1
|
Wiwatowski K, Sulowska K, Mackowski S. Single-Molecule Fluorescence Probes Interactions between Photoactive Protein-Silver Nanowire Conjugate and Monolayer Graphene. Int J Mol Sci 2024; 25:4873. [PMID: 38732092 PMCID: PMC11084953 DOI: 10.3390/ijms25094873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
In this work, we apply single-molecule fluorescence microscopy and spectroscopy to probe plasmon-enhanced fluorescence and Förster resonance energy transfer in a nanoscale assemblies. The structure where the interplay between these two processes was present consists of photoactive proteins conjugated with silver nanowires and deposited on a monolayer graphene. By comparing the results of continuous-wave and time-resolved fluorescence microscopy acquired for this structure with those obtained for the reference samples, where proteins were coupled with either a graphene monolayer or silver nanowires, we find clear indications of the interplay between plasmonic enhancement and the energy transfer to graphene. Namely, fluorescence intensities calculated for the structure, where proteins were coupled to graphene only, are less than for the structure playing the central role in this study, containing both silver nanowires and graphene. Conversely, decay times extracted for the latter are shorter compared to a protein-silver nanowire conjugate, pointing towards emergence of the energy transfer. Overall, the results show that monitoring the optical properties of single emitters in a precisely designed hybrid nanostructure provides an elegant way to probe even complex combination of interactions at the nanoscale.
Collapse
Affiliation(s)
- Kamil Wiwatowski
- Nanophotonics Group, Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland; (K.W.); (K.S.)
| | - Karolina Sulowska
- Nanophotonics Group, Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland; (K.W.); (K.S.)
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Sebastian Mackowski
- Nanophotonics Group, Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland; (K.W.); (K.S.)
| |
Collapse
|
2
|
Liu K, Qiao Z, Gao C. Preventing the Galvanic Replacement Reaction toward Unconventional Bimetallic Core-Shell Nanostructures. Molecules 2023; 28:5720. [PMID: 37570689 PMCID: PMC10419990 DOI: 10.3390/molecules28155720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/08/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
A bimetallic core-shell nanostructure is a versatile platform for achieving intriguing optical and catalytic properties. For a long time, this core-shell nanostructure has been limited to ones with noble metal cores. Otherwise, a galvanic replacement reaction easily occurs, leading to hollow nanostructures or completely disintegrated ones. In the past few years, great efforts have been devoted to preventing the galvanic replacement reaction, thus creating an unconventional class of core-shell nanostructures, each containing a less-stable-metal core and a noble metal shell. These new nanostructures have been demonstrated to show unique optical and catalytic properties. In this work, we first briefly summarize the strategies for synthesizing this type of unconventional core-shell nanostructures, such as the delicately designed thermodynamic control and kinetic control methods. Then, we discuss the effects of the core-shell nanostructure on the stabilization of the core nanocrystals and the emerging optical and catalytic properties. The use of the nanostructure for creating hollow/porous nanostructures is also discussed. At the end of this review, we discuss the remaining challenges associated with this unique core-shell nanostructure and provide our perspectives on the future development of the field.
Collapse
Affiliation(s)
| | | | - Chuanbo Gao
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China; (K.L.); (Z.Q.)
| |
Collapse
|
3
|
Antimicrobial Active Bioplastics Using Triangular Silver Nanoplate Integrated Polycaprolactone and Polylactic Acid Films. MATERIALS 2021; 14:ma14051132. [PMID: 33670834 PMCID: PMC7957712 DOI: 10.3390/ma14051132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 11/17/2022]
Abstract
An innovative antimicrobial technology for plastic surfaces is presented. We report the synthesis and scale-up of triangular silver nanoplates (TSNPs) and their integration into polycaprolactone (PCL) and polylactic acid (PLA) polymers through a solvent-casting technique. The TSNPs have a high geometric aspect ratio and strong local surface plasmon resonance (LSPR) response, which provides an effective tool for monitoring their integrity during processing and integration with the biodegradable plastics. An aqueous-based seed-mediated chemical method was used to synthesize the TSNPs, and characterisation was carried out using TEM and UV (Ultraviolet)-VIS (Visible) spectroscopy to measure LSPR profiles. The UV-VIS spectra of silver seeds and TSNPs exhibited characteristic peaks at 395 and 600 nm respectively. Synthesized TSNPs were coated with thiol-terminated polyethylene glycol (SH-PEG) and transferred into chloroform in order to effect compatibility with PCL and PLA. TSNP/PCL and TSNP/PLA composite films were prepared by solvent casting. The morphological structure, thermal, mechanical, and antimicrobial properties of the TSNP-incorporated composite films were evaluated. Results showed the TSNP-treated films had a rougher surface than the bare films. Insignificant changes in the thermal properties of TSNP-treated films compared to bare ones were also observed, which indicated the thermal stability of the composite films. The tensile strength and antimicrobial properties of the composite films were increased after TSNP incorporation. TSNP/PCL and TSNP/PLA films exhibited improved antimicrobial activity against Escherichia coli and Staphylococcus aureus with antimicrobial effect (AE) values ranging between 0.10 and 0.35. The obtained results and demonstrated TSNP production scalability validate the TSNP treated PCL and PLA films as a composite material with desirable antimicrobial effect for wide-ranging surface applications.
