1
|
Tercki D, Orlińska B, Słotwińska D, Sajdak M. Pickering emulsions as an alternative to traditional polymers: trends and applications. REV CHEM ENG 2022. [DOI: 10.1515/revce-2022-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Pickering emulsions have gained increasing interest because of their unique features, including easy preparation and stability. In contrast to classical emulsions, in Pickering emulsions, the stabilisers are solid micro/nanoparticles that accumulate on the surfaces of liquid phases. In addition to their stability, Pickering emulsions are less toxic and responsive to external stimuli, which make them versatile material that can be flexibly designed for specific applications, e.g., catalysis, pharmaceuticals and new materials. The potential toxicity and adverse impact on the environment of classic emulsions is related to the extractable nature of the water emulsifier. The impacts of some emulsifiers are related to not only their chemical natures but also their stabilities; after base or acid hydrolysis, some emulsifiers can be turned into sulphates and fatty alcohols, which are dangerous to aquatic life. In this paper, recent research on Pickering emulsion preparations is reviewed, with a focus on styrene as one of the main emulsion components. Moreover, the effects of the particle type and morphology and the critical parameters of the emulsion production process on emulsion properties and applications are discussed. Furthermore, the current and prospective applications of Pickering emulsion, such as in lithium-ion batteries and new vaccines, are presented.
Collapse
Affiliation(s)
- Dariusz Tercki
- Department of Organic Chemical Technology and Petrochemistry , PhD School, Silesian University of Technology , Akademicka 2a, 44-100 Gliwice , Poland
- Synthos S.A. , ul. Chemików 1, 32-600 Oświęcim , Poland
| | - Beata Orlińska
- Department of Organic Chemical Technology and Petrochemistry , Silesian University of Technology , B. Krzywoustego 4, 44-100 Gliwice , Poland
| | | | - Marcin Sajdak
- Department of Air Protection, Silesian University of Technology , S. Konarskiego 22B, 44-100 Gliwice , Poland
- School of Chemical Engineering, University of Birmingham , Edgbaston , Birmingham B15 2TT , UK
| |
Collapse
|
2
|
Not Just Anticoagulation—New and Old Applications of Heparin. Molecules 2022; 27:molecules27206968. [DOI: 10.3390/molecules27206968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
In recent decades, heparin, as the most important anticoagulant drug, has been widely used in clinical settings to prevent and treat thrombosis in a variety of diseases. However, with in-depth research, the therapeutic potential of heparin is being explored beyond anticoagulation. To date, heparin and its derivatives have been tested in the protection against and repair of inflammatory, antitumor, and cardiovascular diseases. It has also been explored as an antiangiogenic, preventive, and antiviral agent for atherosclerosis. This review focused on the new and old applications of heparin and discussed the potential mechanisms explaining the biological diversity of heparin.
Collapse
|
3
|
Man Y, Xu T, Adhikari B, Zhou C, Wang Y, Wang B. Iron supplementation and iron-fortified foods: a review. Crit Rev Food Sci Nutr 2021; 62:4504-4525. [PMID: 33506686 DOI: 10.1080/10408398.2021.1876623] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
About one-third of the world population is suffering from iron deficiency. Delivery of iron through diet is a practical, economical, and sustainable approach. Clinical studies have shown that the consumption of iron-fortified foods is one of the most effective methods for the prevention of iron deficiency. However, supplementing iron through diet can cause undesirable side-effects. Thus, it is essential to develop new iron-rich ingredients, iron-fortified products with high bioavailability, better stability, and lower cost. It is also essential to develop newer processing technologies for more effective fortification. This review compared the iron supplementation strategies used to treat the highly iron-deficient population and the general public. We also reviewed the efficacy of functional (iron-rich) ingredients that can be incorporated into food materials to produce iron-fortified foods. The most commonly available foods, such as cereals, bakery products, dairy products, beverages, and condiments are still the best vehicles for iron fortification and delivery.Scope of reviewThe manuscript aims at providing a comprehensive review of the latest publications that cover three aspects: administration routes for iron supplementation, iron-rich ingredients used for iron supplementation, and iron-fortified foods.
