1
|
Lotito V, Zambelli T. Heat: A powerful tool for colloidal particle shaping. Adv Colloid Interface Sci 2024; 331:103240. [PMID: 39024831 DOI: 10.1016/j.cis.2024.103240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 07/20/2024]
Abstract
Colloidal particles of spherical shape are important building blocks for nanotechnological applications. Materials with tailored physical properties can be directly synthesized from self-assembled particles, as is the case for colloidal photonic crystals. In addition, colloidal monolayers and multilayers can be exploited as a mask for the fabrication of complex nanostructures via a colloidal lithography process for applications ranging from optoelectronics to sensing. Several techniques have been adopted to modify the shape of both individual colloidal particles and colloidal masks. Thermal treatment of colloidal particles is an effective route to introduce colloidal particle deformation or to manipulate colloidal masks (i.e. to tune the size of the interstices between colloidal particles) by heating them at elevated temperatures above a certain critical temperature for the particle material. In particular, this type of morphological manipulation based on thermal treatments has been extensively applied to polymer particles. Nonetheless, interesting shaping effects have been observed also in inorganic materials, in particular silica particles. Due to their much less complex implementation and distinctive shaping effects in comparison to dry etching or high energy ion beam irradiation, thermal treatments turn out to be a powerful and competitive tool to induce colloidal particle deformation. In this review, we examine the physicochemical principles and mechanisms of heat-induced shaping as well as its experimental implementation. We also explore its applications, going from tailored masks for colloidal lithography to the fabrication of colloidal assemblies directly useful for their intrinsic optical, thermal and mechanical properties (e.g. thermal switches) and even to the synthesis of supraparticles and anisotropic particles, such as doublets.
Collapse
Affiliation(s)
- Valeria Lotito
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland.
| | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland.
| |
Collapse
|
2
|
Nicasy R, Huinink H, Erich B, Olaf A. NMR Profiling of Reaction and Transport in Thin Layers: A Review. Polymers (Basel) 2022; 14:798. [PMID: 35215714 PMCID: PMC8963059 DOI: 10.3390/polym14040798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/25/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Reaction and transport processes in thin layers of between 10 and 1000 µm are important factors in determining their performance, stability and degradation. In this review, we discuss the potential of high-gradient Nuclear Magnetic Resonance (NMR) as a tool to study both reactions and transport in these layers spatially and temporally resolved. As the NMR resolution depends on gradient strength, the high spatial resolution required in submillimeter layers can only be achieved with specially designed high-gradient setups. Three different high-gradient setups exist: STRAFI (STRay FIeld), GARField (Gradient-At-Right-angles-to-Field) and MOUSE (MObile Universal Surface Explorer). The aim of this review is to provide a detailed overview of the three techniques and their ability to visualize reactions and transport processes using physical observable properties such as hydrogen density, diffusion, T1- and T2-relaxation. Finally, different examples from literature will be presented to illustrate the wide variety of applications that can be studied and the corresponding value of the techniques.
Collapse
Affiliation(s)
- Ruben Nicasy
- Applied Physics Department, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (R.N.); (B.E.); (A.O.)
| | - Henk Huinink
- Applied Physics Department, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (R.N.); (B.E.); (A.O.)
| | - Bart Erich
- Applied Physics Department, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (R.N.); (B.E.); (A.O.)
- Organization of Applied Scientific Research, TNO The Netherlands, P.O. Box 49, 2600 AA Delft, The Netherlands
| | - Adan Olaf
- Applied Physics Department, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (R.N.); (B.E.); (A.O.)