Collapse
|
4
|
Ha Pham TT, Vu XH, Dien ND, Trang TT, Van Truong N, Thanh TD, Tan PM, Ca NX. The structural transition of bimetallic Ag-Au from core/shell to alloy and SERS application. RSC Adv 2020; 10:24577-24594. [PMID: 35516184 PMCID: PMC9055174 DOI: 10.1039/d0ra04132g] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
It is well-known that Ag-Au bimetallic nanoplates have attracted significant research interest due to their unique plasmonic properties and surface-enhanced Raman scattering (SERS). In recent years, there have been many studies on the fabrication of bimetallic nanostructures. However, controlling the shape, size, and structure of bimetallic nanostructures still has many challenges. In this work, we present the results of the synthesis of silver nanoplates (Ag NPls), and Ag-Au bimetallic core/shell and alloy nanostructures, using seed-mediated growth under green LED excitation and a gold salt (HAuCl4) as a precursor of gold. The results show that the optical properties and crystal structure strongly depend on the amount of added gold salt. Interestingly, when the amount of gold(x) in the sample was less than 0.6 μmol (x < 0.6 μmol), the structural nature of Ag-Au was core/shell, in contrast x > 0.6 μmol gave the alloy structure. The morphology of the obtained nanostructures was investigated using the field emission scanning electron microscopy (FESEM) technique. The UV-Vis extinction spectra of Ag-Au nanostructures showed localized surface plasmon resonance (LSPR) bands in the spectral range of 402-627 nm which changed from two peaks to one peak as the amount of gold increased. Ag-Au core/shell and alloy nanostructures were utilized as surface enhanced Raman scattering (SERS) substrates to detect methylene blue (MB) (10-7 M concentration). Our experimental observations indicated that the highest enhancement factor (EF) of about 1.2 × 107 was obtained with Ag-Au alloy. Our detailed investigations revealed that the Ag-Au alloy exhibited significant EF compared to pure metal Ag and Ag-Au core/shell nanostructures. Moreover, the analysis of the data revealed a linear dependence between the logarithm of concentration (log C) and the logarithm of SERS signal intensity (log I) in the range of 10-7-10-4 M with a correlation coefficient (R 2) of 0.994. This research helps us understand better the SERS mechanism and the application of Raman spectroscopy on a bimetallic surface.
Collapse
Affiliation(s)
- Thi Thu Ha Pham
- Faculty of Chemistry, TNU-University of Sciences Tan Thinh ward Thai Nguyen city Vietnam
| | - Xuan Hoa Vu
- Faculty of Physics, TNU-University of Sciences Tan Thinh ward Thai Nguyen city Vietnam
| | - Nguyen Dac Dien
- Faculty of Labour Protection, Vietnam Trade Union University 169 Tay Son street Hanoi city Vietnam
| | - Tran Thu Trang
- Faculty of Physics, TNU-University of Sciences Tan Thinh ward Thai Nguyen city Vietnam
| | - Nguyen Van Truong
- Faculty of Fundamental Sciences, Thai Nguyen University of Technology 666 3/2 road Thai Nguyen city Vietnam
| | - Tran Dang Thanh
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi Vietnam
| | - Pham Minh Tan
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
| | - Nguyen Xuan Ca
- Faculty of Physics, TNU-University of Sciences Tan Thinh ward Thai Nguyen city Vietnam
| |
Collapse
|
5
|
Porous SiO2-coated Au-Ag alloy nanoparticles for the alkyne-mediated ratiometric Raman imaging analysis of hydrogen peroxide in live cells. Anal Chim Acta 2019; 1057:1-10. [DOI: 10.1016/j.aca.2018.12.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/22/2018] [Accepted: 12/27/2018] [Indexed: 11/23/2022]
|
6
|
Zhang KJ, Lu DB, Da B, Ding ZJ. Coupling of Surface Plasmon Modes and Refractive Index Sensitivity of Hollow Silver Nanoprism. Sci Rep 2018; 8:15993. [PMID: 30375478 PMCID: PMC6207745 DOI: 10.1038/s41598-018-34477-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/16/2018] [Indexed: 11/28/2022] Open
Abstract
Localized surface plasmon (LSP) modes depend strongly on the morphology of nanoparticle and the surrounding dielectric medium. The hollow nanostructure provides a new way to modulate the surface plasmon modes due to the additional cavity surface. In this work, we study systematically the multipolar surface plasmon modes of hollow silver nanoprism (HSN) by simulation of electron energy loss spectroscopy (EELS) spectra based on the boundary element method (BEM). Herein the effects of the cavity size and position are taken into account. The LSP modes of HSNs are compared with those of perfect silver nanoprism (SN). The red-shift behaviors of multipolar modes can be found as increasing the cavity size. Modes A and C have similar red-shift tendency and obey the plasmon ruler equation, which can be explained by dipole-dipole coupling mode. Meanwhile, the degenerate modes will be split by changing the cavity position, and opposite shift tendencies of split degenerate states are observed. These are caused by different coupling nature of degenerate modes. Moreover, high refractive index sensitivity (RIS) can be obtained for HSN by changing the cavity size and position.
Collapse
Affiliation(s)
- K J Zhang
- Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences; Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - D B Lu
- Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences; Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - B Da
- Center for Materials Research by Information Integration, Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan.
