1
|
Tsemperouli M, Amstad E, Sakai N, Matile S, Sugihara K. Black Lipid Membranes: Challenges in Simultaneous Quantitative Characterization by Electrophysiology and Fluorescence Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8748-8757. [PMID: 31244250 DOI: 10.1021/acs.langmuir.9b00673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Horizontal black lipid membranes (BLMs) enable optical microscopy to be combined with the electrophysiological measurements for studying ion channels, peptide pores, and ionophores. However, a careful literature review reveals that simultaneous fluorescence and electrical recordings in horizontal BLMs have been rarely reported for an unclear reason, whereas many works employ bright-field microscopy instead of fluorescence microscopy or perform fluorescence imaging and electrical measurements one after another separately without truly exploiting the advantage of the combined setup. In this work, the major causes related to the simultaneous electrical and fluorescence recordings in horizontal BLMs are identified, and several solutions to counteract the issue are also proposed.
Collapse
Affiliation(s)
- Maria Tsemperouli
- School of Chemistry and Biochemistry , University of Geneva , CH-1211 Geneva , Switzerland
| | - Esther Amstad
- Institute of Materials , Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne , Switzerland
| | - Naomi Sakai
- School of Chemistry and Biochemistry , University of Geneva , CH-1211 Geneva , Switzerland
| | - Stefan Matile
- School of Chemistry and Biochemistry , University of Geneva , CH-1211 Geneva , Switzerland
| | - Kaori Sugihara
- School of Chemistry and Biochemistry , University of Geneva , CH-1211 Geneva , Switzerland
| |
Collapse
|
2
|
Tan L, Pratt LR, Chaudhari MI. Molecular-Scale Description of SPAN80 Desorption from a Squalane-Water Interface. J Phys Chem B 2018; 122:3378-3383. [PMID: 29215284 DOI: 10.1021/acs.jpcb.7b10336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Extensive all-atom molecular dynamics calculations on the water-squalane interface for nine different loadings with sorbitan monooleate (SPAN80), at T = 300 K, are analyzed for the surface tension equation of state, desorption free-energy profiles as they depend on loading, and to evaluate escape times for adsorbed SPAN80 into the bulk phases. These results suggest that loading only weakly affects accommodation of a SPAN80 molecule by this squalane-water interface. Specifically, the surface tension equation of state is simple through the range of high tension to high loading studied, and the desorption free-energy profiles are weakly dependent on loading here. The perpendicular motion of the centroid of the SPAN80 headgroup ring is well-described by a diffusional model near the minimum of the desorption free-energy profile. Lateral diffusional motion is weakly dependent on loading. Escape times evaluated on the basis of a diffusional model and the desorption free energies are 7 × 10-2 s (into the squalane) and 3 × 102 h (into the water). The latter value is consistent with desorption times of related lab-scale experimental work.
Collapse
Affiliation(s)
- L Tan
- Department of Chemical and Biomolecular Engineering , Tulane University , New Orleans , Louisiana 70118 , United States
| | - L R Pratt
- Department of Chemical and Biomolecular Engineering , Tulane University , New Orleans , Louisiana 70118 , United States
| | - M I Chaudhari
- Center for Biological and Engineering Sciences , Sandia National Laboratories , Albuquerque , New Mexico 87185 , United States
| |
Collapse
|
3
|
Abstract
Emulsions are metastable dispersions. Their lifetimes are directly related to the dynamics of surfactants. We design a microfluidic method to measure the kinetics of adsorption of surfactants to the droplet interface, a key process involved in foaming, emulsification, and droplet coarsening. The method is based on the pH decay in the droplet as a direct measurement of the adsorption of a carboxylic acid surfactant to the interface. From the kinetic measurement of the bulk equilibration of the pH, we fully determine the adsorption process of the surfactant. The small droplet size and the convection during the droplet flow ensure that the transport of surfactant through the bulk is not limiting the kinetics of adsorption. To validate our measurements, we show that the adsorption process determines the timescale required to stabilize droplets against coalescence, and we show that the interface should be covered at more than [Formula: see text] to prevent coalescence. We therefore quantitatively link the process of adsorption/desorption, the stabilization of emulsions, and the kinetics of solute partitioning-here through ion exchange-unraveling the timescales governing these processes. Our method can be further generalized to other surfactants, including nonionic surfactants, by making use of fluorophore-surfactant interactions.
