1
|
Waechtler BE, Jayasankar R, Morin EP, Robinson DN. Benefits and challenges of reconstituting the actin cortex. Cytoskeleton (Hoboken) 2024:10.1002/cm.21855. [PMID: 38520148 PMCID: PMC11417134 DOI: 10.1002/cm.21855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024]
Abstract
The cell's ability to change shape is a central feature in many cellular processes, including cytokinesis, motility, migration, and tissue formation. The cell constructs a network of contractile proteins underneath the cell membrane to form the cortex, and the reorganization of these components directly contributes to cellular shape changes. The desire to mimic these cell shape changes to aid in the creation of a synthetic cell has been increasing. Therefore, membrane-based reconstitution experiments have flourished, furthering our understanding of the minimal components the cell uses throughout these processes. Although biochemical approaches increased our understanding of actin, myosin II, and actin-associated proteins, using membrane-based reconstituted systems has further expanded our understanding of actin structures and functions because membrane-cortex interactions can be analyzed. In this review, we highlight the recent developments in membrane-based reconstitution techniques. We examine the current findings on the minimal components needed to recapitulate distinct actin structures and functions and how they relate to the cortex's impact on cellular mechanical properties. We also explore how co-processing of computational models with wet-lab experiments enhances our understanding of these properties. Finally, we emphasize the benefits and challenges inherent to membrane-based, reconstitution assays, ranging from the advantage of precise control over the system to the difficulty of integrating these findings into the complex cellular environment.
Collapse
Affiliation(s)
- Brooke E. Waechtler
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
| | - Rajan Jayasankar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Whiting School of Engineering, 725 N Wolfe Street, Baltimore, MD 21205
| | - Emma P. Morin
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
| | - Douglas N. Robinson
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Whiting School of Engineering, 725 N Wolfe Street, Baltimore, MD 21205
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
- Department of Medicine, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
- Department of Oncology, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
| |
Collapse
|
2
|
Kerivan EM, Tobin L, Basil M, Reinemann DN. Molecular and cellular level characterization of cytoskeletal mechanics using a quartz crystal microbalance. Cytoskeleton (Hoboken) 2023; 80:100-111. [PMID: 36891731 PMCID: PMC10272097 DOI: 10.1002/cm.21752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/19/2023] [Accepted: 03/05/2023] [Indexed: 03/10/2023]
Abstract
A quartz crystal microbalance (QCM) is an instrument that has the ability to measure nanogram-level changes in mass on a quartz sensor and is traditionally used to probe surface interactions and assembly kinetics of synthetic systems. The addition of dissipation monitoring (QCM-D) facilitates the study of viscoelastic systems, such as those relevant to molecular and cellular mechanics. Due to real-time recording of frequency and dissipation changes and single protein-level precision, the QCM-D is effective in interrogating the viscoelastic properties of cell surfaces and in vitro cellular components. However, few studies focus on the application of this instrument to cytoskeletal systems, whose dynamic parts create interesting emergent mechanics as ensembles that drive essential tasks, such as division and motility. Here, we review the ability of the QCM-D to characterize key kinetic and mechanical features of the cytoskeleton through in vitro reconstitution and cellular assays and outline how QCM-D studies can yield insightful mechanical data alone and in tandem with other biophysical characterization techniques.
Collapse
Affiliation(s)
- Emily M. Kerivan
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677 USA
| | - Lyle Tobin
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677 USA
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677 USA
| | - Mihir Basil
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677 USA
| | - Dana N. Reinemann
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677 USA
- Department of Chemical Engineering, University of Mississippi, University, MS 38677 USA
| |
Collapse
|
3
|
Aufderhorst-Roberts A, Staykova M. Scratching beyond the surface - minimal actin assemblies as tools to elucidate mechanical reinforcement and shape change. Emerg Top Life Sci 2022; 6:ETLS20220052. [PMID: 36541184 PMCID: PMC9788373 DOI: 10.1042/etls20220052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
The interaction between the actin cytoskeleton and the plasma membrane in eukaryotic cells is integral to a large number of functions such as shape change, mechanical reinforcement and contraction. These phenomena are driven by the architectural regulation of a thin actin network, directly beneath the membrane through interactions with a variety of binding proteins, membrane anchoring proteins and molecular motors. An increasingly common approach to understanding the mechanisms that drive these processes is to build model systems from reconstituted lipids, actin filaments and associated actin-binding proteins. Here we review recent progress in this field, with a particular emphasis on how the actin cytoskeleton provides mechanical reinforcement, drives shape change and induces contraction. Finally, we discuss potential future developments in the field, which would allow the extension of these techniques to more complex cellular processes.