| | - Z J Ding
- Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences; Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| |
Collapse
|
7
|
Espinosa A, Curcio A, Cabana S, Radtke G, Bugnet M, Kolosnjaj-Tabi J, Péchoux C, Alvarez-Lorenzo C, Botton GA, Silva AKA, Abou-Hassan A, Wilhelm C. Intracellular Biodegradation of Ag Nanoparticles, Storage in Ferritin, and Protection by a Au Shell for Enhanced Photothermal Therapy. ACS NANO 2018; 12:6523-6535. [PMID: 29906096 DOI: 10.1021/acsnano.8b00482] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Despite their highly efficient plasmonic properties, gold nanoparticles are currently preferred to silver nanoparticles for biomedical applications such as photothermal therapy due to their high chemical stability in the biological environment. To confer protection while preserving their plasmonic properties, we allied the advantages of both materials and produced hybrid nanoparticles made of an anisotropic silver nanoplate core coated with a frame of gold. The efficiency of these hybrid nanoparticles (Ag@AuNPs) in photothermia was compared to monometallic silver nanoplates (AgNPs) or gold nanostars (AuNPs). The structural and functional properties of AuNPs, AgNPs, and Ag@AuNPs were investigated in environments of increasing complexity, in water suspensions, in cells, and in tumors in vivo. While AgNPs showed the greatest heating efficiency in suspension (followed by Ag@AuNPs and AuNPs), this trend was reversed intracellularly within a tissue-mimetic model. In this setup, AgNPs failed to provide consistent photothermal conversion over time, due to structural damage induced by the intracellular environment. Remarkably, the degraded Ag was found to be stored within the iron-storage ferritin protein. By contrast, the Au shell provided the Ag@AuNPs with total Ag biopersistence. As a result, photothermal therapy was successful with Ag@AuNPs in vivo in a mouse tumor model, providing the ultimate proof on Au shell's capability to shield the Ag core from the harsh biological environment and preserve its excellent heating properties.
Collapse
Affiliation(s)
- Ana Espinosa
- Laboratoire Matière et Systèmes Complexes, UMR 7057 , CNRS and University Paris Diderot , 75205 Paris Cedex 13, France
| | - Alberto Curcio
- Laboratoire Matière et Systèmes Complexes, UMR 7057 , CNRS and University Paris Diderot , 75205 Paris Cedex 13, France
- Sorbonne Université, CNRS, PHysico-chimie des Electrolytes et Nanosystèmes InterfaciauX, PHENIX , F-75005 Paris , France
| | - Sonia Cabana
- Laboratoire Matière et Systèmes Complexes, UMR 7057 , CNRS and University Paris Diderot , 75205 Paris Cedex 13, France
- Sorbonne Université, CNRS, PHysico-chimie des Electrolytes et Nanosystèmes InterfaciauX, PHENIX , F-75005 Paris , France
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS) , Universidade de Santiago de Compostela , 15872 Santiago de Compostela , Spain
| | - Guillaume Radtke
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC) , UMR 7590, CNRS, UPMC , 4 Place Jussieu , 75005 Paris , France
| | - Matthieu Bugnet
- Department of Materials Science and Engineering and Canadian Centre for Electron Microscopy , McMaster University , 1280 Main Street West , Hamilton , ON , Canada L8S 4M1
| | - Jelena Kolosnjaj-Tabi
- Laboratoire Matière et Systèmes Complexes, UMR 7057 , CNRS and University Paris Diderot , 75205 Paris Cedex 13, France
| | - Christine Péchoux
- INRA, UMR 1313 GABI, MIMA2-Plateau de Microscopie Electronique , 78352 Jouy-en-Josas , France
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS) , Universidade de Santiago de Compostela , 15872 Santiago de Compostela , Spain
| | - Gianluigi A Botton
- Department of Materials Science and Engineering and Canadian Centre for Electron Microscopy , McMaster University , 1280 Main Street West , Hamilton , ON , Canada L8S 4M1
| | - Amanda K A Silva
- Laboratoire Matière et Systèmes Complexes, UMR 7057 , CNRS and University Paris Diderot , 75205 Paris Cedex 13, France
| | - Ali Abou-Hassan
- Sorbonne Université, CNRS, PHysico-chimie des Electrolytes et Nanosystèmes InterfaciauX, PHENIX , F-75005 Paris , France
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes, UMR 7057 , CNRS and University Paris Diderot , 75205 Paris Cedex 13, France
| |
Collapse
|
8
|
Si Y, Bai Y, Qin X, Li J, Zhong W, Xiao Z, Li J, Yin Y. Alkyne–DNA-Functionalized Alloyed Au/Ag Nanospheres for Ratiometric Surface-Enhanced Raman Scattering Imaging Assay of Endonuclease Activity in Live Cells. Anal Chem 2018; 90:3898-3905. [DOI: 10.1021/acs.analchem.7b04735] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yanmei Si
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha 410082, China
| | - Yaocai Bai
- Department of Chemistry, University of California—Riverside, Riverside, California 92521, United States
| | - Xiaojie Qin
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha 410082, China
| | - Jun Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha 410082, China
| | - Wenwan Zhong
- Department of Chemistry, University of California—Riverside, Riverside, California 92521, United States
| | - Zhijun Xiao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha 410082, China
| | - Jishan Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha 410082, China
| | - Yadong Yin
- Department of Chemistry, University of California—Riverside, Riverside, California 92521, United States
| |
Collapse
|
9
|
Gangishetty MK, Scott RWJ, Kelly TL. Thermal degradation mechanism of triangular Ag@SiO2 nanoparticles. Dalton Trans 2018; 45:9827-34. [PMID: 26875498 DOI: 10.1039/c6dt00169f] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Triangular silver nanoparticles are promising materials for light harvesting applications because of their strong plasmon bands; these absorption bands are highly tunable, and can be varied over the entire visible range based on the particle size. A general concern with these materials is that they are unstable at elevated temperatures. When thermally annealed, they suffer from changes to the particle morphology, which in turn affects their optical properties. Because of this stability issue, these materials cannot be used in applications requiring elevated temperatures. In order to address this problem, it is important to first understand the degradation mechanism. Here, we measure the changes in particle morphology, oxidation state, and coordination environment of Ag@SiO2 nanotriangles caused by thermal annealing. UV-vis spectroscopy and TEM reveal that upon annealing the Ag@SiO2 nanotriangles in air, the triangular cores are truncated and smaller nanoparticles are formed. Ag K-edge X-ray absorption spectroscopy (XANES and EXAFS) shows that the small particles consist of Ag(0), and that there is a decrease in the Ag-Ag coordination number with an increase in the annealing temperature. We hypothesize that upon annealing Ag in air, it is first oxidized to AgxO, after which it subsequently decomposes back to well-dispersed Ag(0) nanoparticles. In contrast, when the Ag@SiO2 nanotriangles are annealed in N2, since there is no possibility of oxidation, no small particles are formed. Instead, the triangular core rearranges to form a disc-like shape.