- Organization of Applied Scientific Research, TNO The Netherlands, P.O. Box 49, 2600 AA Delft, The Netherlands
| |
Collapse
|
3
|
Martín-Fabiani I, Makepeace DK, Richardson PG, Lesage de la Haye J, Venero DA, Rogers SE, D'Agosto F, Lansalot M, Keddie JL. In Situ Monitoring of Latex Film Formation by Small-Angle Neutron Scattering: Evolving Distributions of Hydrophilic Stabilizers in Drying Colloidal Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3822-3831. [PMID: 30777761 DOI: 10.1021/acs.langmuir.8b04251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The distribution of hydrophilic species, such as surfactants, in latex films is of critical importance for the performance of adhesives, coatings, and inks, among others. However, the evolution of this distribution during the film formation process and in the resulting dried films remains insufficiently elucidated. Here, we present in situ (wet) and ex situ (dry) small-angle neutron scattering (SANS) experiments that follow the film formation of two types of latex particles, which differ in their stabilizer: either a covalently bonded poly(methacrylic acid) (PMAA) segment or a physically adsorbed surfactant (sodium dodecyl sulfate, SDS). By fitting the experimental SANS data and combining with gravimetry experiments, we have ascertained the hydrophilic species distribution within the drying film and followed its evolution by correlating the size and shape of stabilizer clusters with the drying time. The evolution of the SDS distribution over drying time is being driven by a reduction in the interfacial free energy. However, the PMAA-based stabilizer macromolecules are restricted by their covalent bonding to core polymer chains and hence form high-surface area disclike phases at the common boundary between particles and PMAA micelles. Contrary to an idealized view of film formation, PMAA does not remain in the walls of a continuous honeycomb structure. The results presented here shed new light on the nanoscale distribution of hydrophilic species in drying and ageing latex films. We provide valuable insights into the influence of the stabilizer mobility on the final structure of latex films.
Collapse
Affiliation(s)
- Ignacio Martín-Fabiani
- Department of Materials , Loughborough University , Loughborough LE11 3TU , Leicestershire , U.K
| | - David K Makepeace
- Department of Physics , University of Surrey , Guildford GU2 7XH , U.K
| | | | - Jennifer Lesage de la Haye
- Université Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2) , 43 Bd du 11 Novembre 1918 , 69616 Villeurbanne , France
| | - Diego Alba Venero
- Science and Technology Facilities Council, Rutherford Appleton Laboratory , ISIS Pulsed Neutron and Muon Source , Harwell , Didcot, Oxford OX11 0QX , U.K
| | - Sarah E Rogers
- Science and Technology Facilities Council, Rutherford Appleton Laboratory , ISIS Pulsed Neutron and Muon Source , Harwell , Didcot, Oxford OX11 0QX , U.K
| | - Franck D'Agosto
- Université Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2) , 43 Bd du 11 Novembre 1918 , 69616 Villeurbanne , France
| | - Muriel Lansalot
- Université Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2) , 43 Bd du 11 Novembre 1918 , 69616 Villeurbanne , France
| | - Joseph L Keddie
- Department of Physics , University of Surrey , Guildford GU2 7XH , U.K
| |
Collapse
|
4
|
Nutz FA, Retsch M. Interfacial and volumetric sensitivity of the dry sintering process of polymer colloidal crystals: a thermal transport and photonic bandgap study. Phys Chem Chem Phys 2018; 19:16124-16130. [PMID: 28604861 DOI: 10.1039/c7cp01994g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We introduce the in situ characterization of the dry sintering process of face-centred cubic colloidal crystals by two complementary techniques: thermal transport and photonic stopband characterization. Therefore, we employed time-dependent, isothermal laser flash analysis and specular reflectivity experiments close to the glass transition temperature of the colloidal crystal. Both methods yield distinctly different time constants of the film formation process. This discrepancy can be attributed to a volume- (photonic stopband) and interface-driven (thermal transport) sensitivity of the respective characterization method. Nevertheless, both methods yield comparable apparent activation energies. Finally, we extended the sintering process characterization to further polymer compositions, with vastly different glass transition temperatures. We could show that the film formation rate is governed by the viscoelastic properties of the polymers at the respective annealing temperature.
Collapse
Affiliation(s)
- Fabian A Nutz
- University of Bayreuth, Physical Chemistry - Polymer Systems, Universitaetsstr. 30, 95447 Bayreuth, Germany.
| | - Markus Retsch
- University of Bayreuth, Physical Chemistry - Polymer Systems, Universitaetsstr. 30, 95447 Bayreuth, Germany.
