1
|
Mu M, Leermakers FAM, Chen J, Holmes M, Ettelaie R. Effect of polymer architecture on the adsorption behaviour of amphiphilic copolymers: A theoretical study. J Colloid Interface Sci 2023; 644:333-345. [PMID: 37120882 DOI: 10.1016/j.jcis.2023.04.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
HYPOTHESIS Polymer architecture is known to have significant impact on its adsorption behaviour. Most studies have been concerned with the more concentrated, "close to surface saturation" regime of the isotherm, where complications such as lateral interactions and crowding also additionally affect the adsorption. We compare a variety of amphiphilic polymer architectures by determining their Henry's adsorption constant (kH), which, as with other surface active molecules, is the proportionality constant between surface coverage and bulk polymer concentration in a sufficiently dilute regime. It is speculated that not only the number of arms or branches, but also the position of adsorbing hydrophobes influence the adsorption, and that by controlling the latter the two can counteract each other. METHODOLOGY The Self-consistent field calculation of Scheutjens and Fleer was implemented to calculate the adsorbed amount of polymer for many different polymer architectures including linear, star and dendritic. Using the adsorption isotherms at very low bulk concentrations, we determined the value of kH for these. FINDINGS It is found that the branched structures (star polymers and dendrimers) can be viewed as analogues of linear block polymers based on the location of their adsorbing units. Polymers containing consecutive trains of adsorbing hydrophobes in all cases showed higher level of adsorption compared to their counterparts, where the hydrophobes were more uniformly distributed on the chains. While increasing the number of branches (or arms for star polymers) also confirmed the known result that the adsorption decreased with the number of arms, this trend can be partially offset by the appropriate choice of the location of anchoring groups.
Collapse
Affiliation(s)
- Mingduo Mu
- Food Colloids Group, School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.
| | - Frans A M Leermakers
- Wageningen Univ & Res, Phys Chem & Soft Matter, Stippeneng 4, 6708 WE Wageningen, Netherlands
| | - Jianshe Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Melvin Holmes
- Food Colloids Group, School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Rammile Ettelaie
- Food Colloids Group, School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.
| |
Collapse
|
2
|
O'Bryan CS, Murdoch TJ, Strickland DJ, Rose KA, Bendejacq D, Lee D, Composto RJ. Investigating the Sequence Specific Adsorption Behavior of Polypeptides at the Solid/Liquid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1740-1749. [PMID: 36637895 DOI: 10.1021/acs.langmuir.2c02292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Polymer adsorption at the solid/liquid interface depends not only on the chemical composition of the polymer but also on the specific placement of the monomers along the polymer sequence. However, challenges in designing polymers with well-controlled sequences have limited explorations into the role of polymer sequence on adsorption behavior to molecular simulations. Here, we demonstrate how the sequence control offered by polypeptide synthesis can be utilized to study the effects small changes in polymer sequence have on polymer adsorption behavior at the solid/liquid interface. Through a combination of quartz crystal microbalance with dissipation monitoring and total internal reflection ellipsometry, we study the adsorption behavior of three polypeptides, consisting of 90% lysine and 10% cysteine, onto a gold surface. We find different mechanisms are responsible for the adsorption of polypeptides and the resulting conformation on the surface. The initial adsorption of the polypeptides is driven by electrostatic interactions between the polylysine and the gold surface. Once adsorbed, the cysteine undergoes a thiol-Au reaction with the surface, altering the conformation of the polymer layer. Our findings suggest the conformation of the polypeptide layer is dependent on the placement of the cysteines within the sequence; polypeptide chains with evenly spaced cysteine groups adopt a more tightly bound "train" conformation as compared to polypeptides with closely grouped cysteine groups. We envision that the methodologies presented here to study sequence specific adsorption behaviors using polypeptides could be a valuable tool to complement molecular simulations studies.
Collapse
Affiliation(s)
- Christopher S O'Bryan
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Department of Material Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Timothy J Murdoch
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Daniel J Strickland
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Department of Material Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Katie A Rose
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Denis Bendejacq
- Complex Assemblies of Soft Matter Laboratory, IRL 3254, Solvay USA Inc., Bristol, Pennsylvania19007, United States
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Russell J Composto
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Department of Material Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
- Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| |
Collapse
|
3
|
Wang WL, Kawai K, Sigemitsu H, Jin RH. Crystalline lamellar films with honeycomb structure from comb-like polymers of poly(2-long-alkyl-2-oxazoline)s. J Colloid Interface Sci 2022; 627:28-39. [PMID: 35841706 DOI: 10.1016/j.jcis.2022.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
Comb-like copolymers are usually structured by grafting polymeric side chains onto main polymer chain. There are few reports of comb-on-comb polymers in which dense secondary side chains are grafted onto primary side chain. In this work, we synthesized comb polymers with grafted-on-graft side chains (c-PEI-g-Acyl) via an effective acylation reaction of comb polymers possessing polyethyleneimine (PEI) side chain with long-alkyl acyl chlorides. For comparison, we also synthesized homopolymers l-PEI-g-Acyls via reaction of linear PEI with long-alkyl acyl chlorides. Then, we investigated their crystalline feature in the film formation by XRD, DSC and SEM, and found that the polymers tend to form hexagonal lamella structures with bilayer alkyl spacing. The comb polymers c-PEI-g-Acyls and linear polymers l-PEI-g-Acyls were used in preparation of honeycomb film by the "breath-figure" process by dropping chloroform solution of the polymers on substrate. Different to many honeycomb polymeric films which are supported by amorphous phase, interestingly, our polymers easily afford honeycomb films which are supported by crystalline lamellae frames under higher humidity condition. It was found that the comb polymers of c-PEI-g-Acyls with longer PEI primary side chain and long alkyl secondary side chain have advantages in producing honeycomb film than linear polymers of l-PEI-g-Acys.