Collapse
Affiliation(s)
- Yaxing Man
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Tiantian Xu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, PR China
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, Australia
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Yuchuan Wang
- School of Food Engineering, Jiangnan University, Wuxi, PR China
| | - Bo Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
4
|
Antibacterial Collagen Composite Membranes Containing Minocycline. J Pharm Sci 2020; 110:2177-2184. [PMID: 33373607 DOI: 10.1016/j.xphs.2020.12.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
Collagen membranes have been used as bioresorbable barrier membranes in guided tissue/bone regeneration. However, the collagen membranes currently used in clinics lack an active antibacterial function, although infection at surgical sites presents a realistic challenge for guided tissue/bone regeneration. In this study, we successfully prepared novel and advanced collagen composite membranes from collagen and complexes of heparin and chelates of minocycline and Ca2+ ions. These membranes were characterized for chemical structures, morphology, elemental compositions and tensile strength. In vitro release studies were conducted to evaluate the release kinetics of minocycline from these membranes. Agar disk diffusion assays were used to assess their sustained antibacterial capability against model pathogenic bacteria Staphylococcus aureus. The chemical and physical characterization confirmed the successful synthesis of minocycline-loaded collagen composite membranes, namely NCCM-1 and NCCM-2. Both membranes had weaker tensile strength as compared with commercial collagen membranes. They achieved sustained release of minocycline for at least 4 weeks in simulated body fluid (pH 7.4) at 37°C. Moreover, both membranes demonstrated potent sustained antibacterial effects against Staphylococcus aureus. These results suggested that the advanced collagen composite membranes containing minocycline can be exploited as novel guided tissue regeneration membranes or wound dressing by providing additional antibacterial functions.
Collapse
|
5
|
Gu H, Huang Q, Zhang J, Li W, Fu Y. Heparin as a bifunctional biotemplate for Pt nanocluster with exclusively peroxidase mimicking activity at near-neutral pH. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Li J, Wang X, Shen M, Shi X. Polyethylenimine-Assisted Generation of Optical Nanoprobes for Biosensing Applications. ACS APPLIED BIO MATERIALS 2020; 3:3935-3955. [PMID: 35025470 DOI: 10.1021/acsabm.0c00536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Detection of analytes in biological systems is pivotal to explore their physiological roles and provide diagnostic and treatment options for related diseases, which however remains a great challenge. Optical nanoprobes that exhibit absorption or fluorescence signal changes in response to the targets of interest have emerged as a versatile class of biosensors in the field. Polyethylenimine (PEI) with abundant amine groups plays indispensable roles in the construction of optical nanoprobes and mediating the sensing processes. After interaction with analytes, PEI-based optical nanoprobes can be induced to form aggregates, be disassembled or separated into individual units, or undergo structure/component alterations. As such, the optical properties of these nanoprobes have corresponding changes, allowing for sensitive and selective detection of a wide variety of analytes in biological environment. Up to now, detections of reactive oxygen species, pH, metal ions, biothiols, neurotransmitters, therapeutic agents, oxygen levels, enzyme activities, and virus/bacteria have been successfully demonstrated using PEI-based optical nanoprobes. Herein, we summarize the recent developments of PEI-based optical nanoprobes for biosensing applications and highlight the probe designs and sensing mechanisms. The existing challenges and prospects regarding biosensing applications of PEI-based optical nanoprobes are also briefly discussed.
Collapse
Affiliation(s)
- Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiaoying Wang
- Xuhui District Center for Disease Control and Prevention, Shanghai 200237, China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.,CQM-Centro de Quimica da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
7
|
Wu L, Lu X, Morrow BR, Li F, Hong L. Synthesis and Evaluation of Chitosan‐Heparin‐Minocycline Composite Membranes for Potential Antibacterial Applications. STARCH-STARKE 2020. [DOI: 10.1002/star.201900254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Linfeng Wu
- College of DentistryUniversity of Tennessee Health Science Center Memphis TN 38163 USA
| | - Xiao Lu
- College of DentistryUniversity of Tennessee Health Science Center Memphis TN 38163 USA
- Department of PsychologyUniversity of Toronto 100 St. George Street, Sidney Smith Hall Toronto ON M5S 3G3 Canada
| | - Brian R. Morrow
- College of DentistryUniversity of Tennessee Health Science Center Memphis TN 38163 USA
| | - Feng Li