| |
Collapse
|
5
|
Mathlouthi C, Hugenell F, Delpech F, Rharbi Y. Heat Capacity of Confined Polystyrene in Close-Packed Particles. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chourouk Mathlouthi
- Univ. Grenoble Alpes−LRP, F-38041 Grenoble, France
- CNRS, LRP, F-38041 Grenoble, France
| | - Frederic Hugenell
- Univ. Grenoble Alpes−LRP, F-38041 Grenoble, France
- CNRS, LRP, F-38041 Grenoble, France
| | - Françoise Delpech
- Univ. Grenoble Alpes−LRP, F-38041 Grenoble, France
- CNRS, LRP, F-38041 Grenoble, France
| | - Yahya Rharbi
- Univ. Grenoble Alpes−LRP, F-38041 Grenoble, France
- CNRS, LRP, F-38041 Grenoble, France
| |
Collapse
|
6
|
van der Kooij HM, van de Kerkhof GT, Sprakel J. A mechanistic view of drying suspension droplets. SOFT MATTER 2016; 12:2858-67. [PMID: 26843025 DOI: 10.1039/c5sm02406d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
When a dispersion droplet dries, a rich variety of spatial and temporal heterogeneities emerge. Controlling these phenomena is essential for many applications yet requires a thorough understanding of the underlying mechanisms. Although the process of film formation from initially dispersed polymer particles is well documented and is known to involve three main stages - evaporation, particle deformation and coalescence - it is impossible to fully disentangle the effects of particle deformation and coalescence, as these stages are closely linked. We circumvent this problem by studying suspensions of colloidal rubber particles that are incapable of coalescing. Varying the crosslink density allows us to tune the particle deformability in a controlled manner. We develop a theoretical framework of the main regimes and stresses in drying droplets of these suspensions, and validate this framework experimentally. Specifically, we show that changing the particle modulus by less than an order of magnitude can completely alter the stress development and resulting instabilities. Scanning electron microscopy reveals that particle deformability is a key factor in stress mitigation. Our model is the suspension equivalent of the widely used Routh-Russel model for film formation in drying dispersions, with additional focus on lateral nonuniformities such as cracking and wrinkling inherent to the droplet geometry, thus adding a new dimension to the conventional view of particle deformation.
Collapse
Affiliation(s)
- Hanne M van der Kooij
- Physical Chemistry and Soft Matter, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands. and Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands
| | - Gea T van de Kerkhof
- Physical Chemistry and Soft Matter, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands.
| | - Joris Sprakel
- Physical Chemistry and Soft Matter, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands.
| |
Collapse
|
7
|
Gromer A, Nassar M, Thalmann F, Hébraud P, Holl Y. Simulation of Latex Film Formation Using a Cell Model in Real Space: Vertical Drying. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10983-94. [PMID: 26378376 DOI: 10.1021/acs.langmuir.5b02845] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This paper presents a simulation tool applied to latex film formation by drying, a hybrid between a classical numerical resolution method using finite differences and cellular automata, and making use of object-oriented programming. It consists of dividing real space into cells and applying local physical laws to simulate the exchange of matter between neighboring cells. In a first step, the simulation was applied to the simple case of vertical drying of a latex containing only one population of monodisperse particles and water. Our results show how the distribution of latex particles evolves through the different drying stages due to a combination of diffusion, convection, and particle deformation. While repulsive interactions between the particles tend to favor homogeneous distributions in the first drying stage, concentration gradients that develop in opposite ways can be observed depending on the drying regime. The distributions, calculated in various cases, reproduce and extend several theoretical results and are in qualitative agreement with some experimental findings.
Collapse
Affiliation(s)
- A Gromer
- CNRS-ICS, Université de Strasbourg , 23 rue du Loess BP 84047, 67034 Strasbourg Cedex 2, France
| | - M Nassar
- CNRS-ICS, Université de Strasbourg , 23 rue du Loess BP 84047, 67034 Strasbourg Cedex 2, France
| | - F Thalmann
- CNRS-ICS, Université de Strasbourg , 23 rue du Loess BP 84047, 67034 Strasbourg Cedex 2, France
| | - P Hébraud
- IPCMS, 23 rue du Loess BP 43, 67034 Strasbourg Cedex 2, France
| | - Y Holl
- CNRS-ICS, Université de Strasbourg , 23 rue du Loess BP 84047, 67034 Strasbourg Cedex 2, France
| |
Collapse
|
8
|
van der Kooij HM, de Kool M, van der Gucht J, Sprakel J. Coalescence, Cracking, and Crack Healing in Drying Dispersion Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:4419-4428. [PMID: 25815714 DOI: 10.1021/acs.langmuir.5b00438] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The formation of a uniform film from a polymer dispersion is a complex phenomenon involving the interplay of many processes: evaporation and resulting fluid flows through confined geometries, particle packing and deformation, coalescence, and cracking. Understanding this multidimensional problem has proven challenging, precluding a clear understanding of film formation to date. This is especially true for drying dispersion droplets, where the particular geometry introduces additional complexity such as lateral flow toward the droplet periphery. We study the drying of these droplets using a simplified approach in which we systematically vary a single parameter: the glass transition temperature (Tg) of the polymer. We combine optical with scanning electron microscopy to elucidate these processes from the macroscopic down to the single-particle level, both qualitatively and quantitatively, over times ranging from seconds to days. Our results indicate that the polymer Tg has a marked influence on the time evolution of particle deformation and coalescence, giving rise to a distinct and sudden cracking transition. Moreover, in cracked droplets it affects the frequently overlooked time scale of crack healing, giving rise to a second transition from self-healing to permanently cracked droplets. These findings are in line with the classical Routh-Russel model for film formation yet extend its scope from particle-level dynamics to long-range polymer flow.