Collapse
Affiliation(s)
| | - Margarita Staykova
- Centre for Materials Physics, Department of Physics, Durham University, Durham DH1 3LE, U.K
| |
Collapse
|
4
|
Bonet NF, Cava DG, Vélez M. Quartz crystal microbalance and atomic force microscopy to characterize mimetic systems based on supported lipids bilayer. Front Mol Biosci 2022; 9:935376. [PMID: 35992275 PMCID: PMC9382308 DOI: 10.3389/fmolb.2022.935376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022] Open
Abstract
Quartz Crystal Microbalance (QCM) with dissipation and Atomic Force Microscopy (AFM) are two characterization techniques that allow describing processes taking place at solid-liquid interfaces. Both are label-free and, when used in combination, provide kinetic, thermodynamic and structural information at the nanometer scale of events taking place at surfaces. Here we describe the basic operation principles of both techniques, addressing a non-specialized audience, and provide some examples of their use for describing biological events taking place at supported lipid bilayers (SLBs). The aim is to illustrate current strengths and limitations of the techniques and to show their potential as biophysical characterization techniques.
Collapse
|
5
|
Ganzinger KA, Schwille P. More from less - bottom-up reconstitution of cell biology. J Cell Sci 2019; 132:132/4/jcs227488. [PMID: 30718262 DOI: 10.1242/jcs.227488] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ultimate goal of bottom-up synthetic biology is recreating life in its simplest form. However, in its quest to find the minimal functional units of life, this field contributes more than its main aim by also offering a range of tools for asking, and experimentally approaching, biological questions. This Review focusses on how bottom-up reconstitution has furthered our understanding of cell biology. Studying cell biological processes in vitro has a long tradition, but only recent technological advances have enabled researchers to reconstitute increasingly complex biomolecular systems by controlling their multi-component composition and their spatiotemporal arrangements. We illustrate this progress using the example of cytoskeletal processes. Our understanding of these has been greatly enhanced by reconstitution experiments, from the first in vitro experiments 70 years ago to recent work on minimal cytoskeleton systems (including this Special Issue of Journal of Cell Science). Importantly, reconstitution approaches are not limited to the cytoskeleton field. Thus, we also discuss progress in other areas, such as the shaping of biomembranes and cellular signalling, and prompt the reader to add their subfield of cell biology to this list in the future.
Collapse
Affiliation(s)
- Kristina A Ganzinger
- Physics of Cellular Interactions Group, AMOLF, 1098 XG Amsterdam, The Netherlands
| | - Petra Schwille
- Department Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
6
|
Schön M, Mey I, Steinem C. Influence of cross-linkers on ezrin-bound minimal actin cortices. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 144:91-101. [PMID: 30093083 DOI: 10.1016/j.pbiomolbio.2018.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/13/2018] [Accepted: 07/31/2018] [Indexed: 12/21/2022]
Abstract
The actin cortex is a thin network coupled to the plasma membrane of cells, responsible for e.g., cell shape, motility, growth and division. Several model systems for minimal actin cortices (MACs) have been discussed in literature trying to mimic the complex interplay of membrane and actin. We recapitulate on different types of MACs using either three dimensional droplet interfaces or lipid bilayers to which F-actin networks are attached to or planar lipid bilayers with bound actin networks. Binding of the network to the membrane interface significantly influences its properties as well as its dynamics. This in turn also influences, how cross-linkers as well as myosin motors act on the network. Here, we describe the coupling of a filamentous actin network to a model membrane via the protein ezrin, a member of the ezrin-radixin-moesin family, which forms a direct linkage between the plasma membrane and the cortical web. Ezrin binding to the membrane is achieved by the lipid PtdIns(4,5)P2, while attachment to F-actin is mediated via the C-terminal domain of the protein leading to a two dimensional arrangement of actin filaments on the membrane. Addition of cross-linkers such as fascin and α-actinin influences the architecture of the actin network, which we have investigated by means of fluorescence microscopy. The results are discussed in terms of the dynamics of the filaments on the membrane surface.