- Harrison School of PharmacyAuburn University Auburn AL 36849 USA
| | - Liang Hong
- College of DentistryUniversity of Tennessee Health Science Center Memphis TN 38163 USA
| |
Collapse
|
8
|
Noble Metal Nanoparticles-Based Colorimetric Biosensor for Visual Quantification: A Mini Review. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7040053] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nobel metal can be used to form a category of nanoparticles, termed noble metal nanoparticles (NMNPs), which are inert (resistant to oxidation/corrosion) and have unique physical and optical properties. NMNPs, particularly gold and silver nanoparticles (AuNPs and AgNPs), are highly accurate and sensitive visual biosensors for the analytical detection of a wide range of inorganic and organic compounds. The interaction between noble metal nanoparticles (NMNPs) and inorganic/organic molecules produces colorimetric shifts that enable the accurate and sensitive detection of toxins, heavy metal ions, nucleic acids, lipids, proteins, antibodies, and other molecules. Hydrogen bonding, electrostatic interactions, and steric effects of inorganic/organic molecules with NMNPs surface can react or displacing capping agents, inducing crosslinking and non-crosslinking, broadening, or shifting local surface plasmon resonance absorption. NMNPs-based biosensors have been widely applied to a series of simple, rapid, and low-cost diagnostic products using colorimetric readout or simple visual assessment. In this mini review, we introduce the concepts and properties of NMNPs with chemical reduction synthesis, tunable optical property, and surface modification technique that benefit the development of NMNPs-based colorimetric biosensors, especially for the visual quantification. The “aggregation strategy” based detection principle of NMNPs colorimetric biosensors with the mechanism of crosslinking and non-crosslinking have been discussed, particularly, the critical coagulation concentration-based salt titration methodology have been exhibited by derived equations to explain non-crosslinking strategy be applied to NMNPs based visual quantification. Among the broad categories of NMNPs based biosensor detection analyses, we typically focused on four types of molecules (melamine, single/double strand DNA, mercury ions, and proteins) with discussion from the standpoint of the interaction between NMNPs surface with molecules, and DNA engineered NMNPs-based biosensor applications. Taken together, NMNPs-based colorimetric biosensors have the potential to serve as a simple yet reliable technique to enable visual quantification.
Collapse
|
9
|
Abstract
Heparin is one of the oldest drugs, which nevertheless remains in widespread clinical use as an inhibitor of blood coagulation. The history of its identification a century ago unfolded amid one of the most fascinating scientific controversies turning around the distribution of credit for its discovery. The composition, purification and structure-function relationship of this naturally occurring glycosaminoglycan regarding its classical role as anticoagulant will be dealt with before proceeding to discuss its therapeutic potential in, among other, inflammatory and infectious disease, cancer treatment, cystic fibrosis and Alzheimer's disease. The first bibliographic reference hit using the words 'nanomedicine' and 'heparin' is as recent as 2008. Since then, nanomedical applications of heparin have experienced an exponential growth that will be discussed in detail, with particular emphasis on its antimalarial activity. Some of the most intriguing potential applications of heparin nanomedicines will be exposed, such as those contemplating the delivery of drugs to the mosquito stages of malaria parasites.
Collapse
Affiliation(s)
| | - Elena Lantero
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, ES-08028 Barcelona, Spain.,Barcelona Institute for Global Health (ISGlobal), Barcelona Center for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, ES-08028 Barcelona, Spain.,Barcelona Institute for Global Health (ISGlobal), Barcelona Center for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain.,Nanoscience & Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, ES-08028 Barcelona, Spain
| |
Collapse
|
10
|
Li J, Jiang C, Lang X, Kong M, Cheng X, Liu Y, Feng C, Chen X. Multilayer sodium alginate beads with porous core containing chitosan based nanoparticles for oral delivery of anticancer drug. Int J Biol Macromol 2016; 85:1-8. [DOI: 10.1016/j.ijbiomac.2015.12.064] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/14/2015] [Accepted: 12/19/2015] [Indexed: 10/22/2022]
|
11
|
Feng S, Li X, Ma F, Liu R, Fu G, Xing S, Yue X. Prussian blue functionalized microcapsules for effective removal of cesium in a water environment. RSC Adv 2016. [DOI: 10.1039/c6ra01450j] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, a novel non-toxic and effective adsorbent, Prussian blue functionalized microcapsules (PB-MCs) was first developed for the highly efficient removal of cesium ions by flotation separation from aqueous solutions.