Collapse
Affiliation(s)
- Wen-Li Wang
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Yokohama 221-8686, Japan
| | - Kousuke Kawai
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Yokohama 221-8686, Japan
| | - Hiroaki Sigemitsu
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Yokohama 221-8686, Japan
| | - Ren-Hua Jin
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Yokohama 221-8686, Japan.
| |
Collapse
|
4
|
Leermakers FAM, Léonforte F, Luengo GS. Structure and Colloidal Stability of Adsorption Layers of Macrocycle, Linear, Comb, Star, and Dendritic Macromolecules. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Frans A. M. Leermakers
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | | | | |
Collapse
|
5
|
Han T, Yi S, Zhang C, Li J, Chen X, Luo J, Banquy X. Superlubrication obtained with mixtures of hydrated ions and polyethylene glycol solutions in the mixed and hydrodynamic lubrication regimes. J Colloid Interface Sci 2020; 579:479-488. [PMID: 32622097 DOI: 10.1016/j.jcis.2020.06.095] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/31/2022]
Abstract
HYPOTHESIS Superlubricity is known to dramatically reduce frictional energy consumption and to improve service life of mechanical devices and biological systems. However, reduction of wear during the running-in period of friction pairs, especially under high contact pressures, still remains an unresolved issue affecting all machines. EXPERIMENTS Here the lubrication, adsorption, and conformational properties of hydrated ions and polyethylene glycol (PEG) mixtures were evaluated at different mass fractions and concentrations of PEG and salts by ball-on-disc tribometer, ζ-potential, quartz crystal microbalance with dissipation (QCM-D), and dynamic light scatting (DLS) analyses. FINDINGS These mixtures exhibited superlubricity between Si3N4 and sapphire surfaces in a wide range of concentrations and ions valency. Interestingly, a running-in phase shorter than 1 min and low wear rate of 1.85 μm3/(N·m) were observed at contact pressures up to 555 MPa, significantly higher to earlier findings. PEG chains retain random coils filling the bulk of the interfacial film without strongly adsorbing on the interfaces but significantly increasing the viscosity of lubricating film, thereby favoring hydrodynamic lubrication. Hydrated ions are strongly adsorbed on the negatively charged ceramic surfaces, ensuring a sustained hydration effect maintaining superlubricity. The outstanding lubrication characteristics of the PEG/ions mixtures were attributed to the synergistic action of hydration and hydrodynamic lubrication, which appears as a promising avenue for developing new green lubricants and has implications for industrial and biological applications.
Collapse
Affiliation(s)
- Tianyi Han
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China; Faculty of Pharmacy, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Shuang Yi
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Chenhui Zhang
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
| | - Jinjin Li
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Xinchun Chen
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Jianbin Luo
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Xavier Banquy
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
6
|
Abstract
Most of the currently used products for repairing and conditioning hair rely on the deposition of complex formulations, based on mixtures involving macromolecules and surfactants, onto the surface of hair fibers. This leads to the partial covering of the damaged areas appearing in the outermost region of capillary fibers, which enables the decrease of the friction between fibers, improving their manageability and hydration. The optimization of shampoo and conditioner formulations necessitates a careful examination of the different physicochemical parameters related to the conditioning mechanism, e.g., the thickness of the deposits, its water content, topography or frictional properties. This review discusses different physicochemical aspects which impact the understanding of the most fundamental bases of the conditioning process.
Collapse
|
7
|
Parekh P, Ohno S, Yusa S, Lv C, Du B, Ray D, Aswal VK, Bahadur P. Synthesis, aggregation and adsorption behaviour of a thermoresponsive pentablock copolymer. POLYM INT 2020. [DOI: 10.1002/pi.5967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Paresh Parekh
- Chemistry Department Veer Narmad South Gujarat University Surat India
| | - Sayaka Ohno
- Graduate School of Engineering University of Hyogo Hyogo Japan
| | - Shin‐ichi Yusa
- Graduate School of Engineering University of Hyogo Hyogo Japan
| | - Chao Lv
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Binyang Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Debes Ray
- Solid State Physics Division Bhabha Atomic Research Centre Mumbai India
| | - Vinod Kumar Aswal
- Solid State Physics Division Bhabha Atomic Research Centre Mumbai India
| | - Pratap Bahadur
- Chemistry Department Veer Narmad South Gujarat University Surat India
| |
Collapse
|
8
|
Jia W, Tian J, Bai P, Li S, Zeng H, Zhang W, Tian Y. A novel comb-typed poly(oligo(ethylene glycol) methylether acrylate) as an excellent aqueous lubricant. J Colloid Interface Sci 2018; 539:342-350. [PMID: 30594009 DOI: 10.1016/j.jcis.2018.12.085] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/22/2018] [Accepted: 12/22/2018] [Indexed: 11/16/2022]
Abstract
HYPOTHESIS Aqueous lubricants exhibit versatile advantages over oil-based lubricants. However, it still remains a challenge for the aqueous solutions to obtain excellent lubrication properties with high contact pressure on macroscale. EXPERIMENTS In this work, a comb-typed poly(oligo(ethylene glycol) methylether acrylate) (P(OEGMA)) was successfully synthesized via RAFT polymerization. Rheological, morphological and tribological properties of prepared P(OEGMA) aqueous solutions were characterized via a rheometer, cryo-SEM and ball-on-disk tribometer, respectively. FINDINGS The synthesized P(OEGMA) exhibited a uniformly smaller size than that of the commercial linear polyethylene glycol (PEG), leading to reduced viscosities in aqueous solutions. The obtained P(OEGMA) aqueous solutions achieved outstandingly ultralow friction coefficients (μ < 0.01) and a good wear-resistance under high pressure (>300 MPa, two-fold increase than reported in the previous literature). The desirable lubricating performances can be attributed to the well-established running-in period, a good interfacial adsorption property between polymer molecules and solid surfaces, the hydration effect as well as the hydrodynamic effect. The current finding reveals the excellent aqueous lubrication properties possessed by the synthesized comb-typed P(OEGMA), which can broaden the development of aqueous lubricants in practical engineering fields.
Collapse
Affiliation(s)
- Wenpeng Jia
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Jinmi Tian
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Pengpeng Bai
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Shaowei Li
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Wenling Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Yu Tian
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Colson J, Pettersson T, Asaadi S, Sixta H, Nypelö T, Mautner A, Konnerth J. Adhesion properties of regenerated lignocellulosic fibres towards poly(lactic acid) microspheres assessed by colloidal probe technique. J Colloid Interface Sci 2018; 532:819-829. [PMID: 30145523 DOI: 10.1016/j.jcis.2018.08.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 11/29/2022]
Abstract
In the field of polymer reinforcement, it is important to understand the interactions involved between the polymer matrix and the reinforcing component. This paper is a contribution to the fundamental understanding of the adhesion mechanisms involved in natural fibre reinforced composites. We report on the use of the colloidal probe technique for the assessment of the adhesion behaviour between poly(lactic acid) microspheres and embedded cross-sections of regenerated lignocellulosic fibres. These fibres consisted of tailored mixtures of cellulose, lignin and xylan, the amount of which was determined beforehand. The influence of the chemical composition of the fibres on the adhesion behaviour was studied in ambient air and in dry atmosphere. In ambient air, capillary forces resulted in larger adhesion between the sphere and the fibres. Changing the ambient medium to a dry nitrogen atmosphere allowed reducing the capillary forces, leading to a drop in the adhesion forces. Differences between fibres of distinct chemical compositions could be measured only on freshly cut surfaces. Moreover, the surface energy of the fibres was assessed by inverse gas chromatography. Compared to fibres containing solely cellulose, the presence of lignin and/or hemicellulose led to higher adhesion and lower surface energy, suggesting that these chemicals could serve as natural coupling agents between hydrophobic and hydrophilic components.