Collapse
|
4
|
Huang X, Liu H, Shang S, Cai Z, Song J. The equilibrium and dynamic surface tension of polymeric surfactants based on epoxidized soybean oil grafted hydroxyethyl cellulose. RSC Adv 2016. [DOI: 10.1039/c6ra09769c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Analysis of the equilibrium and dynamic surface tension of epoxidized soybean oil grafted hydroxyethyl cellulose (H-ESO-HEC) surfactants with different molecular weights were carried out at pH values that ranged from 8 to 13.
Collapse
Affiliation(s)
- Xujuan Huang
- Institute of Chemical Industry of Forestry Products
- Chinese Academy of Forestry
- Key Laboratory of Biomass Energy and Material
- National Engineering Laboratory for Biomass Chemical Utilization
- Key and Laboratory on Forest Chemical Engineering
| | - He Liu
- Institute of Chemical Industry of Forestry Products
- Chinese Academy of Forestry
- Key Laboratory of Biomass Energy and Material
- National Engineering Laboratory for Biomass Chemical Utilization
- Key and Laboratory on Forest Chemical Engineering
| | - Shibin Shang
- Institute of Chemical Industry of Forestry Products
- Chinese Academy of Forestry
- Key Laboratory of Biomass Energy and Material
- National Engineering Laboratory for Biomass Chemical Utilization
- Key and Laboratory on Forest Chemical Engineering
| | - Zhaosheng Cai
- School of Chemical and Biological Engineering
- Yancheng Institute of Technology
- Yancheng 224051
- China
| | - Jie Song
- Department of Chemistry and Biochemistry
- University of Michigan-Flint
- Flint
- USA
| |
Collapse
|
5
|
Venkatesan GA, Lee J, Farimani AB, Heiranian M, Collier CP, Aluru NR, Sarles SA. Adsorption Kinetics Dictate Monolayer Self-Assembly for Both Lipid-In and Lipid-Out Approaches to Droplet Interface Bilayer Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:12883-12893. [PMID: 26556227 DOI: 10.1021/acs.langmuir.5b02293] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The droplet interface bilayer (DIB)--a method to assemble planar lipid bilayer membranes between lipid-coated aqueous droplets--has gained popularity among researchers in many fields. Well-packed lipid monolayer on aqueous droplet-oil interfaces is a prerequisite for successfully assembling DIBs. Such monolayers can be achieved by two different techniques: "lipid-in", in which phospholipids in the form of liposomes are placed in water, and "lipid-out", in which phospholipids are placed in oil as inverse micelles. While both approaches are capable of monolayer assembly needed for bilayer formation, droplet pairs assembled with these two techniques require significantly different incubation periods and exhibit different success rates for bilayer formation. In this study, we combine experimental interfacial tension measurements with molecular dynamics simulations of phospholipids (DPhPC and DOPC) assembled from water and oil origins to understand the differences in kinetics of monolayer formation. With the results from simulations and by using a simplified model to analyze dynamic interfacial tensions, we conclude that, at high lipid concentrations common to DIBs, monolayer formation is simple adsorption controlled for lipid-in technique, whereas it is predominantly adsorption-barrier controlled for the lipid-out technique due to the interaction of interface-bound lipids with lipid structures in the subsurface. The adsorption barrier established in lipid-out technique leads to a prolonged incubation time and lower bilayer formation success rate, proving a good correlation between interfacial tension measurements and bilayer formation. We also clarify that advective flow expedites monolayer formation and improves bilayer formation success rate by disrupting lipid structures, rather than enhancing diffusion, in the subsurface and at the interface for lipid-out technique. Additionally, electrical properties of DIBs formed with varying lipid placement and type are characterized.
