1
|
Kurka DW, Niehues M, Ravoo BJ. Self-Assembly of Colloidal Molecules Based on Host-Guest Chemistry and Geometric Constraints. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3924-3931. [PMID: 32182073 DOI: 10.1021/acs.langmuir.9b03891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The preparation of colloidal molecules (CMs), that is, clusters of colloids with a defined aggregation number and configuration, is of continued and significant interest in colloid chemistry and materials science and numerous interactions have been utilized to drive their (self-)assembly. However, only very few reports are available on the assembly of CMs based on host-guest chemistry. In this paper, we investigate the assembly of like-charged silica particles into well-defined, core-satellite ABn-type CMs in water, mediated by host-guest interactions and geometric constraints. Exploiting the inherent dynamics of noncovalent attraction and making use of a soft polymer shell to enhance multivalent host-guest interactions, we successfully synthesized AB3, AB4, and AB6 CMs by selecting the appropriate size ratio of satellite to core particles.
Collapse
Affiliation(s)
- Dustin W Kurka
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Maximilian Niehues
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
2
|
Nakamura Y, Okachi M, Toyotama A, Okuzono T, Yamanaka J. Controlled Clustering in Binary Charged Colloids by Adsorption of Ionic Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:13303-11. [PMID: 26583431 DOI: 10.1021/acs.langmuir.5b02778] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We report on the controlled clustering of oppositely charged colloidal particles by the adsorption of ionic surfactants, which tunes charge numbers Z of particles. In particular, we studied the heteroclustering of submicron-sized polystyrene (PS) and silica particles, both of which are negatively charged, in the presence of cetylpyridinium chloride (CPC), a cationic surfactant. The surfactant concentration Csurf was selected below the critical micelle concentration. As CPC molecules were adsorbed, Z values of the PS and silica particles decreased, inverting to positive when Csurf exceeded the isoelectric point Ciep. Hydrophobic PS particles exhibited much lower Ciep than hydrophilic silica particles. At Csurf valuess between their Ciep values, the particles were oppositely charged, and clustering was enabled. To explain the clustering behavior, we investigated adsorption isotherms of the CPC and screened-Coulomb-type pair potential. Expected applications of the present findings are the control of colloidal associations and construction of various particle types into heterogeneous colloidal clusters.
Collapse
Affiliation(s)
- Yuki Nakamura
- Graduate School of Pharmaceutical Sciences, Nagoya City University , 3-1 Tanabe, Mizuho, Nagoya, Aichi 467-8603, Japan
| | - Manami Okachi
- Graduate School of Pharmaceutical Sciences, Nagoya City University , 3-1 Tanabe, Mizuho, Nagoya, Aichi 467-8603, Japan
| | - Akiko Toyotama
- Graduate School of Pharmaceutical Sciences, Nagoya City University , 3-1 Tanabe, Mizuho, Nagoya, Aichi 467-8603, Japan
| | - Tohru Okuzono
- Graduate School of Pharmaceutical Sciences, Nagoya City University , 3-1 Tanabe, Mizuho, Nagoya, Aichi 467-8603, Japan
| | - Junpei Yamanaka
- Graduate School of Pharmaceutical Sciences, Nagoya City University , 3-1 Tanabe, Mizuho, Nagoya, Aichi 467-8603, Japan
| |
Collapse
|
4
|
Pozzi D, Marchini C, Cardarelli F, Amenitsch H, Garulli C, Bifone A, Caracciolo G. Transfection efficiency boost of cholesterol-containing lipoplexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2335-43. [DOI: 10.1016/j.bbamem.2012.05.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 05/08/2012] [Accepted: 05/14/2012] [Indexed: 10/28/2022]
|
5
|
Chronopoulou L, Cutonilli A, Cametti C, Dentini M, Palocci C. PLGA-based nanoparticles: effect of chitosan in the aggregate stabilization. A dielectric relaxation spectroscopy study. Colloids Surf B Biointerfaces 2012; 97:117-23. [PMID: 22609591 DOI: 10.1016/j.colsurfb.2012.04.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/10/2012] [Accepted: 04/12/2012] [Indexed: 11/18/2022]
Abstract
Chitosan-modified polylactic-co-glycolic acid (PLGA) nanoparticles with average diameter of 200 nm in PBS buffer solution have been investigated by means of dielectric relaxation spectroscopy measurements in the frequency range (1 MHz-2 GHz) where interfacial polarizations occur. PLGA-based nanoparticles offer remarkable advantages in different biotechnological fields, such as their biocompatibility, easiness of administration and rather complete biodegradation. However, despite the use of these drug delivery systems is increasing, little is known about the basic process involved in the formation of complexes and in the subsequent release kinetics. In the present work, we have characterized the colloidal behavior of PLGA-based nanoparticles in the presence of oppositely charged chitosan polyelectrolyte by means of dynamic light scattering, electrophoretic mobility and radiowave dielectric relaxation measurements. In particular, we have emphasized how the presence of a coating layer at the nanoparticle surface could exert a marked slowing-down in the drug release. The consequence of this finding is briefly discussed at the light of some biological implications.