Collapse
Affiliation(s)
- Markus Schön
- Georg-August Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstr. 2, 37077, Göttingen, Germany
| | - Ingo Mey
- Georg-August Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstr. 2, 37077, Göttingen, Germany.
| | - Claudia Steinem
- Georg-August Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstr. 2, 37077, Göttingen, Germany.
| |
Collapse
|
7
|
Chabanon M, Stachowiak JC, Rangamani P. Systems biology of cellular membranes: a convergence with biophysics. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2017; 9. [PMID: 28475297 PMCID: PMC5561455 DOI: 10.1002/wsbm.1386] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/02/2017] [Accepted: 02/21/2017] [Indexed: 12/12/2022]
Abstract
Systems biology and systems medicine have played an important role in the last two decades in shaping our understanding of biological processes. While systems biology is synonymous with network maps and '-omics' approaches, it is not often associated with mechanical processes. Here, we make the case for considering the mechanical and geometrical aspects of biological membranes as a key step in pushing the frontiers of systems biology of cellular membranes forward. We begin by introducing the basic components of cellular membranes, and highlight their dynamical aspects. We then survey the functions of the plasma membrane and the endomembrane system in signaling, and discuss the role and origin of membrane curvature in these diverse cellular processes. We further give an overview of the experimental and modeling approaches to study membrane phenomena. We close with a perspective on the converging futures of systems biology and membrane biophysics, invoking the need to include physical variables such as location and geometry in the study of cellular membranes. WIREs Syst Biol Med 2017, 9:e1386. doi: 10.1002/wsbm.1386 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Morgan Chabanon
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
Sterling SM, Dawes R, Allgeyer ES, Ashworth SL, Neivandt DJ. Comparison of [corrected] actin- and glass-supported phospholipid bilayer diffusion coefficients. Biophys J 2016; 108:1946-53. [PMID: 25902434 DOI: 10.1016/j.bpj.2015.02.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 02/22/2015] [Accepted: 02/25/2015] [Indexed: 01/15/2023] Open
Abstract
The formation of biomimetic lipid membranes has the potential to provide insights into cellular lipid membrane dynamics. The construction of such membranes necessitates not only the utilization of appropriate lipids, but also physiologically relevant substrate/support materials. The substrate materials employed have been shown to have demonstrable effects on the behavior of the overlying lipid membrane, and thus must be studied before use as a model cushion support. To our knowledge, we report the formation and investigation of a novel actin protein-supported lipid membrane. Specifically, inner leaflet lateral mobility of globular actin-supported DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) bilayers, deposited via the Langmuir-Blodgett/Langmuir Schaefer methodology, was investigated by z-scan fluorescence correlation spectroscopy across a temperature range of 20-44°C. The actin substrate was found to decrease the diffusion coefficient when compared to an identical membrane supported on glass. The depression of the diffusion coefficient occurred across all measured temperatures. These results indicated that the actin substrate exerted a direct effect on the fluidity of the lipid membrane and highlighted the fact that the choice of substrate/support is critical in studies of model lipid membranes.