Collapse
Affiliation(s)
- Shanshan Feng
- State Key Laboratory of Urban Water Resources and Environment
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin
- People's Republic of China
| | - Xiaoda Li
- State Key Laboratory of Urban Water Resources and Environment
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin
- People's Republic of China
| | - Fang Ma
- State Key Laboratory of Urban Water Resources and Environment
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin
- People's Republic of China
| | - Renfa Liu
- Department of Biomedical Engineering
- College of Engineering
- Peking University
- Beijing 100871
- People's Republic of China
| | - Guanglei Fu
- State Key Laboratory of Urban Water Resources and Environment
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin
- People's Republic of China
| | - Sen Xing
- State Key Laboratory of Urban Water Resources and Environment
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin
- People's Republic of China
| | - Xiuli Yue
- State Key Laboratory of Urban Water Resources and Environment
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin
- People's Republic of China
| |
Collapse
|
12
|
Sankaranarayanan K. Studies on pH-Controlled Transition of Myoglobin Capsules from Hollow to Multilayered Structures. ADSORPT SCI TECHNOL 2015. [DOI: 10.1260/0263-6174.33.9.759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Kamatchi Sankaranarayanan
- DST-INSPIRE Faculty, Department of Energy and Environment, National Institute of Technology, Tiruchirappalli 620015, India
| |
Collapse
|
13
|
|
14
|
Feng C, Song R, Sun G, Kong M, Bao Z, Li Y, Cheng X, Cha D, Park H, Chen X. Immobilization of Coacervate Microcapsules in Multilayer Sodium Alginate Beads for Efficient Oral Anticancer Drug Delivery. Biomacromolecules 2014; 15:985-96. [DOI: 10.1021/bm401890x] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Chao Feng
- College
of Marine Life Science, Ocean University of China, Yushan Road, Qingdao 266003, Shandong Province, People’s Republic of China
| | - Ruixi Song
- College
of Marine Life Science, Ocean University of China, Yushan Road, Qingdao 266003, Shandong Province, People’s Republic of China
| | - Guohui Sun
- College
of Marine Life Science, Ocean University of China, Yushan Road, Qingdao 266003, Shandong Province, People’s Republic of China
| | - Ming Kong
- College
of Marine Life Science, Ocean University of China, Yushan Road, Qingdao 266003, Shandong Province, People’s Republic of China
| | - Zixian Bao
- College
of Marine Life Science, Ocean University of China, Yushan Road, Qingdao 266003, Shandong Province, People’s Republic of China
| | - Yang Li
- College
of Marine Life Science, Ocean University of China, Yushan Road, Qingdao 266003, Shandong Province, People’s Republic of China
| | - Xiaojie Cheng
- College
of Marine Life Science, Ocean University of China, Yushan Road, Qingdao 266003, Shandong Province, People’s Republic of China
| | - Dongsu Cha
- Graduate
School Biotechnology, Korea University, 1,5-Ka, Anam-Dong, Sungbuk-Ku, Seoul 136-701, South Korea
| | - Hyunjin Park
- Graduate
School Biotechnology, Korea University, 1,5-Ka, Anam-Dong, Sungbuk-Ku, Seoul 136-701, South Korea
| | - Xiguang Chen
- College
of Marine Life Science, Ocean University of China, Yushan Road, Qingdao 266003, Shandong Province, People’s Republic of China
| |
Collapse
|
15
|
Zheng C, Zhang XG, Sun L, Zhang ZP, Li CX. Biodegradable and redox-responsive chitosan/poly(L-aspartic acid) submicron capsules for transmucosal delivery of proteins and peptides. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:931-939. [PMID: 23386208 DOI: 10.1007/s10856-013-4863-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 01/18/2013] [Indexed: 06/01/2023]
Abstract
The development of peptides and proteins is hampered by their rapid clearance in liver and other body tissues by proteolytic enzymes, so these drugs are difficult to administer except for the injection. Here, we designed and fabricated a novel biodegradable and redox-responsive submicron capsules through the layer-by-layer technique with poly(L-aspartic acid) and chitosan for transmucosal delivery of proteins and peptides. TEM graphs reveal that the intact submicron capsules were obtained and the shell of submicron capsules was about 40 nm. The mucoadhesion test indicates that the adsorption amount of the mucin could achieve up to 96.2 μg per 2 mg. The cell viability test shows that all types of submicron capsules had good cytocompatibility and the cell viability was above 90 %. As a drug model, the insulin could be loaded in the submicron capsules, and the loading efficiency was about 5 %. The release amount of insulin could be regulated by the levels of GSH. Therefore, the mucoadhesive submicron capsules as vehicles have a potential for the mucosal delivery (e.g. nasal and buccal) of therapeutic peptide and protein drugs.