Collapse
Affiliation(s)
- L Chronopoulou
- Department of Chemistry, University of Rome La Sapienza, Rome, Italy
| | | | | | | | | |
Collapse
|
6
|
Chen Y, Bothun GD. Cationic gel-phase liposomes with "decorated" anionic SPIO nanoparticles: morphology, colloidal, and bilayer properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:8645-8652. [PMID: 21649441 DOI: 10.1021/la2011138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The assembly and complexation of oppositely charged colloids are important phenomena in many natural and synthetic processes. Liposome-nanoparticle assemblies (LNAs) represent an interesting hybrid system that combines "soft" and "hard" colloidal materials. This work describes the formation and characterization of gel-phase LNAs formed by the binding of anionic superparamagnetic iron oxide (SPIO) nanoparticles to cationic dipalmitoylphosphatidylcholine (DPPC)/dipalmitoyltrimethylammonium propane (DPTAP) liposomes. Particles were examined with hydrodynamic diameters below (16 nm) and above (30 nm) the cutoff reported for supported lipid bilayer formation. LNA formation with 16 nm particles was entropically driven and particles bound individually to yield "decorated" structures. In this case, increasing nanoparticle concentration yielded colloidal LNA aggregates and eventual charge inversion. In contrast, LNA formation with 30 nm particles was enthalpically driven, and the nanoparticles aggregated at the bilayer interface. These aggregates led to significant LNA aggregation and large bilayer sheets due to liposome rupture despite minimal charge screening of the liposome surface. In this case SLBs were present, but these structures were not dominant. Differences in LNA structure were also revealed through the lipid phase transition behavior. This work infers size-dependent nanoparticle binding and LNA formation mechanisms that can be used to tailor colloidal and bilayer properties. Analogies are made to polyelectrolyte patch charge heterogeneities and DNA complexation with cationic liposomes.
Collapse
Affiliation(s)
- Yanjing Chen
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | | |
Collapse
|
7
|
Caracciolo G, Pozzi D, Capriotti AL, Marianecci C, Carafa M, Marchini C, Montani M, Amici A, Amenitsch H, Digman MA, Gratton E, Sanchez SS, Laganà A. Factors Determining the Superior Performance of Lipid/DNA/Protammine Nanoparticles over Lipoplexes. J Med Chem 2011; 54:4160-71. [DOI: 10.1021/jm200237p] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Giulio Caracciolo
- Department of Molecular Medicine, “Sapienza” University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Daniela Pozzi
- Department of Molecular Medicine, “Sapienza” University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Anna Laura Capriotti
- Department of Chemistry, “Sapienza” University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Carlotta Marianecci
- Department of Drug Chemistry and Technologies, Faculty of Pharmacy, “Sapienza” University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Maria Carafa
- Department of Drug Chemistry and Technologies, Faculty of Pharmacy, “Sapienza” University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Cristina Marchini
- Department of Bioscience and Biotechnology, University of Camerino, Via Gentile III da Varano, 62032 Camerino (MC), Italy
| | - Maura Montani
- Department of Bioscience and Biotechnology, University of Camerino, Via Gentile III da Varano, 62032 Camerino (MC), Italy
| | - Augusto Amici
- Department of Bioscience and Biotechnology, University of Camerino, Via Gentile III da Varano, 62032 Camerino (MC), Italy
| | - Heinz Amenitsch
- Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, Schmiedelstrasse 6, A-8042 Graz, Austria
| | - Michelle A. Digman
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, 3120 Natural Sciences 2, Irvine, California 92697-2715, United States
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, 3120 Natural Sciences 2, Irvine, California 92697-2715, United States
| | - Susana S. Sanchez
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, 3120 Natural Sciences 2, Irvine, California 92697-2715, United States
- Microscopy and Dynamic Imaging Unit, Centro Nacional de Investigaciones Cardiovasculares, Fundación CNIC-Carlos III, Madrid, Spain
| | - Aldo Laganà
- Department of Chemistry, “Sapienza” University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
8
|
Amenitsch H, Caracciolo G, Foglia P, Fuscoletti V, Giansanti P, Marianecci C, Pozzi D, Laganà A. Existence of hybrid structures in cationic liposome/DNA complexes revealed by their interaction with plasma proteins. Colloids Surf B Biointerfaces 2011; 82:141-6. [DOI: 10.1016/j.colsurfb.2010.08.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 08/19/2010] [Accepted: 08/19/2010] [Indexed: 11/30/2022]
|