Collapse
Affiliation(s)
- Jérôme Colson
- University of Natural Resources and Life Sciences Vienna, Department of Materials Sciences and Process Engineering, Institute of Wood Technology and Renewable Materials, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria.
| | - Torbjörn Pettersson
- KTH Royal Institute of Technology, Department of Fibre and Polymer Technology, Division of Fibre Technology, Teknikringen 58, 100 44 Stockholm, Sweden.
| | - Shirin Asaadi
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Vuorimiehentie 1, 02150 Espoo, Finland.
| | - Herbert Sixta
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Vuorimiehentie 1, 02150 Espoo, Finland.
| | - Tiina Nypelö
- Chalmers University of Technology, Department of Chemistry and Chemical Technology, Kemigården 4, 412 96 Göteborg, Sweden.
| | - Andreas Mautner
- University of Vienna, Faculty of Chemistry, Institute of Materials Chemistry & Research, Währinger Straße 42, 1090 Vienna, Austria.
| | - Johannes Konnerth
- University of Natural Resources and Life Sciences Vienna, Department of Materials Sciences and Process Engineering, Institute of Wood Technology and Renewable Materials, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria.
| |
Collapse
|
10
|
Silva RD, Stefanichen Monteiro I, Chaparro TDC, Silva Hardt R, Giudici R, Barros-Timmons A, Bourgeat-Lami E, Martins Dos Santos A. Investigation of the Adsorption of Amphipathic macroRAFT Agents onto Montmorillonite Clay. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:9598-9608. [PMID: 28795812 DOI: 10.1021/acs.langmuir.7b01882] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recently, there has been significant interest in the use of the reversible addition-fragmentation chain-transfer (RAFT) technique to generate a variety of organic/inorganic colloidal composite particles in aqueous dispersed media using the so-called macroRAFT-assisted encapsulating emulsion polymerization (REEP) strategy. In this process, special attention should be paid to the adsorption of the macromolecular RAFT (macroRAFT) agent onto the inorganic particles, as it determines the final particle morphology and can also influence latex stability. In this work, different amphipathic macroRAFT agents were synthesized by RAFT, and their adsorption onto commercial Montmorillonite clay Cloisite Na+ (MMT) was studied by means of adsorption isotherms. Three types of macroRAFT agents were considered: a nonionic one based on poly(ethylene glycol) methyl ether acrylate (PEGA) and n-butyl acrylate (BA), anionic ones, including a block copolymer and random copolymers, based on acrylic acid (AA), BA and PEGA, and cationic ones based on 2-(dimethylamino)ethyl methacrylate (DMAEMA), BA and PEGA. Six adsorption isotherm models (Langmuir, Freundlich, Tempkin, Redlich-Peterson, Sips, and Brunauer-Emmett-Teller) were adjusted to the experimental isotherms. The nonionic macroRAFT agent formed a monolayer on the clay surface with a maximum adsorption capacity of 400 mg g-1 at pH 8, as determined from the Sips adsorption model. Adsorption of the AA-based macroRAFT agents onto MMT was moderate at alkaline pH due to electrostatic repulsions, but increased with decreasing pH. The DMAEMA-based macroRAFT agents displayed a much stronger interaction with the oppositely charged MMT surface at acidic pH due to electrostatic interactions, and the concentration of adsorbed macroRAFT agent reached values as high as 800 mg g-1. The BET model fitted the experimental data relatively well indicating multilayer adsorption promoted by the presence of the hydrophobic BA units. In addition, the cationic macroRAFT agents afforded stable MMT/macroRAFT agent complexes as evaluated by dynamic light scattering and zeta potential analyses.
Collapse
Affiliation(s)
- Rodrigo Duarte Silva
- Engineering School of Lorena - University of São Paulo, Laboratory of Polymers, 12602-810 Lorena/SP, Brazil
| | - Igor Stefanichen Monteiro
- Engineering School of Lorena - University of São Paulo, Laboratory of Polymers, 12602-810 Lorena/SP, Brazil
| | - Thaíssa de Camargo Chaparro
- Engineering School of Lorena - University of São Paulo, Laboratory of Polymers, 12602-810 Lorena/SP, Brazil
- Université Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), 43 Bvd. du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Raíssa Silva Hardt
- Engineering School of Lorena - University of São Paulo, Laboratory of Polymers, 12602-810 Lorena/SP, Brazil
| | - Reinaldo Giudici
- Department of Chemical Engineering, Polytechnic School of the University of São Paulo , 05508-010 São Paulo/SP, Brazil
| | - A Barros-Timmons
- Department of Chemistry, University of Aveiro, CICECO - Aveiro Institute of Materials, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Elodie Bourgeat-Lami
- Université Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), 43 Bvd. du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Amilton Martins Dos Santos
- Engineering School of Lorena - University of São Paulo, Laboratory of Polymers, 12602-810 Lorena/SP, Brazil
| |
Collapse
|
11
|
Solveyra EG, Tagliazucchi M, Szleifer I. Anisotropic surface functionalization of Au nanorods driven by molecular architecture and curvature effects. Faraday Discuss 2016; 191:351-372. [PMID: 27419660 PMCID: PMC6314812 DOI: 10.1039/c6fd00020g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This work suggests a novel strategy to coat the caps and body of Au-nanorods (Au-NRs) with end-grafted polymer layers of different compositions by taking advantage of the different curvature of these two regions. A molecular theory was used to theoretically investigate the effect of local curvature and molecular architecture (intramolecular connectivity of the monomers) on the adsorption of polymer mixtures on cylindrical (Au-NR body) and spherical (Au-NR caps) surfaces. The adsorption process was systematically studied as a function of the backbone length, number and position of branches, quality of the solvent and total number of monomers of the polymer molecules in the mixture. The balance between repulsive forces and polymer-surface and polymer-polymer attractions governs the amount and composition of the adsorbed layer. This balance is in turn modulated by the architecture of the polymers, the curvature of the surface and the competition between the different polymers in the mixture for the available area. As a result, the equilibrium composition of the polymer layer on spheres and cylinders of the same radius differs, and in turn departs from that of the bulk solution. Curvature plays a major role: the available volume at a given distance from the surface is larger for spherical surfaces than for cylindrical ones, therefore the surface density of the bulkier (more branched) polymer in the mixture is larger on the Au-NR caps than on the Au-NR body. These results suggest that the combination of curvature at the nanoscale and tailored molecular architecture can confer anisotropic nanoparticles with spatially enriched domains and, therefore, lead to nanoconstructs with directional chemical interactions.