Collapse
Affiliation(s)
- Sarah M Sterling
- Department of Chemical and Biological Engineering, University of Maine, Orono, Maine; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine
| | - Ryan Dawes
- School of Biology and Ecology, University of Maine, Orono, Maine
| | - Edward S Allgeyer
- Department of Physics and Astronomy, University of Maine, Orono, Maine
| | - Sharon L Ashworth
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine; School of Biology and Ecology, University of Maine, Orono, Maine
| | - David J Neivandt
- Department of Chemical and Biological Engineering, University of Maine, Orono, Maine; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine.
| |
Collapse
|
9
|
Vogel SK. Reconstitution of a Minimal Actin Cortex by Coupling Actin Filaments to Reconstituted Membranes. Methods Mol Biol 2016; 1365:213-23. [PMID: 26498787 DOI: 10.1007/978-1-4939-3124-8_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A thin layer of actin filaments in many eukaryotic cell types drives pivotal aspects of cell morphogenesis and is generally cited as the actin cortex. Myosin driven contractility and actin cytoskeleton membrane interactions form the basis of fundamental cellular processes such as cytokinesis, cell migration, and cortical flows. How the interplay between the actin cytoskeleton, the membrane, and actin binding proteins drives these processes is far from being understood. The complexity of the actin cortex in living cells and the hardly feasible manipulation of the omnipotent cellular key players, namely actin, myosin, and the membrane, are challenging in order to gain detailed insights about the underlying mechanisms. Recent progress in developing bottom-up in vitro systems where the actin cytoskeleton is combined with reconstituted membranes may provide a complementary route to reveal general principles underlying actin cortex properties. In this chapter the reconstitution of a minimal actin cortex by coupling actin filaments to a supported membrane is described. This minimal system may be very well suited to study for example protein interactions on membrane bound actin filaments in a very controlled and quantitative manner as it may be difficult to perform in living systems.
Collapse
Affiliation(s)
- Sven K Vogel
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany.
| |
Collapse
|
10
|
van Weerd J, Karperien M, Jonkheijm P. Supported Lipid Bilayers for the Generation of Dynamic Cell-Material Interfaces. Adv Healthc Mater 2015; 4:2743-79. [PMID: 26573989 DOI: 10.1002/adhm.201500398] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/03/2015] [Indexed: 12/13/2022]
Abstract
Supported lipid bilayers (SLB) offer unique possibilities for studying cellular membranes and have been used as a synthetic architecture to interact with cells. Here, the state-of-the-art in SLB-based technology is presented. The fabrication, analysis, characteristics and modification of SLBs are described in great detail. Numerous strategies to form SLBs on different substrates, and the means to patteren them, are described. The use of SLBs as model membranes for the study of membrane organization and membrane processes in vitro is highlighted. In addition, the use of SLBs as a substratum for cell analysis is presented, with discrimination between cell-cell and cell-extracellular matrix (ECM) mimicry. The study is concluded with a discussion of the potential for in vivo applications of SLBs.
Collapse
Affiliation(s)
- Jasper van Weerd
- Bioinspired Molecular Engineering; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
- Dept. of Developmental BioEngineering; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
- Molecular Nanofabrication Group, MESA+; University of Twente; Enschede 7500 AE The Netherlands
| | - Marcel Karperien
- Dept. of Developmental BioEngineering; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
| | - Pascal Jonkheijm
- Bioinspired Molecular Engineering; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
- Molecular Nanofabrication Group, MESA+; University of Twente; Enschede 7500 AE The Netherlands
| |
Collapse
|
11
|
Heath GR, Li M, Polignano IL, Richens JL, Catucci G, O’Shea P, Sadeghi SJ, Gilardi G, Butt JN, Jeuken LJC. Layer-by-Layer Assembly of Supported Lipid Bilayer Poly-l-Lysine Multilayers. Biomacromolecules 2015; 17:324-35. [DOI: 10.1021/acs.biomac.5b01434] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- George R. Heath
- School
of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Mengqiu Li
- School
of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | - Joanna L. Richens
- Cell
Biophysics Group, Institute of Biophysics, Imaging and Optical Science,
School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Gianluca Catucci
- Life
Sciences and Systems Biology, University of Torino, 10123, Turin, Italy
| | - Paul O’Shea
- Cell
Biophysics Group, Institute of Biophysics, Imaging and Optical Science,
School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Sheila J. Sadeghi
- Life
Sciences and Systems Biology, University of Torino, 10123, Turin, Italy
| | - Gianfranco Gilardi
- Life
