Complexes of Cationic Pyridylphenylene Dendrimers with Anionic Liposomes: The Role of Dendrimer Composition in Membrane Structural Changes.
Int J Mol Sci 2023;
24:ijms24032225. [PMID:
36768548 PMCID:
PMC9917332 DOI:
10.3390/ijms24032225]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
In the last decades, dendrimers have received attention in biomedicine that requires detailed study on the mechanism of their interaction with cell membranes. In this article, we report on the role of dendrimer structure in their interaction with liposomes. Here, the interactions between cationic pyridylphenylene dendrimers of the first, second, and third generations with mixed or completely charged pyridyl periphery (D16+, D215+, D229+, and D350+) with cholesterol-containing (CL/Chol/DOPC) anionic liposomes were investigated by microelectrophoresis, dynamic light scattering, fluorescence spectroscopy, and conductometry. It was found that the architecture of the dendrimer, namely the generation, the amount of charged pyridynium groups, the hydrophobic phenylene units, and the rigidity of the spatial structure, determined the special features of the dendrimer-liposome interactions. The binding of D350+ and D229+ with almost fully charged peripheries to liposomes was due to electrostatic forces: the dendrimer molecules could be removed from the liposomal surfaces by NaCl addition. D350+ and D229+ did not display a disruptive effect toward membranes, did not penetrate into the hydrophobic lipid bilayer, and were able to migrate between liposomes. For D215+, a dendrimer with a mixed periphery, hydrophobic interactions of phenylene units with the hydrocarbon tails of lipids were observed, along with electrostatic complexation with liposomes. As a result, defects were formed in the bilayer, which led to irreversible interactions with lipid membranes wherein there was no migration of D215+ between liposomes. A first-generation dendrimer, D16+, which was characterized by small size, a high degree of hydrophobicity, and a rigid structure, when interacting with liposomes caused significant destruction of liposomal membranes. Evidently, this interaction was irreversible: the addition of salt did not lead to the dissociation of the complex.
Collapse