Collapse
Affiliation(s)
- Estefania Gonzalez Solveyra
- Department of Biomedical Engineering, Department of Chemistry and Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, USA.
| | | | | |
Collapse
|
12
|
Sree Hari PD, Bakli C, Chakraborty S. Fractional separation of polymers in nanochannels: Combined influence of wettability and structure. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/polb.24122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- P. D. Sree Hari
- Department of Mechanical Engineering; Indian Institute of Technology Kharagpur; Kharagpur 721302 India
| | - Chirodeep Bakli
- Department of Mechanical Engineering; Indian Institute of Technology Kharagpur; Kharagpur 721302 India
| | - Suman Chakraborty
- Department of Mechanical Engineering; Indian Institute of Technology Kharagpur; Kharagpur 721302 India
| |
Collapse
|
13
|
Bourgeat-Lami E, França AJPG, Chaparro TC, Silva RD, Dugas PY, Alves GM, Santos AM. Synthesis of Polymer/Silica Hybrid Latexes by Surfactant-Free RAFT-Mediated Emulsion Polymerization. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00737] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- E. Bourgeat-Lami
- Université
de Lyon, Univ. Lyon 1, CPE Lyon, CNRS, UMR 5265,, Laboratoire de Chimie, Catalyse, Polymères et Procédés (C2P2), LCPP group, 43,
Bd. du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - A. J. P. G. França
- Université
de Lyon, Univ. Lyon 1, CPE Lyon, CNRS, UMR 5265,, Laboratoire de Chimie, Catalyse, Polymères et Procédés (C2P2), LCPP group, 43,
Bd. du 11 Novembre 1918, F-69616 Villeurbanne, France
- Laboratory
of Polymers, Department of Chemical Engineering, Engineering School
of Lorena, University of São Paulo, Estrada Municipal do Campinho, S/N, 12.602-810, Lorena, SP Brazil
| | - T. C. Chaparro
- Université
de Lyon, Univ. Lyon 1, CPE Lyon, CNRS, UMR 5265,, Laboratoire de Chimie, Catalyse, Polymères et Procédés (C2P2), LCPP group, 43,
Bd. du 11 Novembre 1918, F-69616 Villeurbanne, France
- Laboratory
of Polymers, Department of Chemical Engineering, Engineering School
of Lorena, University of São Paulo, Estrada Municipal do Campinho, S/N, 12.602-810, Lorena, SP Brazil
| | - R. D. Silva
- Laboratory
of Polymers, Department of Chemical Engineering, Engineering School
of Lorena, University of São Paulo, Estrada Municipal do Campinho, S/N, 12.602-810, Lorena, SP Brazil
| | - P.-Y. Dugas
- Université
de Lyon, Univ. Lyon 1, CPE Lyon, CNRS, UMR 5265,, Laboratoire de Chimie, Catalyse, Polymères et Procédés (C2P2), LCPP group, 43,
Bd. du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - G. M. Alves
- Laboratory
of Polymers, Department of Chemical Engineering, Engineering School
of Lorena, University of São Paulo, Estrada Municipal do Campinho, S/N, 12.602-810, Lorena, SP Brazil
| | - A. M. Santos
- Laboratory
of Polymers, Department of Chemical Engineering, Engineering School
of Lorena, University of São Paulo, Estrada Municipal do Campinho, S/N, 12.602-810, Lorena, SP Brazil
| |
Collapse
|
14
|
Heydari G, Tyrode E, Visnevskij C, Makuska R, Claesson PM. Temperature-Dependent Deicing Properties of Electrostatically Anchored Branched Brush Layers of Poly(ethylene oxide). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4194-4202. [PMID: 27064661 DOI: 10.1021/acs.langmuir.6b00671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The hydration water of hydrophilic polymers freezes at subzero temperatures. The adsorption of such polymers will result in a hydrophilic surface layer that strongly binds water. Provided this interfacial hydration water remains liquidlike at subzero temperatures, its presence could possibly reduce ice adhesion, in particular, if the liquidlike layer is thicker than or comparable to the surface roughness. To explore this idea, a diblock copolymer, having one branched bottle-brush block of poly(ethylene oxide) and one linear cationic block, was electrostatically anchored on flat silica surfaces. The shear ice adhesion strength on such polymer-coated surfaces was investigated down to -25 °C using a homebuilt device. In addition, the temperature dependence of the ice adhesion on surfaces coated with only the cationic block, only the branched bottle-brush block, and with linear poly(ethylene oxide) was investigated. Significant ice adhesion reduction, in particular, at temperatures above -15 °C, was observed on silica surfaces coated with the electrostatically anchored diblock copolymer. Differential scanning calorimetry measurements on bulk polymer solutions demonstrate different thermal transitions of water interacting with branched and linear poly(ethylene oxide) (with hydration water melting points of about -18 and -10 °C, respectively). This difference is consistent with the low shear ice adhesion strength measured on surfaces carrying branched bottle-brush structured poly(ethylene oxide) at -10 °C, whereas no significant adhesion reduction was obtained with linear poly(ethylene oxide) at this temperature. We propose a lubrication effect of the hydration water bound to the branched bottle-brush structured poly(ethylene oxide), which, in the bulk, does not freeze until -18 °C.
Collapse
Affiliation(s)
- Golrokh Heydari
- Department of Chemistry, Surface and Corrosion Science, School of Chemical Science and Engineering, KTH Royal Institute of Technology , Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
| | - Eric Tyrode
- Department of Chemistry, Surface and Corrosion Science, School of Chemical Science and Engineering, KTH Royal Institute of Technology , Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
| | - Ceslav Visnevskij
- Department of Polymer Chemistry, Vilnius University , Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Ricardas Makuska
- Department of Polymer Chemistry, Vilnius University , Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Per M Claesson
- Department of Chemistry, Surface and Corrosion Science, School of Chemical Science and Engineering, KTH Royal Institute of Technology , Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
- Chemistry, Materials and Surfaces, SP Technical Research Institute of Sweden , Box 5607, SE-114 86 Stockholm, Sweden
| |
Collapse
|
15
|
Li J, Zhang Z, Zhou X, Chen T, Nie J, Du B. PNIPAmx–PPO36–PNIPAmx thermo-sensitive triblock copolymers: chain conformation and adsorption behavior on a hydrophobic gold surface. Phys Chem Chem Phys 2016; 18:519-28. [DOI: 10.1039/c5cp06079f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The presence of the PNIPAm block is not a sufficient condition for the complex adsorption behavior of PNIPAmx–PPO36–PNIPAmx triblock copolymers.