Sciences and Systems Biology, University of Torino, 10123, Turin, Italy
| | - Julea N. Butt
- Centre
for Molecular and Structural Biochemistry, School of Biological Sciences,
and School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Lars J. C. Jeuken
- School
of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
12
|
Wang L, Roth JS, Han X, Evans SD. Photosynthetic Proteins in Supported Lipid Bilayers: Towards a Biokleptic Approach for Energy Capture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:3306-3318. [PMID: 25727786 DOI: 10.1002/smll.201403469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/11/2015] [Indexed: 06/04/2023]
Abstract
In nature, plants and some bacteria have evolved an ability to convert solar energy into chemical energy usable by the organism. This process involves several proteins and the creation of a chemical gradient across the cell membrane. To transfer this process to a laboratory environment, several conditions have to be met: i) proteins need to be reconstituted into a lipid membrane, ii) the proteins need to be correctly oriented and functional and, finally, iii) the lipid membrane should be capable of maintaining chemical and electrical gradients. Investigating the processes of photosynthesis and energy generation in vivo is a difficult task due to the complexity of the membrane and its associated proteins. Solid, supported lipid bilayers provide a good model system for the systematic investigation of the different components involved in the photosynthetic pathway. In this review, the progress made to date in the development of supported lipid bilayer systems suitable for the investigation of membrane proteins is described; in particular, there is a focus on those used for the reconstitution of proteins involved in light capture.
Collapse
Affiliation(s)
- Lei Wang
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
- State Key Laboratory of Urban Water Resource and Environment, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Johannes S Roth
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Stephen D Evans
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
13
|
Heath GR, Abou-Saleh RH, Peyman SA, Johnson BRG, Connell SD, Evans SD. Self-assembly of actin scaffolds on lipid microbubbles. SOFT MATTER 2014; 10:694-700. [PMID: 24652242 DOI: 10.1039/c3sm52199k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Microbubbles offer unique properties as combined carriers of therapeutic payloads and diagnostic agents. Here we report on the development of novel microbubble architectures that in addition to the usual lipid shell have an actin cytoskeletal cortex assembled on their exterior. We show, using atomic force microscopy that this biomimetic coating creates a thin mesh that allows tuning of the mechanical properties of microbubbles and that the nature of actin assembly is determined by the fluidity of the lipid layer. Further, we show that it is possible to attach payloads and targeting-ligands to the actin scaffold. Resistance to gas permeation showed that the additional actin layer reduces gas diffusion across the shell and thus increases bubble lifetime. This study demonstrates a one step method to creating more complex microbubble architectures, which would be capable of further modification and tuning through the inclusion of actin binding proteins.
Collapse
Affiliation(s)
- George R Heath
- Molecular Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK. . uk
| | | | | | | | | | | |
Collapse
|
14
|
Heath G, Johnson B, Olmsted P, Connell S, Evans S. Actin assembly at model-supported lipid bilayers. Biophys J 2013; 105:2355-65. [PMID: 24268147 PMCID: PMC3838754 DOI: 10.1016/j.bpj.2013.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/25/2013] [Accepted: 10/08/2013] [Indexed: 01/07/2023] Open
Abstract
We report on the use of supported lipid bilayers to reveal dynamics of actin polymerization from a nonpolymerizing subphase via cationic phospholipids. Using varying fractions of charged lipid, lipid mobility, and buffer conditions, we show that dynamics at the nanoscale can be used to control the self-assembly of these structures. In the case of fluid-phase lipid bilayers, the actin adsorbs to form a uniform two-dimensional layer with complete surface coverage whereas gel-phase bilayers induce a network of randomly oriented actin filaments, of lower coverage. Reducing the pH increased the polymerization rate, the number of nucleation events, and the total coverage of actin. A model of the adsorption/diffusion process is developed to provide a description of the experimental data and shows that, in the case of fluid-phase bilayers, polymerization arises equally due to the adsorption and diffusion of surface-bound monomers and the addition of monomers directly from the solution phase. In contrast, in the case of gel-phase bilayers, polymerization is dominated by the addition of monomers from solution. In both cases, the filaments are stable for long times even when the G-actin is removed from the supernatant-making this a practical approach for creating stable lipid-actin systems via self-assembly.
