry can provide important information about how peptides bind and interact with membranes, especially with the hydrophobic core of a lipid bilayer. Near-edge x-ray absorption fine structure spectra and x-ray photoelectron spectroscopy (XPS) data showed that FMST forms UHV-stable and ordered films on gold. XPS and time of flight secondary ion mass spectrometry depth profiles indicated that a proline-rich amphipathic cell-penetrating peptide, known as sweet arrow peptide is located at the outer perimeter of the model membrane.
Collapse
|
6
|
Gallagher ES, Adem SM, Baker CA, Ratnayaka SN, Jones IW, Hall HK, Saavedra SS, Aspinwall CA. Highly stabilized, polymer-lipid membranes prepared on silica microparticles as stationary phases for capillary chromatography. J Chromatogr A 2015; 1385:28-34. [PMID: 25670414 DOI: 10.1016/j.chroma.2015.01.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 11/17/2022]
Abstract
The ability to rapidly screen complex libraries of pharmacological modulators is paramount to modern drug discovery efforts. This task is particularly challenging for agents that interact with lipid bilayers or membrane proteins due to the limited chemical, physical, and temporal stability of conventional lipid-based chromatographic stationary phases. Here, we describe the preparation and characterization of a novel stationary phase material composed of highly stable, polymeric-phospholipid bilayers self-assembled onto silica microparticles. Polymer-lipid membranes were prepared by photochemical or redox initiated polymerization of 1,2-bis[10-(2',4'-hexadieoyloxy)decanoyl]-sn-glycero-2-phosphocholine (bis-SorbPC), a synthetic, polymerizable lipid. The resulting polymerized bis-SorbPC (poly(bis-SorbPC)) stationary phases exhibited enhanced stability compared to particles coated with 1,2-dioleoyl-sn-glycero-phosphocholine (unpolymerized) phospholipid bilayers when exposed to chemical (50 mM triton X-100 or 50% acetonitrile) and physical (15 min sonication) insults after 30 days of storage. Further, poly(bis-SorbPC)-coated particles survived slurry packing into fused silica capillaries, compared to unpolymerized lipid membranes, where the lipid bilayer was destroyed during packing. Frontal chromatographic analyses of the lipophilic small molecules acetylsalicylic acid, benzoic acid, and salicylic acid showed >44% increase in retention times (P<0.0001) for all analytes on poly(bis-SorbPC)-functionalized stationary phase compared to bare silica microspheres, suggesting a lipophilic retention mechanism. Phospholipid membrane-functionalized stationary phases that withstand the chemical and physical rigors of capillary LC conditions can substantially increase the efficacy of lipid membrane affinity chromatography, and represents a key advance toward the development of robust membrane protein-functionalized chromatographic stationary phases.
Collapse
Affiliation(s)
- Elyssia S Gallagher
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States
| | - Seid M Adem
- Department of Chemistry, Washburn University, Topeka, KS 66621, United States
| | - Christopher A Baker
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States
| | - Saliya N Ratnayaka
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States
| | - Ian W Jones
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States
| | - Henry K Hall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States
| | - S Scott Saavedra
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States; Bio5 Institute, University of Arizona, Tucson, AZ 85721, United States
| | - Craig A Aspinwall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States; Bio5 Institute, University of Arizona, Tucson, AZ 85721, United States; Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
7
|
Photopatterning of self assembled monolayers on oxide surfaces for the selective attachment of biomolecules. Biosens Bioelectron 2014; 53:82-9. [DOI: 10.1016/j.bios.2013.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 08/29/2013] [Accepted: 09/02/2013] [Indexed: 11/21/2022]
|
8
|
Marschewski M, Hirschberg J, Omairi T, Höfft O, Viöl W, Emmert S, Maus-Friedrichs W. Electron spectroscopic analysis of the human lipid skin barrier: cold atmospheric plasma-induced changes in lipid composition. Exp Dermatol 2012; 21:921-5. [DOI: 10.1111/exd.12043] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2012] [Indexed: 01/31/2023]
Affiliation(s)
- Marcel Marschewski
- Institute of Energy Research and Physical Technology; Clausthal University of Technology; Clausthal-Zellerfeld; Germany
| | - Joanna Hirschberg
- Faculty of Natural Sciences and Technology; University of Applied Sciences and Arts Hildesheim/Holzminden/Göttingen; Göttingen; Germany
| | - Tarek Omairi
- Faculty of Natural Sciences and Technology; University of Applied Sciences and Arts Hildesheim/Holzminden/Göttingen; Göttingen; Germany
| | - Oliver Höfft