Collapse
Affiliation(s)
- Mahesh K Gangishetty
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada.
| | - Robert W J Scott
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada.
| | - Timothy L Kelly
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada.
| |
Collapse
|
10
|
|
11
|
Jiji SG, Gopchandran KG. Au-Ag hollow nanostructures with tunable SERS properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 171:499-506. [PMID: 27591701 DOI: 10.1016/j.saa.2016.08.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 08/09/2016] [Accepted: 08/14/2016] [Indexed: 06/06/2023]
Abstract
Fabrication of hollow Au-Ag nanoparticles is done by the sequential action of galvanic replacement and Kirkendall effect. Polyol synthesized silver nanoparticles were used as templates and the size of cavities is controlled by the systematic addition of the HAuCl4. Au-Ag nanoparticles carved in different depths were tested for application as substrates for surface enhanced Raman scattering. Two medically important Raman active analytes-Nile blue chloride and Crystal violet were used in the surface enhanced Raman scattering (SERS) performance analysis. A systematic study has been made on the Raman enhancement of hollow nanoparticles fabricated with different cavity dimensions and compared with that of the silver templates used. The enhancement observed for these hollow substrates with cavities is of interest since Au protected hollow nanostructures are vital and an active area of interest in drug delivery systems.
Collapse
Affiliation(s)
- S G Jiji
- Department of Optoelectronics, University of Kerala, Thiruvananthapuram 695581, India
| | - K G Gopchandran
- Department of Optoelectronics, University of Kerala, Thiruvananthapuram 695581, India.
| |
Collapse
|
12
|
Jeong S, Lee D, Kim JK, Jang DJ. A colloidal system of polythiophene-grafted edge-gold-coated silver nanoprisms with enhanced optical properties and stability. NEW J CHEM 2017. [DOI: 10.1039/c6nj02868c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
P3HT has been grafted to edge-gold-coated silver nanoprisms to have feasible-process ability, enhanced optical properties, and high stability.
Collapse
Affiliation(s)
- Sugyeong Jeong
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Korea
| | - Dongki Lee
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Korea
| | - Joon Ki Kim
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Korea
| | - Du-Jeon Jang
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Korea
| |
Collapse
|
13
|
Kumar-Krishnan S, Estevez-González M, Pérez R, Esparza R, Meyyappan M. A general seed-mediated approach to the synthesis of AgM (M = Au, Pt, and Pd) core–shell nanoplates and their SERS properties. RSC Adv 2017. [DOI: 10.1039/c7ra04301e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Graphical abstract describing a general pH-dependent synthetic steps for the preparation of AgM (Au, Pt and Pd) triangular core–shell nanoplates and hollow nanoframes.
Collapse
Affiliation(s)
- Siva Kumar-Krishnan
- Centro de Física Aplicada y Tecnología Avanzada
- Universidad Nacional Autónoma de México
- Santiago de Querétaro
- Mexico
| | - M. Estevez-González
- Centro de Física Aplicada y Tecnología Avanzada
- Universidad Nacional Autónoma de México
- Santiago de Querétaro
- Mexico
| | - Ramiro Pérez
- Centro de Física Aplicada y Tecnología Avanzada
- Universidad Nacional Autónoma de México
- Santiago de Querétaro
- Mexico
| | - Rodrigo Esparza
- Centro de Física Aplicada y Tecnología Avanzada
- Universidad Nacional Autónoma de México
- Santiago de Querétaro
- Mexico
| | - M. Meyyappan
- Center for Nanotechnology
- NASA Ames Research Center
- Mountain View
- USA
| |
Collapse
|
14
|
|
15
|
Soares L, Csáki A, Jatschka J, Fritzsche W, Flores O, Franco R, Pereira E. Localized surface plasmon resonance (LSPR) biosensing using gold nanotriangles: detection of DNA hybridization events at room temperature. Analyst 2015; 139:4964-73. [PMID: 25084161 DOI: 10.1039/c4an00810c] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We present a proof-of-concept of the application of gold nanotriangles in sequence specific DNA detection, using localized surface plasmon resonance (LSPR) spectroscopy and dark-field optical microscopy. The sensing platform comprises gold nanotriangles immobilized on a glass chip and oligonucleotides as probes. Probe formation and testing complementary and non-complementary targets followed common chip technology protocols. Gold nanotriangles showed a remarkable sensitivity of 468 nm per RIU and allowed detection of 20-mer targets. When the target sequence was part of a 50-mer synthetic DNA oligonucleotide, LSPR shifts as high as 35 nm were observed. Conversely, when the target was present in PCR products of ca. 350 bp, obtained from clinical samples, LSPR shifts larger than 20 nm were observed. Moreover, LSPR shifts were less than ±1 nm for the respective non-complementary targets. These results with gold nanotriangles as sensors are a notable improvement to the LSPR shifts of less than 5 nm usually obtained for spherical gold nanoparticles of comparable sizes. Optimal conditions for the detection of synthetic and PCR product targets using gold nanotriangles and oligonucleotide probes were achieved with low percentages of intercalating thioalkanes; target hybridization at room temperature, 3 hours of incubation, and 2× SSC buffer stringency conditions.