Collapse
Affiliation(s)
- C Zheng
- The Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, Nankai University, Tianjin, China
| | | | | | | | | |
Collapse
|
16
|
Wen S, Zheng F, Shen M, Shi X. Synthesis of polyethyleneimine-stabilized gold nanoparticles for colorimetric sensing of heparin. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2012.11.052] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Feofanova MA, Frantseva YV, Lapshin SV. Complexation in the heparin-metal ion system. RUSS J COORD CHEM+ 2012. [DOI: 10.1134/s1070328412040033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Tong W, Song X, Gao C. Layer-by-layer assembly of microcapsules and their biomedical applications. Chem Soc Rev 2012; 41:6103-24. [DOI: 10.1039/c2cs35088b] [Citation(s) in RCA: 357] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Fang A, Cathala B. Smart swelling biopolymer microparticles by a microfluidic approach: Synthesis, in situ encapsulation and controlled release. Colloids Surf B Biointerfaces 2011; 82:81-6. [DOI: 10.1016/j.colsurfb.2010.08.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 08/12/2010] [Accepted: 08/13/2010] [Indexed: 11/29/2022]
|
20
|
Skirtach AG, Yashchenok AM, Möhwald H. Encapsulation, release and applications of LbL polyelectrolyte multilayer capsules. Chem Commun (Camb) 2011; 47:12736-46. [DOI: 10.1039/c1cc13453a] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
del Mercato LL, Rivera-Gil P, Abbasi AZ, Ochs M, Ganas C, Zins I, Sönnichsen C, Parak WJ. LbL multilayer capsules: recent progress and future outlook for their use in life sciences. NANOSCALE 2010; 2:458-467. [PMID: 20644746 DOI: 10.1039/b9nr00341j] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In this review we provide an overview of the recent progress in designing composite polymer capsules based on the Layer-by-Layer (LbL) technology demonstrated so far in material science, focusing on their potential applications in medicine, drug delivery and catalysis. The benefits and limits of current systems are discussed and the perspectives on emerging strategies for designing novel classes of therapeutic vehicles are highlighted.
Collapse
Affiliation(s)
- Loretta L del Mercato
- Fachbereich Physik and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps Universität Marburg, Renthof 7, 35037, Marburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ma Y, Liu M, Yue X, Zha Z, Dai Z. Improved biocompatibility of thrombo-resistant iron-polysaccharides multilayer coatings on nitinols. Int J Biol Macromol 2009; 46:109-14. [PMID: 19896498 DOI: 10.1016/j.ijbiomac.2009.10.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Accepted: 10/29/2009] [Indexed: 10/20/2022]
Abstract
Biocompatibility of two multilayer coatings of (Fe3+/Hep)10 and (Fe3+/DS/Fe3+/Hep)5 was comparatively analyzed with respect to protein adsorption, leukocyte adhesion and cell-material interaction. Both of them showed significantly high albumin-to-fibrinogen adsorption ratio, suggesting good biocompatibility. Furthermore, the (Fe3+/DS/Fe3+/Hep)5 coating was found to exhibit the lowest non-specific protein adsorption due to the incorporation of dextran sulfate. Compared with uncoated Nitinol surfaces, iron-polysaccharide multilayer coating presented no deformation of leukocytes, indicating no signs of inflammatory reactions. Cell growth, cell adhesion and cell metabolic activity were all in good condition, verifying both (Fe3+/Hep)10 and (Fe3+/DS/Fe3+/Hep)5 coatings had good cytocompatibility. Therefore, iron-polysaccharides multilayer coatings had greatly improved the biocompatibility of Nitinols.
Collapse
Affiliation(s)
- Yan Ma
- Nanobiotechnology Division, State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Sciences, Harbin Institute of Technology, Harbin 15001, China
| | | | | | | | | |
Collapse
|
23
|
Magnetic polymer enhanced hybrid capsules prepared from a novel Pickering emulsion polymerization and their application in controlled drug release. Colloids Surf A Physicochem Eng Asp 2009. [DOI: 10.1016/j.colsurfa.2009.08.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Khapli S, Kim JR, Montclare JK, Levicky R, Porfiri M, Sofou S. Frozen cyclohexane-in-water emulsion as a sacrificial template for the synthesis of multilayered polyelectrolyte microcapsules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:9728-9733. [PMID: 19507842 DOI: 10.1021/la901020j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This paper reports the application of frozen cyclohexane-in-water emulsions as sacrificial templates for the fabrication of hollow microcapsules through layer-by-layer assembly of polyelectrolytes, poly(styrenesulfonate sodium salt), and poly(allylamine hydrochloride). Extraction of the cyclohexane phase from frozen emulsions stabilized with 11 polyelectrolyte layers by compatibilization with 30% v/v ethanol leads to the formation of water-filled microcapsules while preserving the spherical geometry. The majority of microcapsules (>90%) are prepared with intact polyelectrolyte membranes as measured by their deformation induced by osmotic pressure. This work provides a new route for the synthesis of hollow multilayered microcapsules under mild operating conditions.
Collapse
Affiliation(s)
- Sachin Khapli
- Center for Co-operative Bioactive Systems, Polytechnic Institute of New York University (NYU-POLY), 6 Metrotech Center, Brooklyn, New York 11201, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Li S, Ma Y, Yue X, Cao Z, Dai Z. One-pot construction of doxorubicin conjugated magnetic silica nanoparticles. NEW J CHEM 2009. [DOI: 10.1039/b9nj00342h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|