- Clausthaler Zentrum für Materialtechnik; Technische Universität Clausthal; Clausthal-Zellerfeld; Germany
| | | | - Steffen Emmert
- Department of Dermatology, Venerology, and Allergology; University Medical Center Göttingen; Göttingen; Germany
| | | |
Collapse
|
9
|
Punnamaraju S, You H, Steckl AJ. Triggered release of molecules across droplet interface bilayer lipid membranes using photopolymerizable lipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:7657-64. [PMID: 22548362 DOI: 10.1021/la3011663] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A combination of nonpolymerizable phospholipids (DPPC or DPhPC) and a smaller amount of cross-linking photopolymerizable phospholipids (23:2 DiynePC) is incorporated in an unsupported artificial lipid bilayer formed using the droplet interface bilayer (DIB) approach. The DIB is formed by contacting lipid monolayer-coated aqueous droplets against each other in a dodecane-lipid medium. Cross-linking of the photopolymerizable lipids incorporated in the DIB was obtained by exposure to UV-C radiation (254 nm), resulting in pore formation. The effect of cross-linking on the DIB properties was characterized optically by measuring the diffusion of selectively encapsulated dye molecules (calcein) from one droplet of the DIB to the other droplet. Changes in DIB conductivity due to UV-C exposure were investigated using current-voltage (I-V) measurements. The leakage of dye molecules across the DIB and the increase in DIB conductivity after UV-C exposure indicates the formation of membrane pores. The results indicate that the DIB approach offers a simple and flexible platform for studying phototriggered drug delivery systems in vitro.
Collapse
Affiliation(s)
- S Punnamaraju
- Nanoelectronics Laboratory, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | | | | |
Collapse
|
10
|
Weidner T, Baio JE, Seibel J, Siemeling U. Dithienylcyclopentene-functionalised subphthalocyaninatoboron complexes: photochromism, luminescence modulation and formation of self-assembled monolayers on gold. Dalton Trans 2012; 41:1553-61. [PMID: 22138955 DOI: 10.1039/c1dt11644d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Subphthalocyaninatoboron (SubPc) complexes bearing six peripheral n-dodecylthio substituents and an apical photochromic dithienylperfluorocyclopentene unit were prepared. The photoinduced isomerisation of the apical substituent from the open to the ring-closed form significantly influences the photoluminescence of the covalently attached SubPc unit, which is more efficiently quenched by the ring-closed form. Films on gold were fabricated from these multifunctional conjugates and characterised by near-edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS). The results are in accord with the formation of self-assembled monolayers based on dome-shaped SubPc-based anchor groups. Their chemisorption is primarily due to the peripheral n-dodecylthio substituents, giving rise to covalently attached thiolate as well as coordinatively bound thioether units, whose alkyl chains are in an almost parallel orientation to the surface.
Collapse
Affiliation(s)
- Tobias Weidner
- National ESCA and Surface Analysis Center for Biomedical Problems (NESAC/BIO), Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
11
|
Hamann T, Kankate L, Böhler E, Bredehöft JH, Zhang FM, Gölzhäuser A, Swiderek P. Functionalization of a self-assembled monolayer driven by low-energy electron exposure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:367-76. [PMID: 22084928 DOI: 10.1021/la2027219] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Self-assembled monolayers (SAMs) of 10-undecene-1-thiol on Au were functionalized with nitrogen-containing groups using an approach in which multilayer ammonia (NH(3)) films were deposited at low temperature onto the SAMs and subsequently exposed to 15 eV electrons. The result of this process was investigated after removal of the remaining NH(3) by annealing to room temperature using high-resolution electron energy loss spectroscopy (HREELS) and X-ray photoelectron spectroscopy (XPS). HREELS shows that the CC double bonds disappear during electron exposure, while XPS gives evidence that about 25% of the terminal double bonds of the SAM were functionalized. Also, XPS shows that a sufficiently thick NH(3) layer protects the underlying SAM from electron-induced damage. The process suggested here thus represents a particularly gentle approach to the functionalization of ultrathin molecular layers. Thermal desorption spectrometry (TDS) and electron-stimulated desorption (ESD) experiments on condensed layers of NH(3) reveal production of N(2) but show that significant amounts of the initial NH(3) as well as N(2) produced during electron exposure desorb. Hydrogen released upon formation of N(2) is held responsible for the reduction of double bonds and protection of the SAMs from damage.