Collapse
Affiliation(s)
- Leonor Soares
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | | | | | | | | | | | | |
Collapse
|
16
|
Chen A, Cheng H, Qin B, Xu Y, Li R, Tai Z. Rapid Determination of Chloride Using Silver Triangular Nanoplates. ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1025276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Lee KE, Hesketh AV, Kelly TL. Chemical stability and degradation mechanisms of triangular Ag, Ag@Au, and Au nanoprisms. Phys Chem Chem Phys 2015; 16:12407-14. [PMID: 24827005 DOI: 10.1039/c4cp00954a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Anisotropic metal nanoparticles have found use in a variety of plasmonic applications because of the large near-field enhancements associated with them; however, the very features that give rise to these enhancements (e.g., sharply curved edges and tips) often have high surface energies and are easily degraded. This paper describes the stability and degradation mechanisms of triangular silver, gold-coated silver, and gold nanoprisms upon exposure to a wide variety of adverse conditions, including halide ions, thiols, amines and elevated temperatures. The silver nanoprisms were immediately and irreversibly degraded under all of the conditions studied. In contrast, the core-shell Ag@Au nanoprisms were less susceptible to etching by chlorides and bromides, but were rapidly degraded by iodides, amines and thiols by a different degradation pathway. Only the pure gold nanoprisms were stable to all of the conditions tested. These results have important implications for the suitability of triangular nanoprisms in many applications; this is particularly true in biological or environmental fields, where the nanoparticles would inevitably be exposed to a wide variety of chemical stimuli.
Collapse
Affiliation(s)
- Kee Eun Lee
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada.
| | | | | |
Collapse
|
18
|
Kausar ASMZ, Reza AW, Latef TA, Ullah MH, Karim ME. Optical nano antennas: state of the art, scope and challenges as a biosensor along with human exposure to nano-toxicology. SENSORS (BASEL, SWITZERLAND) 2015; 15:8787-831. [PMID: 25884787 PMCID: PMC4431286 DOI: 10.3390/s150408787] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/19/2015] [Accepted: 02/02/2015] [Indexed: 01/25/2023]
Abstract
The concept of optical antennas in physical optics is still evolving. Like the antennas used in the radio frequency (RF) regime, the aspiration of optical antennas is to localize the free propagating radiation energy, and vice versa. For this purpose, optical antennas utilize the distinctive properties of metal nanostructures, which are strong plasmonic coupling elements at the optical regime. The concept of optical antennas is being advanced technologically and they are projected to be substitute devices for detection in the millimeter, infrared, and visible regimes. At present, their potential benefits in light detection, which include polarization dependency, tunability, and quick response times have been successfully demonstrated. Optical antennas also can be seen as directionally responsive elements for point detectors. This review provides an overview of the historical background of the topic, along with the basic concepts and parameters of optical antennas. One of the major parts of this review covers the use of optical antennas in biosensing, presenting biosensing applications with a broad description using different types of data. We have also mentioned the basic challenges in the path of the universal use of optical biosensors, where we have also discussed some legal matters.
Collapse
Affiliation(s)
| | - Ahmed Wasif Reza
- Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Tarik Abdul Latef
- Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Mohammad Habib Ullah
- Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | | |
Collapse
|
19
|
Brennan-Fournet ME, Huerta M, Zhang Y, Malliaras G, Owens RM. Detection of fibronectin conformational changes in the extracellular matrix of live cells using plasmonic nanoplates. J Mater Chem B 2015; 3:9140-9147. [PMID: 32263128 DOI: 10.1039/c5tb02060c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoplates enable high sensitive spectral monitoring of fibronectin conformational transitions and fibril formation within the extracellular matrix of live cells.
Collapse
Affiliation(s)
| | - Miriam Huerta
- Ecole Nationale Supérieure des Mines
- CMP-EMSE
- Centre Microélectronique de Provence
- 13541 Gardanne
- France
| | - Yi Zhang
- Ecole Nationale Supérieure des Mines
- CMP-EMSE
- Centre Microélectronique de Provence
- 13541 Gardanne
- France
| | - George Malliaras
- Ecole Nationale Supérieure des Mines
- CMP-EMSE
- Centre Microélectronique de Provence
- 13541 Gardanne
- France
| | - Roisin M. Owens
- Ecole Nationale Supérieure des Mines
- CMP-EMSE
- Centre Microélectronique de Provence
- 13541 Gardanne
- France
| |
Collapse
|
20
|
Liu Y, Pedireddy S, Lee YH, Hegde RS, Tjiu WW, Cui Y, Ling XY. Precision synthesis: designing hot spots over hot spots via selective gold deposition on silver octahedra edges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:4940-4950. [PMID: 25048617 DOI: 10.1002/smll.201401242] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/13/2014] [Indexed: 06/03/2023]
Abstract
A major challenge in plasmonic hot spot fabrication is to efficiently increase the hot spot volumes on single metal nanoparticles to generate stronger signals in plasmon-enhanced applications. Here, the synthesis of designer nanoparticles, where plasmonic-active Au nanodots are selectively deposited onto the edge/tip hot spot regions of Ag nanoparticles, is demonstrated using a two-step seed-mediated precision synthesis approach. Such a "hot spots over hot spots" strategy leads to an efficient enhancement of the plasmonic hot spot volumes on single Ag nanoparticles. Through cathodoluminescence hyperspectral imaging of these selective edge gold-deposited Ag octahedron (SEGSO), the increase in the areas and emission intensities of hot spots on Ag octahedra are directly visualized after Au deposition. Single-particle surface-enhanced Raman scattering (SERS) measurements demonstrate 10-fold and 3-fold larger SERS enhancement factors of the SEGSO as compared to pure Ag octahedra and non-selective gold-deposited Ag octahedra (NSEGSO), respectively. The experimental results corroborate well with theoretical simulations, where the local electromagnetic field enhancement of our SEGSO particles is 15-fold and 1.3-fold stronger than pure Ag octahedra and facet-deposited particles, respectively. The growth mechanisms of such designer nanoparticles are also discussed together with a demonstration of the versatility of this synthetic protocol.