Collapse
Affiliation(s)
| | | | | | | | - Stephen D. Evans
- School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
15
|
Vogel SK, Heinemann F, Chwastek G, Schwille P. The design of MACs (minimal actin cortices). Cytoskeleton (Hoboken) 2013; 70:706-17. [PMID: 24039068 PMCID: PMC4065363 DOI: 10.1002/cm.21136] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/14/2013] [Accepted: 08/12/2013] [Indexed: 11/18/2022]
Abstract
The actin cell cortex in eukaryotic cells is a key player in controlling and maintaining the shape of cells, and in driving major shape changes such as in cytokinesis. It is thereby constantly being remodeled. Cell shape changes require forces acting on membranes that are generated by the interplay of membrane coupled actin filaments and assemblies of myosin motors. Little is known about how their interaction regulates actin cell cortex remodeling and cell shape changes. Because of the vital importance of actin, myosin motors and the cell membrane, selective in vivo experiments and manipulations are often difficult to perform or not feasible. Thus, the intelligent design of minimal in vitro systems for actin-myosin-membrane interactions could pave a way for investigating actin cell cortex mechanics in a detailed and quantitative manner. Here, we present and discuss the design of several bottom-up in vitro systems accomplishing the coupling of actin filaments to artificial membranes, where key parameters such as actin densities and membrane properties can be varied in a controlled manner. Insights gained from these in vitro systems may help to uncover fundamental principles of how exactly actin-myosin-membrane interactions govern actin cortex remodeling and membrane properties for cell shape changes. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sven K Vogel
- *Address correspondence to: Sven K. Vogel; Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany. E-mail:
| | | | | | | |
Collapse
|
16
|
Lopez-Ayon GM, Oliver DJ, Grutter PH, Komarova SV. Deconvolution of calcium fluorescent indicator signal from AFM cantilever reflection. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2012; 18:808-815. [PMID: 22846703 DOI: 10.1017/s1431927612000402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Atomic force microscopy (AFM) can be combined with fluorescence microscopy to measure the changes in intracellular calcium levels (indicated by fluorescence of Ca²⁺ sensitive dye fluo-4) in response to mechanical stimulation performed by AFM. Mechanical stimulation using AFM is associated with cantilever movement, which may interfere with the fluorescence signal. The motion of the AFM cantilever with respect to the sample resulted in changes of the reflection of light back to the sample and a subsequent variation in the fluorescence intensity, which was not related to changes in intracellular Ca²⁺ levels. When global Ca²⁺ responses to a single stimulation were assessed, the interference of reflected light with the fluorescent signal was minimal. However, in experiments where local repetitive stimulations were performed, reflection artifacts, correlated with cantilever motion, represented a significant component of the fluorescent signal. We developed a protocol to correct the fluorescence traces for reflection artifacts, as well as photobleaching. An added benefit of our method is that the cantilever reflection in the fluorescence recordings can be used for precise temporal correlation of the AFM and fluorescence measurements.
Collapse
Affiliation(s)
- G Monserratt Lopez-Ayon
- Center for the Physics of Materials and the Department of Physics, McGill University, 3600 University, Montreal, Quebec H3A 2T8, Canada.
| | | | | | | |
Collapse
|
17
|
Vogel SK, Schwille P. Minimal systems to study membrane-cytoskeleton interactions. Curr Opin Biotechnol 2012; 23:758-65. [PMID: 22503237 DOI: 10.1016/j.copbio.2012.03.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 03/21/2012] [Accepted: 03/22/2012] [Indexed: 11/16/2022]
Abstract
In the context of minimal systems design, there are two areas in which the reductionist approach has been particularly successful: studies of molecular motors on cytoskeletal filaments, and of protein-lipid interactions in model membranes. However, a minimal cortex, that is, the interface between membrane and cytoskeleton, has just begun to be functionally reconstituted. A key property of living cells is their ability to change their shape in response to extracellular and intracellular stimuli. Although studied in live cells since decades, the mutual dependence between cytoskeleton and membrane dynamics in these large-scale transformations is still poorly understood. Here we report on inspiring recent in vitro work in this direction, and the promises it holds for a better understanding of key cellular processes.