Collapse
Affiliation(s)
- Hanne M van der Kooij
- †Physical Chemistry and Soft Matter, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands
- ‡Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands
| | - Marleen de Kool
- †Physical Chemistry and Soft Matter, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands
| | - Jasper van der Gucht
- †Physical Chemistry and Soft Matter, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands
| | - Joris Sprakel
- †Physical Chemistry and Soft Matter, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands
| |
Collapse
|
9
|
Ghasemirad S, Mohammadi N. How do soft nanoparticles affect temperature-induced nonlinearity of a UCST copolymer blend? Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3446-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Carter FT, Kowalczyk RM, Millichamp I, Chainey M, Keddie JL. Correlating particle deformation with water concentration profiles during latex film formation: reasons that softer latex films take longer to dry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:9672-9681. [PMID: 25058916 DOI: 10.1021/la5023505] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
During the past two decades, an improved understanding of the operative particle deformation mechanisms during latex film formation has been gained. For a particular colloidal dispersion, the Routh-Russel deformation maps predict the dominant mechanism for particle deformation under a particular set of conditions (evaporation rate, temperature, and initial film thickness). Although qualitative tests of the Routh-Russel model have been reported previously, a systematic study of the relationship between the film-formation conditions and the resulting water concentration profiles is lacking. Here, the water distributions during the film formation of a series of acrylic copolymer latexes with varying glass-transition temperatures, Tg (values of -22, -11, 4, and 19 °C), have been obtained using GARField nuclear magnetic resonance profiling. A significant reduction in the rate of water loss from the latex copolymer with the lowest Tg was found, which is explained by its relatively low polymer viscosity enabling the growth of a coalesced skin layer. The set of processing parameters where the drying first becomes impeded occurs at the boundary between the capillary deformation and the wet sintering regimes of the Routh-Russel model, which provides strong confirmation of the model's validity. An inverse correlation between the model's dimensionless control parameter and the dimensionless drying time is discovered, which is useful for the design of fast-drying waterborne films.
Collapse
Affiliation(s)
- Farai T Carter
- Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey , Guildford, Surrey, GU2 7XH United Kingdom
| | | | | | | | | |
Collapse
|
11
|
Riedl T, Strake M, Sievers W, Lindner JK. Thermal Modification of Nanoscale Mask Openings in Polystyrene Sphere Layers. ACTA ACUST UNITED AC 2014. [DOI: 10.1557/opl.2014.312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
ABSTRACTAn experimental analysis of the morphology changes of hexagonally close packed polystyrene sphere monolayers induced by annealing in air is presented. The triangular interstices between each triple of spheres, which are frequently used as nanoscale mask openings in colloidal lithography, are observed to gradually shrink in size and change in shape upon annealing. Top view scanning electron microscopy images reveal that different stages are involved in the closure of monolayer interstices at annealing temperatures in the range between 110°C and 120°C. In the early stages shrinkage of the triangular interstices is dominated by material transport to and thus shortening of their corners, in the late stages interstice area reduction via displacement of the triangle edges becomes significant. At intermediate annealing times the rate of interstice area reduction displays a maximum before a stabilized state characterized by a rounded isosceles triangular shape forms.