Collapse
Affiliation(s)
- Yejing Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371
| | | | | | | | | | | | | |
Collapse
|
21
|
Gangishetty MK, Scott RWJ, Kelly TL. Panchromatic enhancement of light-harvesting efficiency in dye-sensitized solar cells using thermally annealed Au@SiO₂ triangular nanoprisms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:14352-14359. [PMID: 25369560 DOI: 10.1021/la503878m] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Plasmonic enhancement is an attractive method for improving the efficiency of dye-sensitized solar cells (DSSCs). Plasmonic materials with sharp features, such as triangular metal nanoparticles, show stronger plasmonic effects than their spherical analogues; however, these nanoparticles are also often thermally unstable. In this work, we investigated the thermal stability of Au@SiO2 triangular nanoprisms by annealing at different temperatures. Morphological changes were observed at temperatures greater than 250 °C, which resulted in a blue shift of the localized surface plasmon resonance (LSPR). Annealing at 450 °C led to a further blue shift; however, this resulted in better overlap of the LSPR with the absorption spectrum of black dye. By introducing 0.05% (w/w) Au@SiO2 nanoprisms into DSSCs, we were able to achieve a panchromatic enhancement of the light-harvesting efficiency. This led to a 15% increase in the power conversion efficiency from 3.9 ± 0.6% to 4.4 ± 0.4%.
Collapse
Affiliation(s)
- Mahesh K Gangishetty
- Department of Chemistry, University of Saskatchewan , 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | | | | |
Collapse
|
22
|
Shaganov II, Perova TS, Mukhina MV, Martynenko IV, Baranov AV, Fedorov AV, Gerard V, Gun'ko YK. Influence of intermolecular interactions on spectroscopic characteristics of metal nanoparticles and their composites. Phys Chem Chem Phys 2014; 16:24536-48. [PMID: 25310112 DOI: 10.1039/c4cp03639e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper we investigate the possibility to apply the concepts of non-specific intermolecular interactions and dispersive local field effect approach for study of the influence of interactions of metal nanoparticles with matrix molecules on the spectral characteristics of composites. The effect of intermolecular (interparticle) interactions and the influence of the dielectric environment on the peak position of the plasmon resonance band of colloidal solutions and thin films formed from noble metal nanostructures is determined. Simulated and experimental absorption spectra obtained for a colloidal solution of silver and gold nanoparticles, of various shapes and sizes in water and glycerol, are in good agreement.
Collapse
Affiliation(s)
- Igor I Shaganov
- Vavilov State Optical Institute, 199034, St.-Petersburg, Russia
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Xu L, Luo Z, Fan Z, Zhang X, Tan C, Li H, Zhang H, Xue C. Triangular Ag-Pd alloy nanoprisms: rational synthesis with high-efficiency for electrocatalytic oxygen reduction. NANOSCALE 2014; 6:11738-11743. [PMID: 25155648 DOI: 10.1039/c4nr03600j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report the generation of triangular Ag-Pd alloy nanoprisms through a rationally designed synthetic strategy based on silver nanoprisms as sacrificial templates. The galvanic replacement between Ag nanoprisms and H2PdCl4 along with co-reduction of Ag(+)/Pd(2+) is responsible for the formation of final prismatic Ag-Pd alloy nanostructures. Significantly, these Ag-Pd alloy nanoprisms exhibited superior electrocatalytic activity for the oxygen reduction reaction (ORR) as compared with the commercial Pd/C catalyst. Such a high catalytic activity is attributed to not only the alloyed Ag-Pd composition but also the dominant {111} facets of the triangular Ag-Pd nanoprisms. This work demonstrates the rational design of bimetallic alloy nanostructures with control of selective crystal facets that are critical to achieve high catalytic activity for fuel cell systems.
Collapse
Affiliation(s)
- Lin Xu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Sun J, Wang X, Liu J, Wan P, Liao Q, Wang F, Luo L, Sun X. Highly stable Ag–Au nanoplates and nanoframes for two-photon luminescence. RSC Adv 2014. [DOI: 10.1039/c4ra06514j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
25
|
Gao C, Hu Y, Wang M, Chi M, Yin Y. Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au. J Am Chem Soc 2014; 136:7474-9. [PMID: 24821567 DOI: 10.1021/ja502890c] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report that fully alloyed Ag/Au nanospheres with high compositional homogeneity ensured by annealing at elevated temperatures show large extinction cross sections, extremely narrow bandwidths, and remarkable stability in harsh chemical environments. Nanostructures of Ag are known to have much stronger surface plasmon resonance than Au, but their applications in many areas have been very limited by their poor chemical stability against nonideal chemical environments. Here we address this issue by producing fully alloyed Ag/Au nanospheres through a surface-protected annealing process. A critical temperature has been found to be around 930 °C, below which the resulting alloy nanospheres, although significantly more stable than pure silver nanoparticles, can still gradually decay upon extended exposure to a harsh etchant. Nanospheres annealed above the critical temperature show a homogeneous distribution of Ag and Au, minimal crystallographic defects, and the absence of structural and compositional interfaces, which account for the extremely narrow bandwidths of the surface plasmon resonance and may enable many plasmonic applications with high performance and long lifetime, especially for those involving corrosive species.