Collapse
Affiliation(s)
- T Hamann
- Institute of Applied and Physical Chemistry, University of Bremen, Fachbereich 2 (Chemie/Biologie), Leobener Straße/NW 2, Postfach 330440, D-28334 Bremen, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Ciampi S, James M, Michaels P, Gooding JJ. Tandem "click" reactions at acetylene-terminated Si(100) monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:6940-6949. [PMID: 21557551 DOI: 10.1021/la2013733] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We demonstrate a simple method for coupling alkynes to alkynes. The method involves tandem azide-alkyne cycloaddition reactions ("click" chemistry) for the immobilization of 1-alkyne species onto an alkyne modified surface in a one-pot procedure. In the case presented, these reactions take place on a nonoxidized Si(100) surface although the approach is general for linking alkynes to alkynes. The applicability of the method in the preparation of electrically well-behaved functionalized surfaces is demonstrated by coupling an alkyne-tagged ferrocene species onto alkyne-terminated Si(100) surfaces. The utility of the approach in biotechnology is shown by constructing a DNA sensing interface by derivatization of the acetylenyl surface with commercially available alkyne-tagged oligonucleotides. Cyclic voltametry, electrochemical impedance spectroscopy, X-ray photoelectron spectroscopy, and X-ray reflectometry are used to characterize the coupling reactions and performance of the final modified surfaces. These data show that this synthetic protocol gives chemically well-defined, electronically well-behaved, and robust (bio)functionalized monolayers on silicon semiconducting surfaces.
Collapse
Affiliation(s)
- Simone Ciampi
- School of Chemistry, The University of New South Wales, Sydney NSW 2052, Australia
| | | | | | | |
Collapse
|
13
|
Gunnarsson A, Kollmer F, Sohn S, Höök F, Sjövall P. Spatial-Resolution Limits in Mass Spectrometry Imaging of Supported Lipid Bilayers and Individual Lipid Vesicles. Anal Chem 2010; 82:2426-33. [DOI: 10.1021/ac902744u] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Anders Gunnarsson
- Department of Applied Physics, Division of Biological Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden, ION-TOF GmbH, Heisenbergstrasse 15, D-48149, Münster, Germany, Physikalisches Institut der Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster, Germany, and Department of Chemistry and Materials Technology, SP Technical Research Institute of Sweden, P.O. Box 857, SE-501 15 Borås, Sweden
| | - Felix Kollmer
- Department of Applied Physics, Division of Biological Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden, ION-TOF GmbH, Heisenbergstrasse 15, D-48149, Münster, Germany, Physikalisches Institut der Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster, Germany, and Department of Chemistry and Materials Technology, SP Technical Research Institute of Sweden, P.O. Box 857, SE-501 15 Borås, Sweden
| | - Sascha Sohn
- Department of Applied Physics, Division of Biological Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden, ION-TOF GmbH, Heisenbergstrasse 15, D-48149, Münster, Germany, Physikalisches Institut der Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster, Germany, and Department of Chemistry and Materials Technology, SP Technical Research Institute of Sweden, P.O. Box 857, SE-501 15 Borås, Sweden
| | - Fredrik Höök
- Department of Applied Physics, Division of Biological Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden, ION-TOF GmbH, Heisenbergstrasse 15, D-48149, Münster, Germany, Physikalisches Institut der Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster, Germany, and Department of Chemistry and Materials Technology, SP Technical Research Institute of Sweden, P.O. Box 857, SE-501 15 Borås, Sweden
| | - Peter Sjövall
- Department of Applied Physics, Division of Biological Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden, ION-TOF GmbH, Heisenbergstrasse 15, D-48149, Münster, Germany, Physikalisches Institut der Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster, Germany, and Department of Chemistry and Materials Technology, SP Technical Research Institute of Sweden, P.O. Box 857, SE-501 15 Borås, Sweden
| |
Collapse
|
14
|
|
15
|
Baio JE, Weidner T, Brison J, Graham D, Gamble LJ, Castner DG. Amine Terminated SAMs: Investigating Why Oxygen is Present in these Films. JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA 2009; 172:2-8. [PMID: 20161353 PMCID: PMC2776750 DOI: 10.1016/j.elspec.2009.02.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Self-assembled monolayers (SAMs) on gold prepared from amine-terminated alkanethiols have long been employed as model positively charged surfaces. Yet in previous studies significant amounts of unexpected oxygen containing species are always detected in amine terminated SAMs. Thus, the goal of this investigation was to determine the source of these oxygen species and minimize their presence in the SAM. The surface composition, structure, and order of amine-terminated SAMs on Au were characterized by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectroscopy (ToF-SIMS), sum frequency generation (SFG) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. XPS determined compositions of amine-terminated SAMs in the current study exhibited oxygen concentrations of 2.4 ± 0.4 atomic %, a substantially lower amount of oxygen than reported in previously published studies. High-resolution XPS results from the S(2p), C(1s) and N(1s) regions did not detect any oxidized species. Angle-resolved XPS indicated that the small amount of oxygen detected was located at or near the amine head group. Small amounts of oxidized nitrogen, carbon and sulfur secondary ions, as well as ions attributed to water, were detected in the ToF-SIMS data due to the higher sensitivity of ToF-SIMS. The lack of N-O, S-O, and C-O stretches in the SFG spectra are consistent with the XPS and ToF-SIMS results and together show that oxidation of the amine-terminated thiols alone can only account for, at most, a small fraction of the oxygen detected by XPS. Both the SFG and angle-dependent NEXAFS indicated the presence of gauche defects in the amine SAMs. However, the SFG spectral features near 2865 cm(-1), assigned to the stretch of the methylene group next to the terminal amine unit, demonstrate the SAM is reasonably ordered. The SFG results also show another broad feature near 3200 cm(-1) related to hydrogen-bonded water. From this multi-technique investigation it is clear that the majority of the oxygen detected within these amine-terminated SAMs arises from the presence of oxygen containing adsorbates such as tightly bound water.