Collapse
Affiliation(s)
- Jianyuan Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science & Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Zhijun Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science & Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Xianjing Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science & Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Tongquan Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science & Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Jingjing Nie
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Binyang Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science & Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
16
|
Llamas S, Guzmán E, Ortega F, Baghdadli N, Cazeneuve C, Rubio RG, Luengo GS. Adsorption of polyelectrolytes and polyelectrolytes-surfactant mixtures at surfaces: a physico-chemical approach to a cosmetic challenge. Adv Colloid Interface Sci 2015; 222:461-87. [PMID: 24954878 DOI: 10.1016/j.cis.2014.05.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 05/30/2014] [Indexed: 10/25/2022]
Abstract
The use of polymer and polymer - surfactant mixtures for designing and developing textile and personal care cosmetic formulations is associated with various physico-chemical aspects, e.g. detergency and conditioning in the case of hair or wool, that determine their correct performances in preserving and improving the appearance and properties of the surface where they are applied. In this work, special attention is paid to the systems combining polycations and negatively charged surfactants. The paper introduces the hair surface and presents a comprehensive review of the adsorption properties of these systems at solid-water interfaces mimicking the negative charge and surface energy of hair. These model surfaces include mixtures of thiols that confer various charge densities to the surface. The kinetics and factors that govern the adsorption are discussed from the angle of those used in shampoos and conditioners developed by the cosmetic industry. Finally, systems able to adsorb onto negatively charged surfaces regardless of the anionic character are presented, opening new ways of depositing conditioning polymers onto keratin substrates such as hair.
Collapse
Affiliation(s)
- Sara Llamas
- Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain
| | - Eduardo Guzmán
- Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain; CNR-Istituto per l'Energetica e le Interfasi-U.O.S. Genova, Via de Marini 6, 16149-Genova, Italy
| | - Francisco Ortega
- Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain
| | | | | | - Ramón G Rubio
- Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain.
| | | |
Collapse
|
17
|
Song J, Salas C, Rojas OJ. Role of textile substrate hydrophobicity on the adsorption of hydrosoluble nonionic block copolymers. J Colloid Interface Sci 2015; 454:89-96. [PMID: 26004573 DOI: 10.1016/j.jcis.2015.04.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/28/2015] [Indexed: 10/23/2022]
Abstract
The adsorption of polyalkylene glycols and co-polymers of ethylene oxide and propylene oxide on substrates relevant to textiles with varying surface energies (cellulose, polypropylene, nylon and polyester) was studied by using quartz crystal microgravimetry. Langmuirian-type isotherms were observed for the adsorption profiles of nonionic block polymers of different architectures. The affinity with the surfaces is discussed based on experimental observations, which highlights the role of hydrophobic effects. For a given type of block polymer, micellar and monomeric adsorption is governed by the balance of polymer structure (mainly, chain length of hydrophobic segments) and substrate's surface energy.
Collapse
Affiliation(s)
- Junlong Song
- Jiangsu Provincial Key Laboratory of Pulp and Paper Science & Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China; Department of Forest Biomaterials, North Carolina State University, Campus Box 8005, Raleigh, NC 27695-8005, USA.
| | - Carlos Salas
- Department of Forest Biomaterials, North Carolina State University, Campus Box 8005, Raleigh, NC 27695-8005, USA
| | - Orlando J Rojas
- Department of Forest Biomaterials, North Carolina State University, Campus Box 8005, Raleigh, NC 27695-8005, USA; Bio-based Colloids and Materials, School of Chemical Technology, Aalto University, P.O. Box 16300, Aalto FIN-00076, Finland.
| |
Collapse
|
18
|
Qiao XG, Dugas PY, Charleux B, Lansalot M, Bourgeat-Lami E. Synthesis of Multipod-like Silica/Polymer Latex Particles via Nitroxide-Mediated Polymerization-Induced Self-Assembly of Amphiphilic Block Copolymers. Macromolecules 2015. [DOI: 10.1021/ma5019473] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- X. G. Qiao
- Univ. Lyon
1, CPE Lyon, CNRS,
UMR 5265, Laboratoire de Chimie, Catalyse, Polymères et Procédés
(C2P2), LCPP group, Université de Lyon, 43, Bd. du 11 Novembre
1918, F-69616 Villeurbanne, France
| | - P.-Y. Dugas
- Univ. Lyon
1, CPE Lyon, CNRS,
UMR 5265, Laboratoire de Chimie, Catalyse, Polymères et Procédés
(C2P2), LCPP group, Université de Lyon, 43, Bd. du 11 Novembre
1918, F-69616 Villeurbanne, France
| | - B. Charleux
- Univ. Lyon
1, CPE Lyon, CNRS,
UMR 5265, Laboratoire de Chimie, Catalyse, Polymères et Procédés
(C2P2), LCPP group, Université de Lyon, 43, Bd. du 11 Novembre
1918, F-69616 Villeurbanne, France
| | - M. Lansalot
- Univ. Lyon
1, CPE Lyon, CNRS,
UMR 5265, Laboratoire de Chimie, Catalyse, Polymères et Procédés
(C2P2), LCPP group, Université de Lyon, 43, Bd. du 11 Novembre
1918, F-69616 Villeurbanne, France
| | - E. Bourgeat-Lami
- Univ. Lyon
1, CPE Lyon, CNRS,
UMR 5265, Laboratoire de Chimie, Catalyse, Polymères et Procédés
(C2P2), LCPP group, Université de Lyon, 43, Bd. du 11 Novembre
1918, F-69616 Villeurbanne, France
| |
Collapse
|
19
|
Wang H, Zhang H, Yuan S, Liu C, Xu Z. Molecular dynamics study of the adsorption of anionic surfactant in a nonionic polymer brush. J Mol Model 2014; 20:2267. [PMID: 24831533 DOI: 10.1007/s00894-014-2267-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/23/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Hua Wang
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan, 250100, China
| | | | | | | | | |
Collapse
|
20
|
Song J, Krause WE, Rojas OJ. Adsorption of polyalkyl glycol ethers and triblock nonionic polymers on PET. J Colloid Interface Sci 2014; 420:174-81. [DOI: 10.1016/j.jcis.2014.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/21/2013] [Accepted: 01/09/2014] [Indexed: 11/17/2022]
|
21
|