Collapse
Affiliation(s)
- Chuanbo Gao
- Center for Materials Chemistry, Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an, Shaanxi 710054, China
| | | | | | | | | |
Collapse
|
26
|
Crespo J, Ibarra A, López-de-Luzuriaga JM, Monge M, Olmos ME. Synthesis and Plasmonic Properties of Core-Shell Bimetallic Silver-Gold Nanoprisms Obtained through an Organometallic Route. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201400023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Preparation of saline-stable, silica-coated triangular silver nanoplates of use for optical sensing. J Colloid Interface Sci 2014; 415:77-84. [DOI: 10.1016/j.jcis.2013.10.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 10/02/2013] [Accepted: 10/07/2013] [Indexed: 11/21/2022]
|
28
|
Zhang Y, Charles DE, Ledwith DM, Aherne D, Cunningham S, Voisin M, Blau WJ, Gun'ko YK, Kelly JM, Brennan-Fournet ME. Wash-free highly sensitive detection of C-reactive protein using gold derivatised triangular silver nanoplates. RSC Adv 2014. [DOI: 10.1039/c4ra04958f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rapid, wash-free highly sensitive detection of C-reactive protein is reported using nanoplate biosensor sols.
Collapse
Affiliation(s)
- Yi Zhang
- School of Physics
- National University of Ireland
- Galway, Ireland
| | | | | | - Damian Aherne
- School of Chemistry
- Trinity College Dublin
- Dublin 2, Ireland
| | | | - Muriel Voisin
- School of Physics
- National University of Ireland
- Galway, Ireland
| | - Werner J. Blau
- School of Physics
- Trinity College Dublin
- Dublin 2, Ireland
| | | | - John M. Kelly
- School of Chemistry
- Trinity College Dublin
- Dublin 2, Ireland
| | - Margaret E. Brennan-Fournet
- School of Physics
- National University of Ireland
- Galway, Ireland
- Department of Bioelectronics
- Ecole Nationale Superieure des Mines
| |
Collapse
|
29
|
A colorimetric method for highly sensitive and accurate detection of iodide by finding the critical color in a color change process using silver triangular nanoplates. Anal Chim Acta 2013; 798:74-81. [DOI: 10.1016/j.aca.2013.08.037] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 11/20/2022]
|
30
|
Wan D, Xia X, Wang Y, Xia Y. Robust synthesis of gold cubic nanoframes through a combination of galvanic replacement, gold deposition, and silver dealloying. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:3111-3117. [PMID: 23457090 DOI: 10.1002/smll.201203233] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Indexed: 06/01/2023]
Abstract
A facile, robust approach to the synthesis of Au cubic nanoframes is described. The synthesis involves three major steps: 1) preparation of Au-Ag alloyed nanocages using a galvanic replacement reaction between Ag nanocubes and HAuCl4 ; 2) deposition of thin layers of pure Au onto the surfaces of the nanocages by reducing HAuCl4 with ascorbic acid, and; 3) formation of Au cubic nanoframes through a dealloying process with HAuCl4 . The key to the formation of Au cubic nanoframes is to coat the surfaces of the Au-Ag nanocages with sufficiently thick layers of Au before they are dealloyed. The Au layer could prevent the skeleton of a nanocage from being fragmented during the dealloying step. The as-prepared Au cubic nanoframes exhibit tunable localized surface plasmon resonance peaks in the near-infrared region, but with much lower Ag content as compared with the initial Au-Ag nanocages.
Collapse
Affiliation(s)
- Dehui Wan
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | | | | | | |
Collapse
|
31
|
Shahjamali MM, Bosman M, Cao S, Huang X, Cao X, Zhang H, Pramana SS, Xue C. Surfactant-free sub-2 nm ultrathin triangular gold nanoframes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:2880-2886. [PMID: 23447112 DOI: 10.1002/smll.201300200] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Indexed: 06/01/2023]
Abstract
Ultrathin triangular gold nanoframes are synthesized in high yield through selective gold deposition on the edges of triangular silver nanoprisms and subsequent silver etching with mild wet etchants. These ultrathin gold nanoframes are surfactant-free with tailorable ridge thickness from 1.8 to 6 nm and exhibit adjustable and distinct surface plasmon resonance bands in the visible and near-IR region. In comparison, etching of the nanoprism template by galvanic replacement can only create frame structures with much thicker ridges, which have much lower catalytic activity for 4-nitrophenol reduction than the ultrathin gold nanoframes.
Collapse
Affiliation(s)
- Mohammad Mehdi Shahjamali
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Chien YH, Tsai MF, Shanmugam V, Sardar K, Huang CL, Yeh CS. Escape from the destruction of the galvanic replacement reaction for solid → hollow → solid conversion process in one pot reaction. NANOSCALE 2013; 5:3863-3871. [PMID: 23525096 DOI: 10.1039/c3nr00100h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Based on the difference in the redox potentials between two metal species, the galvanic replacement reaction is known to create an irreversible process to generate hollow nanostructures in a wide range of shapes. In the context of galvanic replacement reaction, continuing etching leads to the general collapse of the hollow structures because of the excess amount of oxidizing agent. We demonstrate the growth of solid nanostructures from a hollow frame-like architecture in the course of a galvanic replacement reaction without any morphology destruction. We report the successful composition transformation of solid Ag with a wide range of shapes, such as plate, decahedron, rod, prism, sphere, and foil, from as thin as <10 nm up to 5 μm and with an area of ∼4 mm(2), to their solid Au counterparts using straightforward chemical reactions. The successful conversion process relies on a decrease in the reduction rate of the metallic precursor to initiate dissolution of Ag in the first stage (a galvanic replacement reaction), then a subsequent backfilling of Au into the hollowed-out structures. Cetyltrimethylammonium bromide (CTAB) surfactant, a key parameter, interacts with metal salt precursor to form a complex species that retards metal reduction. In addition, we demonstrate conversion of solid nano-Ag to solid nano-Pd as well as of Cu foil (10 μm thick) to shiny Au foil.