Collapse
Affiliation(s)
- J. E. Baio
- National ESCA and Surface Analysis Center for Biomedical Problems, University of Washington, Departments of Bioengineering and Chemical Engineering, Box 351750, Seattle, WA 98195
| | - T. Weidner
- National ESCA and Surface Analysis Center for Biomedical Problems, University of Washington, Departments of Bioengineering and Chemical Engineering, Box 351750, Seattle, WA 98195
| | - J. Brison
- National ESCA and Surface Analysis Center for Biomedical Problems, University of Washington, Departments of Bioengineering and Chemical Engineering, Box 351750, Seattle, WA 98195
| | - D.J. Graham
- Asemblon, 15340 NE 92 Street, Suite B, Redmond, WA 98052
| | - Lara J. Gamble
- National ESCA and Surface Analysis Center for Biomedical Problems, University of Washington, Departments of Bioengineering and Chemical Engineering, Box 351750, Seattle, WA 98195
| | - David G. Castner
- National ESCA and Surface Analysis Center for Biomedical Problems, University of Washington, Departments of Bioengineering and Chemical Engineering, Box 351750, Seattle, WA 98195
| |
Collapse
|
16
|
Subramaniam V, D'Ambruoso GD, Hall HK, Wysocki RJ, Brown MF, Saavedra SS. Reconstitution of rhodopsin into polymerizable planar supported lipid bilayers: influence of dienoyl monomer structure on photoactivation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:11067-75. [PMID: 18759470 PMCID: PMC2726791 DOI: 10.1021/la801835g] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
G-protein-coupled receptors (GPCRs) play key roles in cellular signal transduction and many are pharmacologically important targets for drug discovery. GPCRs can be reconstituted in planar supported lipid bilayers (PSLBs) with retention of activity, which has led to development of GPCR-based biosensors and biochips. However, PSLBs composed of natural lipids lack the high stability desired for many technological applications. One strategy is to use synthetic lipid monomers that can be polymerized to form robust bilayers. A key question is how lipid polymerization affects GPCR structure and activity. Here we have investigated the photochemical activity of bovine rhodopsin (Rho), a model GPCR, reconstituted into PSLBs composed of lipids having one or two polymerizable dienoyl moieties located in different regions of the acyl chains. Plasmon waveguide resonance spectroscopy was used to compare the degree of Rho photoactivation in fluid and poly(lipid) PSLBs. The position of the dienoyl moiety was found to have a significant effect: polymerization near the glycerol backbone significantly attenuates Rho activity whereas polymerization near the acyl chain termini does not. Differences in cross-link density near the acyl chain termini also do not affect Rho activity. In unpolymerized PSLBs, an equimolar mixture of phosphatidylethanolamine and phosphatidylcholine (PC) lipids enhances activity relative to pure PC; however after polymerization, the enhancement is eliminated which is attributed to stabilization of the membrane lamellar phase. These results should provide guidance for the design of robust lipid bilayers functionalized with transmembrane proteins for use in membrane-based biochips and biosensors.
Collapse
Affiliation(s)
- Varuni Subramaniam
- Department of Chemistry, University of Arizona, Tucson, Arizona, 85721-0041
| | | | - H. K. Hall
- Department of Chemistry, University of Arizona, Tucson, Arizona, 85721-0041
| | - Ronald J. Wysocki
- Department of Chemistry, University of Arizona, Tucson, Arizona, 85721-0041
| | - Michael F. Brown
- Department of Chemistry, University of Arizona, Tucson, Arizona, 85721-0041
| | - S. Scott Saavedra
- Department of Chemistry, University of Arizona, Tucson, Arizona, 85721-0041
| |
Collapse
|