Effect of peptide secondary structure on adsorption and adsorbed film properties on end-grafted polyethylene oxide layers. Acta Biomater 2014; 10:56-66. [PMID: 24060880 DOI: 10.1016/j.actbio.2013.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/09/2013] [Accepted: 09/13/2013] [Indexed: 01/12/2023]
Abstract
Poly-l-lysine (PLL), in α-helix or β-sheet configuration, was used as a model peptide for investigating the effect of secondary structures on adsorption events to poly(ethylene oxide) (PEO) modified surfaces formed using θ solvents. Circular dichroism results showed that the secondary structure of PLL persisted upon adsorption to Au and PEO modified Au surfaces. Quartz crystal microbalance with dissipation (QCM-D) was used to characterize the chemisorbed PEO layer in different solvents (θ and good solvents), as well as the sequential adsorption of PLL in different secondary structures (α-helix or β-sheet). QCM-D results suggest that chemisorption of PEO 750 and 2000 from θ solutions led to brushes 3.8 ± 0.1 and 4.5 ± 0.1 nm thick with layer viscosities of 9.2 ± 0.8 and 4.8 ± 0.5 cP, respectively. The average number of H2O per ethylene oxides, while in θ solvent, was determined as ~0.9 and ~1.2 for the PEO 750 and 2000 layers, respectively. Upon immersion in good solvent (as used for PLL adsorption experiments), the number of H2O per ethylene oxides increased to ~1.5 and ~2.0 for PEO 750 and 2000 films, respectively. PLL adsorbed masses for α-helix and β-sheet on Au sensors was 231 ± 5 and 1087 ± 14 ng cm(-2), with layer viscosities of 2.3 ± 0.1 and 1.2 ± 0.1 cP, respectively; suggesting that the α-helix layer was more rigid, despite a smaller adsorbed mass, than that of β-sheet layers. The PEO 750 layer reduced PLL adsorbed amounts to ~10 and 12% of that on Au for α-helices and β-sheets respectively. The PLL adsorbed mass to PEO 2000 layers dropped to ~12% and 4% of that on Au, for α-helix and β-sheet respectively. No significant differences existed for the viscosities of adsorbed α-helix and β-sheet PLL on PEO surfaces. These results provide new insights into the fundamental understanding of the effects of secondary structures of peptides and proteins on their surface adsorption.
Collapse
|
22
|
Chen T, Lu Y, Chen T, Zhang X, Du B. Adsorption of PNIPAmx-PEO20-PPO70-PEO20-PNIPAmx pentablock terpolymer on gold surfaces: effects of concentration, temperature, block length, and surface properties. Phys Chem Chem Phys 2014; 16:5536-44. [DOI: 10.1039/c3cp54535k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Ullah Khan H, Li R, Ren Y, Chen L, Payne MM, Bhansali US, Smilgies DM, Anthony JE, Amassian A. Solvent vapor annealing in the molecular regime drastically improves carrier transport in small-molecule thin-film transistors. ACS APPLIED MATERIALS & INTERFACES 2013; 5:2325-2330. [PMID: 23394109 DOI: 10.1021/am3025195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We demonstrate a new way to investigate and control the solvent vapor annealing of solution-cast organic semiconductor thin films. Solvent vapor annealing of spin-cast films of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-Pn) is investigated in situ using quartz crystal microbalance with dissipation (QCM-D) capability, allowing us to monitor both solvent mass uptake and changes in the mechanical rigidity of the film. Using time-resolved grazing incidence wide angle X-ray scattering (GIWAXS) and complementary static atomic force microscopy (AFM), we demonstrate that solvent vapor annealing in the molecular regime can cause significant performance improvements in organic thin film transistors (OTFTs), whereas allowing the solvent to percolate and form a liquid phase results in catastrophic reorganization and dewetting of the film, making the process counterproductive. Using these lessons we devise processing conditions which prevent percolation of the adsorbed solvent vapor molecules for extended periods, thus extending the benefits of solvent vapor annealing and improving carrier mobility by nearly two orders of magnitude. Ultimately, it is demonstrated that QCM-D is a very powerful sensor of the state of the adsorbed solvent as well as the thin film, thus making it suitable for process development as well as in-line process monitoring both in laboratory and in future manufacturing settings.
Collapse
Affiliation(s)
- Hadayat Ullah Khan
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Saigal T, Riley JK, Golas PL, Bodvik R, Claesson PM, Matyjaszewski K, Tilton RD. Poly(ethylene oxide) star polymer adsorption at the silica/aqueous interface and displacement by linear poly(ethylene oxide). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:3999-4007. [PMID: 23448185 DOI: 10.1021/la305085a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Multiarm star copolymers with approximately 460 poly(ethylene oxide) (PEO) arms that have a degree of polymerization N = 45 were synthesized via atom transfer radical polymerization (ATRP) of PEO-methacrylate macromonomers in the presence of divinyl benzene cross-linkers. These are an example of molecular or nanoparticulate brushes that are of interest as steric stabilizers or boundary lubrication agents when adsorbed from solution to a solid/aqueous interface. We use ellipsometry to measure adsorption isotherms at the silica/aqueous interface for PEO star polymers and linear PEO chains having molecular weights comparable either to the star polymer or to the individual arms. The compactness of the PEO star polymers (molecular weight 1.2 × 10(6)) yields a saturation surface excess concentration that is approximately 3.5 times greater than that of the high molecular weight (1 × 10(6)) linear PEO. Adsorption of low molecular weight (6000) linear PEO was below the detection limit. Competitive adsorption experiments were conducted with ellipsometry, complemented by independent quartz crystal microbalance with dissipation (QCM-D) measurements. Linear PEO (high molecular weight) displaced preadsorbed PEO star polymers over the course of approximately 1.5 h, to form a mixed adsorbed layer having not only a significantly lower overall polymer surface excess concentration, but also a significantly greater amount of hydrodynamically entrapped water. Challenging a preadsorbed linear PEO (high molecular weight) layer with PEO star polymers produced no measurable change in the overall polymer surface excess concentration, but changes in the QCM-D energy dissipation and resonance frequency suggested that the introduction of PEO star polymers caused a slight swelling of the layer with a correspondingly small increase in entrapped water content.