Collapse
Affiliation(s)
- Sven K Vogel
- Max Planck Institute of Biochemistry, Department of Cellular and Molecular Biophysics, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | |
Collapse
|
18
|
Sundh M, Manandhar M, Svedhem S, Sutherland DS. Supported Lipid Bilayers With Controlled Curvature via Colloidal Lithography. IEEE Trans Nanobioscience 2011; 10:187-93. [DOI: 10.1109/tnb.2011.2166086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Tsai FC, Stuhrmann B, Koenderink GH. Encapsulation of active cytoskeletal protein networks in cell-sized liposomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:10061-10071. [PMID: 21707043 DOI: 10.1021/la201604z] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We demonstrate that cytoskeletal actin-myosin networks can be encapsulated with high efficiency in giant liposomes by hydration of lipids in an agarose hydrogel. The liposomes have cell-sized diameters of 10-20 μm and a uniform actin content. We show by measurements of membrane fluorescence intensity and bending rigidity that the majority of liposomes are unilamellar. We further demonstrate that the actin network can be specifically anchored to the membrane by biotin-streptavidin linkages. These protein-filled liposomes are useful model systems for quantitative studies of the physical mechanisms by which the cytoskeleton actively controls cell shape and mechanics. In a broader context, this new preparation method should be widely applicable to encapsulation of proteins and polymers, for instance, to create polymer-reinforced liposomes for drug delivery.
Collapse
Affiliation(s)
- Feng-Ching Tsai
- Biological Soft Matter Group, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | | | | |
Collapse
|
20
|
Becker B, Cooper MA. A survey of the 2006-2009 quartz crystal microbalance biosensor literature. J Mol Recognit 2011; 24:754-87. [DOI: 10.1002/jmr.1117] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Quideau S, Douat-Casassus C, Delannoy López DM, Di Primo C, Chassaing S, Jacquet R, Saltel F, Genot E. Binding of Filamentous Actin and Winding into Fibrillar Aggregates by the Polyphenolic C-Glucosidic Ellagitannin Vescalagin. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006712] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Quideau S, Douat-Casassus C, Delannoy López DM, Di Primo C, Chassaing S, Jacquet R, Saltel F, Genot E. Binding of Filamentous Actin and Winding into Fibrillar Aggregates by the Polyphenolic C-Glucosidic Ellagitannin Vescalagin. Angew Chem Int Ed Engl 2011; 50:5099-104. [DOI: 10.1002/anie.201006712] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/23/2010] [Indexed: 01/18/2023]
|
23
|
Abstract
The atomic force microscope (AFM) is a high-resolution scanning-probe instrument which has become an important tool for cellular and molecular biophysics in recent years, but lacks the time resolution and functional specificities offered by fluorescence microscopic techniques. The advantages of both methods may be exploited by combining and synchronizing them. In this paper, the biological applications of AFM, fluorescence, and their combinations are briefly reviewed, and the assembly and utilization of a spatially and temporally synchronized AFM and total internal reflection fluorescence microscope are described. The application of the method is demonstrated on a fluorescently labeled cell culture.