Collapse
Affiliation(s)
- Guru A Venkatesan
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Joonho Lee
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Amir Barati Farimani
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Mohammad Heiranian
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - C Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Narayana R Aluru
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Stephen A Sarles
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee , Knoxville, Tennessee 37996, United States
| |
Collapse
|
6
|
Brosseau Q, Vrignon J, Baret JC. Microfluidic Dynamic Interfacial Tensiometry (μDIT). SOFT MATTER 2014; 10:3066-76. [PMID: 24695668 DOI: 10.1039/c3sm52543k] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We designed, developed and characterized a microfluidic method for the measurement of surfactant adsorption kinetics via interfacial tensiometry on a microfluidic chip. The principle of the measurement is based on the deformability of droplets as a response to hydrodynamic forcing through a series of microfluidic expansions. We focus our analysis on one perfluoro surfactant molecule of practical interest for droplet-based microfluidic applications. We show that although the adsorption kinetics is much faster than the kinetics of the corresponding pendant drop experiment, our droplet-based microfluidic system has a sufficient time resolution to obtain quantitative measurement at the sub-second time-scale on nanoliter droplet volumes, leading to both a gain by a factor of ∼10 in time resolution and a downscaling of the measurement volumes by a factor of ∼1000 compared to standard techniques. Our approach provides new insight into the adsorption of surfactant molecules at liquid-liquid interfaces in a confined environment, relevant to emulsification, encapsulation and foaming, and the ability to measure adsorption and desorption rate constants.
Collapse
Affiliation(s)
- Quentin Brosseau
- Max-Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany.
| | | | | |
Collapse
|
7
|
Rafati A, Boussahel A, Shakesheff K, Shard A, Roberts C, Chen X, Scurr D, Rigby-Singleton S, Whiteside P, Alexander M, Davies M. Chemical and spatial analysis of protein loaded PLGA microspheres for drug delivery applications. J Control Release 2012; 162:321-9. [DOI: 10.1016/j.jconrel.2012.05.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 04/25/2012] [Accepted: 05/01/2012] [Indexed: 11/28/2022]
|
8
|
Yunfei H, Yazhuo S, Honglai L, Dominique L, Anniina S. Surfactant adsorption onto interfaces: measuring the surface excess in time. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:3146-51. [PMID: 22248009 DOI: 10.1021/la2047454] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We propose a direct method to measure the equilibrium and dynamic surface properties of surfactant solutions with very low critical micellar concentrations (CMC) using a pendant drop tensiometer. We studied solutions of the nonionic surfactant hexaethylene glycol monododecyl ether (C(12)E(6)) and of the ionic surfactant hexadecyl trimethyl ammonium bromide (CTAB) with concentrated sodium bromide (NaBr). The variation of the surface tension as a function of surface concentration is obtained easily without the need for complex models and compares well with the result obtained using the Gibbs adsorption equation. The time-dependent surface concentration of each surfactant was also measured, and the adsorption process was found to be diffusion-controlled. The diffusion coefficients of the two surfactants can be extracted from the data and were found in very good agreement with literature values, further validating the method.
Collapse
Affiliation(s)
- He Yunfei
- Laboratoire de Physique de Solides, UMR 8502 Université Paris Sud, 91405 Orsay cedex, France
| | | | | | | | | |
Collapse
|
9
|
Stocco A, Carriere D, Cottat M, Langevin D. Interfacial behavior of catanionic surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:10663-10669. [PMID: 20518493 DOI: 10.1021/la100954v] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We report a dramatic increase in foam stability for catanionic mixtures (myristic acid and cetyl trimethylammonium bromide, CTABr) with respect to that of CTABr solutions. This increase was related to the low surface tension, high surface concentration, and high viscoelastic compression moduli, as measured with rising bubble experiments and ellipsometry. Dialysis of the catanionic mixtures has been used to decrease the concentration of free surfactant ions (CTA(+)). The equilibrium surface tension is reached faster for nondialyzed samples because of the presence of these free ions. As a consequence, the foamability of the dialyzed solutions is lower. Foam coarsening has been studied using multiple light scattering: it is similar for dialyzed and nondialyzed samples and much slower than for pure CTABr foams.
Collapse
Affiliation(s)
- Antonio Stocco
- Laboratoire de Physique des Solides, Université Paris-Sud, UMR CNRS 8502, 91405 Orsay Cedex, France
| | | | | | | |
Collapse
|