Collapse
Affiliation(s)
- Trishna Saigal
- Center for Complex Fluids Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | | | | | | | | | | | | |
Collapse
|
25
|
Lu Y, Zhang X, Fan Z, Du B. Adsorption of PNIPAm110-PEO100-PPO65-PEO100-PNIPAm110 pentablock terpolymer on hydrophobic gold. POLYMER 2012. [DOI: 10.1016/j.polymer.2012.06.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Lee HS, Tsai S, Kuo CC, Bassani AW, Pepe-Mooney B, Miksa D, Masters J, Sullivan R, Composto RJ. Chitosan adsorption on hydroxyapatite and its role in preventing acid erosion. J Colloid Interface Sci 2012; 385:235-43. [PMID: 22840874 DOI: 10.1016/j.jcis.2012.06.074] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 06/23/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
Abstract
Polymer adsorption onto an artificial saliva (AS) layer is investigated using quartz-crystal microbalance with dissipation (QCM-D) and chitosan as the model polymer. QCM-D is utilized in an innovative manner to monitor in situ adsorption of chitosan (CH) onto a hydroxyapatite (HA) coated crystal and to examine the ability of the adsorbed layer to "protect" the HA upon sequential exposure to acidic solutions. After deposition of a thin AS layer (16 nm), the total thickness on the HA substrate increases to 37 nm upon exposure to CH at pH 5.5 for 10 min. Correspondingly, the surface charge changes from negative (i.e., AS) to positive, consistent with the adsorption the polycationic CH onto or into the AS layer. Upon exposure to an oxidizing agent, the chitosan cross-links and collapses as noted by a decrease in thickness to 10 nm and an increase in the shear modulus by an order of magnitude. Atomic force microscopy (AFM) is used to determine the surface morphology and RMS roughness of the coated and HA surfaces after citric acid challenges. Both physisorbed and cross-linked chitosan are demonstrated to limit and prevent the erosion of HA, respectively.
Collapse
Affiliation(s)
- Hyun-Su Lee
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhang Z, Zuo CC, Cao QQ, Li LJ, Gao MF. Adsorption properties of comb-like polymer on nanotube surface. POLYMER SCIENCE SERIES A 2012. [DOI: 10.1134/s0965545x12010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Morsch S, Schofield WCE, Badyal JPS. Tailoring the density of surface-tethered bottlebrushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:14151-14159. [PMID: 22029905 DOI: 10.1021/la201967f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Surface-tethered bottlebrushes have been prepared by ATRP grafting of the macroinitiator brush backbone onto plasmachemical-deposited poly(vinylbenzyl chloride) initiator nanofilms followed by ATRP growth of the side chains (bristles). The surface density of bottlebrushes can be precisely tailored by varying the plasmachemical deposition parameters employed for producing the poly(vinylbenzyl chloride) initiator nanolayers. Lateral force scanning probe microscopy has shown that poly(glycidyl methacrylate)-graft-poly(sodium styrene sulfonate) bottlebrush-decorated surfaces give rise to an enhancement in lubrication.
Collapse
Affiliation(s)
- S Morsch
- Department of Chemistry, Science Laboratories, Durham University, Durham DH1 3LE, England, UK
| | | | | |
Collapse
|
29
|
Bijelic G, Shovsky A, Varga I, Makuska R, Claesson PM. Adsorption characteristics of brush polyelectrolytes on silicon oxynitride revealed by dual polarization interferometry. J Colloid Interface Sci 2010; 348:189-97. [DOI: 10.1016/j.jcis.2010.03.067] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 03/29/2010] [Accepted: 03/31/2010] [Indexed: 11/28/2022]
|
30
|
Claesson P, Makuska R, Varga I, Meszaros R, Titmuss S, Linse P, Pedersen JS, Stubenrauch C. Bottle-brush polymers: adsorption at surfaces and interactions with surfactants. Adv Colloid Interface Sci 2010; 155:50-7. [PMID: 20152957 DOI: 10.1016/j.cis.2010.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 01/11/2010] [Accepted: 01/11/2010] [Indexed: 10/20/2022]
Abstract
Solution and adsorption properties of both charged and uncharged bottle-brush polymers have been investigated. The solution conformation and interactions in solution have been investigated by small-angle scattering techniques. The association of the bottle-brush polymers with anionic surfactants has also been studied. Surfactant binding isotherm measurements, NMR, surface tension measurements, as well as SAXS, SANS and light scattering techniques were utilized for understanding the association behaviour in bulk solutions. The adsorption of the bottle-brush polymers onto oppositely charged surfaces has been explored using a battery of techniques, including reflectometry, ellipsometry, quartz crystal microbalance, and neutron reflectivity. The combination of these techniques allowed determination of adsorbed mass, layer thickness, water content, and structural changes occurring during layer formation. The adsorption onto mica was found to be very different to that on silica, and an explanation for this was sought by employing a lattice mean-field theory. The model was able to reproduce a number of salient experimental features characterizing the adsorption of the bottle-brush polymers over a wide range of compositions, spanning from uncharged bottle-brushes to linear polyelectrolytes. This allowed us to shed light on the importance of electrostatic surface properties and non-electrostatic surface-polymer affinity for the adsorption. The interactions between bottle-brush polymers and anionic surfactants in adsorbed layers have also been elucidated using ellipsometry, neutron reflectivity and surface force measurements.
Collapse
|
31
|
Linse P, Claesson PM. Modeling of Bottle-Brush Polymer Adsorption onto Mica and Silica Surfaces: Effect of Side-Chain Length. Macromolecules 2010. [DOI: 10.1021/ma902577m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Per Linse
- Physical Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Per M. Claesson
- Department of Chemistry, Surface and Corrosion Science, Royal Institute of Technology, SE-100 44 Stockholm, Sweden and Institute for Surface Chemistry, P.O. Box 5607, SE-114 86 Stockholm, Sweden
| |
Collapse
|
32
|
Varga I, Mészáros R, Makuska R, Claesson PM, Gilányi T. Effect of graft density on the nonionic bottle brush polymer/surfactant interaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:11383-11389. [PMID: 19736986 DOI: 10.1021/la901499x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The effect of graft density on the interaction of nonionic bottle brush polymers with an anionic surfactant (sodium dodecyl sulfate) was investigated. The graft density of 45 units long poly(ethylene oxide) (PEO) side chains was varied in a wide range (30, 50, 75, 90, and 100%) on a methacrylate type polymer backbone. The surfactant binding isotherms were determined by the potentiometric method in the presence of 0.1 M sodium bromide. It was found that due to the grafting of the PEO chains to a polymer backbone the surfactant binding becomes significantly suppressed. The amount of bound surfactant at the critical micelle concentration (cmc) decreases almost 2 orders of magnitude compared to the binding on a linear PEO having a similar molecular weight. The binding of the surfactant was found to occur in cooperative fashion, though the critical aggregation concentration (cac) of the binding was found surprisingly small. This result was interpreted in terms of the surfactant aggregation numbers that were found much smaller in the case of the bottle brush polymers than in the case of linear PEOs due to the steric crowding of the grafted PEO chains. To confirm the results of the binding isotherm measurements, steady-state fluorescence probe (pyrene) measurements as well as static and dynamic light scattering measurements were performed.