Collapse
Affiliation(s)
- Yi-Hsin Chien
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | | | |
Collapse
|
33
|
Gao C, Lu Z, Liu Y, Zhang Q, Chi M, Cheng Q, Yin Y. Highly Stable Silver Nanoplates for Surface Plasmon Resonance Biosensing. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201108971] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Gao C, Lu Z, Liu Y, Zhang Q, Chi M, Cheng Q, Yin Y. Highly Stable Silver Nanoplates for Surface Plasmon Resonance Biosensing. Angew Chem Int Ed Engl 2012; 51:5629-33. [DOI: 10.1002/anie.201108971] [Citation(s) in RCA: 290] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/15/2012] [Indexed: 12/16/2022]
|
35
|
Petryayeva E, Krull UJ. Localized surface plasmon resonance: nanostructures, bioassays and biosensing--a review. Anal Chim Acta 2011; 706:8-24. [PMID: 21995909 DOI: 10.1016/j.aca.2011.08.020] [Citation(s) in RCA: 497] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/05/2011] [Accepted: 08/09/2011] [Indexed: 10/17/2022]
Abstract
Localized surface plasmon resonance (LSPR) is an optical phenomena generated by light when it interacts with conductive nanoparticles (NPs) that are smaller than the incident wavelength. As in surface plasmon resonance, the electric field of incident light can be deposited to collectively excite electrons of a conduction band, with the result being coherent localized plasmon oscillations with a resonant frequency that strongly depends on the composition, size, geometry, dielectric environment and separation distance of NPs. This review serves to describe the physical theory of LSPR formation at the surface of nanostructures, and the potential for this optical technology to serve as a basis for the development bioassays and biosensing of high sensitivity. The benefits and challenges associated with various experimental designs of nanoparticles and detection systems, as well as creative approaches that have been developed to improve sensitivity and limits of detection are highlighted using examples from the literature.
Collapse
Affiliation(s)
- Eleonora Petryayeva
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | | |
Collapse
|
36
|
Jones MR, Osberg KD, Macfarlane RJ, Langille MR, Mirkin CA. Templated Techniques for the Synthesis and Assembly of Plasmonic Nanostructures. Chem Rev 2011; 111:3736-827. [DOI: 10.1021/cr1004452] [Citation(s) in RCA: 996] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Matthew R. Jones
- Department of Materials Science and Engineering, ‡Department of Chemistry, and §International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Kyle D. Osberg
- Department of Materials Science and Engineering, ‡Department of Chemistry, and §International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Robert J. Macfarlane
- Department of Materials Science and Engineering, ‡Department of Chemistry, and §International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Mark R. Langille
- Department of Materials Science and Engineering, ‡Department of Chemistry, and §International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Chad A. Mirkin
- Department of Materials Science and Engineering, ‡Department of Chemistry, and §International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
37
|
Linic S, Christopher P. Overcoming Limitation in the Design of Selective Solid Catalysts by Manipulating Shape and Size of Catalytic Particles: Epoxidation Reactions on Silver. ChemCatChem 2010. [DOI: 10.1002/cctc.201000163] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Mackowski S. Hybrid nanostructures for efficient light harvesting. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:193102. [PMID: 21386429 DOI: 10.1088/0953-8984/22/19/193102] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Hybrid nanostructures are systems composed of two or more nanostructures designed for improving the performance over individual components. In this work we introduce the concept of bridging natural photosynthetic protein-pigment complexes with nanostructures fabricated in an artificial way, such as semiconductor nanocrystals, metallic nanoparticles or carbon nanotubes, with the purpose of enhancing the efficiency of light harvesting either via plasmon excitation in metals or absorption tunability characteristics of semiconductors. In addition to presenting basic features of inorganic nanostructures, we discuss recent advances in the field of hybrid nanostructures composed of photosynthetic pigment-protein complexes.
Collapse
Affiliation(s)
- Sebastian Mackowski
- Optics of Hybrid Nanostructures Group, Institute of Physics, Nicolaus Copernicus University, Torun, Poland.
| |
Collapse
|
39
|
Charles DE, Aherne D, Gara M, Ledwith DM, Gun'ko YK, Kelly JM, Blau WJ, Brennan-Fournet ME. Versatile solution phase triangular silver nanoplates for highly sensitive plasmon resonance sensing. ACS NANO 2010; 4:55-64. [PMID: 20030362 DOI: 10.1021/nn9016235] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Solution phase triangular silver nanoplates (TSNP) with versatile tunability throughout the visible-NIR wavelengths are presented as highly sensitive localized surface plasmon refractive index sensors. A range of 20 TSNP solutions with edge lengths ranging from 11 to 200 nm and aspect ratios from 2 to 13 have been studied comprehensively using AFM, TEM, and UV-vis-NIR spectroscopy. Studies of the localized surface plasmon resonance (LSPR) peak's sensitivity to refractive index changes are performed using a simple sucrose concentration method whereby the surrounding refractive index can solely be changed without variation in any other parameter. The dependence of the TSNP localized surface plasmon resonance (LSPR) peak wavelength lambda(max) and its bulk refractive index sensitivity on the nanoplate's structure is determined. LSPR sensitivities are observed to increase linearly with lambda(max) up to 800 nm, with the values lying within the upper limit theoretically predicted for optimal sensitivity, notwithstanding any diminution due to ensemble averaging. A nonlinear increase in sensitivity is apparent at wavelengths within the NIR region with values reaching 1096 nm.RIU(-1) at lambda(max) 1093 nm. Theoretical studies performed using a simple aspect ratio dependent approximation method and discrete dipole approximation methods confirm the dependence of the LSPR bulk refractive index sensitivity upon the TSNP aspect ratio measured experimentally. These studies highlight the importance of this key parameter in acquiring such high sensitivities and promote these TSNP sols for sensing applications at appropriate wavelengths for biological samples.
Collapse
|