Collapse
Affiliation(s)
- Miklós S Z Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
24
|
Satriano C, Edvardsson M, Ohlsson G, Wang G, Svedhem S, Kasemo B. Plasma oxidized polyhydroxymethylsiloxane--a new smooth surface for supported lipid bilayer formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:5715-25. [PMID: 20170173 DOI: 10.1021/la903826d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A novel substrate for preparation of supported lipid bilayers (SLBs), smooth at the subnanometer scale and of variable thickness from ten to several hundred nanometers, was developed by surface oxidation of spin-coated poly(hydroxymethylsiloxane) (PHMS) films. The deposited polymeric thin films were modified by a combination of oxygen plasma and thermal treatment (PHMS(ox)), in order to convert the outermost surface layer of the polymer film to a stable SiO(2) film, suitable for SLB formation. The hydrophilic, SiO(2)-like surfaces were characterized by XPS, wetting angle, ellipsometry, and AFM. Lipid bilayers were formed on this surface using the well-known vesicle adsorption-rupture-fusion process, usually performed on glass or vapor-deposited SiO(2). Reproducible formation of homogeneous SLBs of different compositions (POPC, DOEPC, and POPC/DOPS) was demonstrated on the new SiO(2) surface by quartz crystal microbalance with dissipation (QCM-D), surface plasmon resonance (SPR), and optical reflectometry measurements. The SLB formation kinetics on the PHMS(ox)-coated sensors showed very similar characteristics, for all investigated PHMS thicknesses, as on reference sensors coated with vapor-deposited SiO(2). The good adhesive properties of the PHMS to gold allows for the preparation of thin PHMS(ox) layers compatible with SPR. The much smaller roughness at the nanometer scale of the PHMS(ox) surfaces, compared to standard vapor-deposited SiO(2)-coated sensors, makes them advantageous for AFM and optical experiments and promising for patterning. To benefit optical experiments with the PHMS(ox) surfaces, it was also investigated how the PHMS film thickness influences the SPR and reflectometry responses upon SLB formation.
Collapse
Affiliation(s)
- C Satriano
- Department of Chemical Sciences, Catania University, Viale A. Doria, 6, 95125 Catania, Italy.
| | | | | | | | | | | |
Collapse
|
25
|
Reimhult E, Baumann MK, Kaufmann S, Kumar K, Spycher PR. Advances in nanopatterned and nanostructured supported lipid membranes and their applications. Biotechnol Genet Eng Rev 2010; 27:185-216. [DOI: 10.1080/02648725.2010.10648150] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
|
27
|
Han X, Cheetham MR, Sheikh K, Olmsted PD, Bushby RJ, Evans SD. Manipulation and charge determination of proteins in photopatterned solid supported bilayers. Integr Biol (Camb) 2008; 1:205-11. [PMID: 20023804 DOI: 10.1039/b815601h] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This work demonstrates the use of deep UV micropatterned chlorotrimethylsilane (TMS) monolayers to support lipid membranes on SiO(2) surfaces. After immersing such a patterned surface into a solution containing small unilamellar vesicles of egg PC, supported bilayer lipid membranes were formed on the hydrophilic, photolyzed regions and lipid monolayer over the hydrophobic, non-photolyzed regions. A barrier between the lipid monolayer and bilayer regions served to stop charged lipids migrating between the two. This allows the system to be used to separate charged lipids or proteins by electrophoresis. Either oppositely charged fluorescence labeled lipids [Texas Red DHPE (negative charge) and D291 (positive charge)] or lipids with different charge numbers [Texas Red DHPE (one negative charge) and NBD PS (two negative charges)] can be separated. We have also studied the migration of streptavidin attached to a biotinylated lipid. Negatively charged streptavidin responds to the applied electric field by moving in the direction of electroosmotic flow, i.e. towards the negative electrode. However the direction of streptavidin movement can be controlled by altering the difference in zeta potential between that of the streptavidin (zeta(1)) and the lipid membrane (zeta(2)). If zeta(1) > zeta(2), streptavidin moves to the negative electrode, while if zeta(1) < zeta(2), streptavidin moves to the positive electrode. This balance was manipulated by adding positively charged lipid DOTAP to the membrane. After measuring the average drift velocity of streptavidin as a function of DOTAP concentration, the point where zeta(1) approximately zeta(2) was found. At this point zeta(1) was calculated to be -9.8 mV which is in good agreement with the value of -13 mV from force measurements and corresponds to a charge of -2e per streptavidin, thus demonstrating the applicability of this method for determining protein charge.
Collapse
Affiliation(s)
- Xiaojun Han
- School of Physics and Astronomy, University of Leeds, Leeds, UK
| | | | | | | | | | | |
Collapse
|