Collapse
Affiliation(s)
- Imre Varga
- Department of Chemistry, Surface and Corrosion Science, Royal Institute of Technology, Drottning Kristinas vag 51, SE-100 44 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
33
|
Serpe MJ, Whitehead JR, Rivera M, Clark RL, Craig SL. Single-Molecule Force Spectroscopy of DNA-Based Reversible Polymer Bridges: Surface Robustness and Homogeneity. Colloids Surf A Physicochem Eng Asp 2009; 346:20-27. [PMID: 21966095 DOI: 10.1016/j.colsurfa.2009.05.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Single-molecule force spectroscopy, as implemented in an atomic force microscope, provides a rarely-used method by which to monitor dynamic processes that occur near surfaces. Here, a methodology is presented and characterized that facilitates the study of polymer bridging across nanometer-sized gaps. The model system employed is that of DNA-based reversible polymers, and an automated procedure is introduced that allows the AFM tip-surface contact point to be automatically determined, and the distance d between opposing surfaces to be actively controlled. Using this methodology, the importance of several experimental parameters was systematically studied, e.g. the frequency of repeated tip/surface contacts, the area of the substrate surface sampled by the AFM, and the use of multiple AFM tips and substrates. Experiments revealed the surfaces to be robust throughout pulling experiments, so that multiple touches and pulls could be carried out on a single spot with no measurable affect on the results. Differences in observed bridging probabilities were observed, both on different spots on the same surface and, more dramatically, from one day to another. Data normalization via a reference measurement allows data from multiple days to be directly compared.
Collapse
|
34
|
Linse P, Claesson PM. Modeling of Bottle-Brush Polymer Adsorption onto Mica and Silica Surfaces. Macromolecules 2009. [DOI: 10.1021/ma900896y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Per Linse
- Physical Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Per M. Claesson
- Department of Chemistry, Surface and Corrosion Science, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Institute for Surface Chemistry, P.O. Box 5607, SE-114 86 Stockholm, Sweden
| |
Collapse
|
35
|
Guzmán E, Ritacco H, Ortega F, Svitova T, Radke CJ, Rubio RG. Adsorption kinetics and mechanical properties of ultrathin polyelectrolyte multilayers: liquid-supported versus solid-supported films. J Phys Chem B 2009; 113:7128-37. [PMID: 19438276 DOI: 10.1021/jp811178a] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multilayers of sodium salt of poly(4-styrene sulfonate) (PSS) and poly(diallyl dimethyl ammonium) chloride (PDADMAC) have been built layer by layer (LbL) both at the solid/aqueous interface (solid supported) and the air/aqueous interface (liquid supported). For the solid-supported multilayers, the adsorption kinetics and the complex shear modulus were measured using a dissipative quartz crystal microbalance and a null ellipsometer. A bubble tensiometer was used to measure the adsorption kinetics and the elasticity modulus of the liquid-supported multilayers. At the solid/aqueous interface, adsorption kinetics changes with the number of adsorbed layers. However, at the air/aqueous interface, PSS dynamics were the same for all adsorbed layers except the first. Conversely, the adsorption kinetics of PDADMAC at the air/water surface differed between those layers close to the interface and those far from it. Multilayers grow at the air/water interface by an intrinsic-charge-compensation process, whereas, for the same ionic strengths, solid-supported layers deposit by the extrinsic-charge-compensation process. No significant differences were found between the recoverable dilational storage modulus of the liquid-supported multilayers and the real part of the shear modulus of the solid-supported ones built at the same ionic strength. The values of the modulus are in the MPa range, which corresponds to gel-like films. This result is in agreement with the strong hydration degree of the LbL films calculated from ellipsometry measurements.
Collapse
Affiliation(s)
- Eduardo Guzmán
- Departamento de Química Física I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Shovsky A, Varga I, Makuska R, Claesson PM. Formation and stability of water-soluble, molecular polyelectrolyte complexes: effects of charge density, mixing ratio, and polyelectrolyte concentration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:6113-21. [PMID: 19371031 DOI: 10.1021/la804189w] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The formation of complexes with stoichiometric (1:1) as well as nonstoichiometric (2:1) and (1:2) compositions between oppositely charged synthetic polyelectrolytes carrying strong ionic groups and significantly different molecular weights is reported in this contribution. Poly(sodium styrenesulfonate) (NaPSS) was used as polyanion, and a range of copolymers with various molar ratios of the poly(methacryloxyethyltrimethylammonium) chloride, poly(METAC), and the nonionic poly(ethylene oxide) ether methacrylate, poly(PEO45MEMA), were used as polycations. Formation and stability of PECs have been investigated by dynamic and static light scattering (LS), turbidity, and electrophoretic mobility measurements as a function of polyelectrolyte solution concentration, charge density of the cationic polyelectrolyte, and mixing ratio. The data obtained demonstrate that in the absence of PEO45 side chains the 100% charged polymer (polyMETAC) formed insoluble PECs with PSS that precipitate from solution when exact stoichiometry is achieved. In nonstoichiometric complexes (1:2) and (2:1) large colloidally stable aggregates were formed. The presence of even a relatively small amount of PEO45 side chains (25%) in the cationic copolymer was sufficient for preventing precipitation of the formed stoichiometric and nonstoichiometric complexes. These PEC's are sterically stabilized by the PEO45 chains. By further increasing the PEO45 side-chain content (50 and 75%) of the cationic copolymer, small, water-soluble molecular complexes could be formed. The data suggest that PSS molecules and the charged backbone of the cationic brush form a compact core, and with sufficiently high PEO45 chain density (above 25%) molecular complexes are formed that are stable over prolonged times.
Collapse
Affiliation(s)
- Alexander Shovsky
- Department of Chemistry, Surface and Corrosion Science, Royal Institute of Technology, Drottning Kristinas vag 51, SE-100 44 Stockholm, Sweden
| | | | | | | |
Collapse
|