Collapse
|
12
|
Rharbi Y, Boué F, Nawaz Q. The Dynamic of Confined Polystyrene in Nanoparticles in the Glassy Regime: The Close Packed Morphology. Macromolecules 2013. [DOI: 10.1021/ma401523n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yahya Rharbi
- Laboratoire
de Rhéologie et procédés, UJF/INPG/CNRS, BP 53, Domaine universitaire 38041, Grenoble, France
| | - François. Boué
- Laboratoire
Léon Brillouin, CEA Saclay, 91191 Gif-sur-Yvettes, France
| | - Qamar Nawaz
- Laboratoire
de Rhéologie et procédés, UJF/INPG/CNRS, BP 53, Domaine universitaire 38041, Grenoble, France
| |
Collapse
|
13
|
Pohl K, Adams J, Johannsmann D. Correlation between particle deformation kinetics and polymer interdiffusion kinetics in drying latex films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:11317-21. [PMID: 23957607 DOI: 10.1021/la402121j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Using an experimental setup which determines the turbidity of the sample and the efficiency of Förster resonance energy transfer (FRET) at the same time, we have correlated the particle deformation kinetics in a drying latex film, quantified by light scattering with the kinetics of polymer interdiffusion. Interdiffusion was quantified making use of energy transfer (FRET) between donor molecules and acceptor molecules, bound to polymer chains on different particles. When the chains cross the interparticle boundaries, the rate of energy transfer increases. The latex was prepared by miniemulsion polymerization. The amount of emulsifier employed during polymerization had a pronounced effect on the relative timing of interdiffusion and particle deformation. Increasing the amount of emulsifier delayed the onset of interdiffusion relative to the time when the film became transparent. This is mostly the consequence of a size effect, as opposed to surfactant acting as a barrier for transport.
Collapse
Affiliation(s)
- Katja Pohl
- Institute of Physical Chemistry, Clausthal University of Technology , D-38678 Clausthal-Zellerfeld, Germany
| | | | | |
Collapse
|
14
|
Zhang YS, Regan KP, Xia Y. Controlling the pore sizes and related properties of inverse opal scaffolds for tissue engineering applications. Macromol Rapid Commun 2013; 34:485-91. [PMID: 23365045 DOI: 10.1002/marc.201200740] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 12/21/2012] [Indexed: 12/13/2022]
Abstract
Inverse opal scaffolds are finding widespread use in tissue engineering and regenerative medicine. Herein, the way in which the pore sizes and related physical properties of poly(D,L-lactide-co-glycolide) inverse opal scaffolds are affected by the fabrication conditions is systematically investigated. It is found that the window size of an inverse opal scaffold is mainly determined by the annealing temperature rather than the duration of time, and the surface pore size is largely determined by the concentration of the infiltration solution. Although scaffolds with larger pore or window sizes facilitate faster migration of cells, they show slightly lower compressive moduli than scaffolds with smaller pore or window sizes.
Collapse
Affiliation(s)
- Yu Shrike Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | | | | |
Collapse
|
15
|
Mohammadi H, Mohammadi N, Kheirabadi M. Elucidation of polymer wear resistance via nanoscale healing and fracture of sintered polystyrene particles. J Appl Polym Sci 2012. [DOI: 10.1002/app.38480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Chen X, Fischer S, Men Y. Temperature and relative humidity dependency of film formation of polymeric latex dispersions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:12807-12814. [PMID: 21942473 DOI: 10.1021/la202300p] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Thermogravimetric analysis and a synchrotron small-angle X-ray scattering technique were employed to characterize the structural evolution of a polymeric latex dispersion during the first three stages of film formation at different temperatures and relative humidities. Three intermediate stages were identified: (1) stage I*, (2) stage I**, and (3) stage II*. Stage I* is intermediate to the conventionally defined stages I and II, where latex particles began to crystallization. The change of drying temperature affects the location of the onset of ordering, whereas relative humidity does not. Stage I** is where the latex particles with their diffuse shell of counterions in the fcc structure are in contact with each other. The overlapping of these layers results in an acceleration of the lattice shrinkage due to a decrease of effective charges. Stage II* is where the latex particles, dried well above their T(g), are deformed and packed only partially during film formation due to incomplete evaporation of water in the latex film. This is because of a rapid deformation of the soft latex particles at the liquid/air interface so that a certain amount of water is unable to evaporate from the latex film effectively. For a latex dispersion dried at a temperature close to its minimum film formation temperature, the transition between stages II and III can be continuous because the latex particles deform at a much slower rate, providing sufficient surface area for water evaporation.
Collapse
Affiliation(s)
- Xuelian Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Graduate School of Chinese Academy of Sciences, Renmin Street 5625, 130022 Changchun, PR China
| | | | | |
Collapse
|
17
|
Chen X, Fischer S, Yi Z, Boyko V, Terrenoire A, Reinhold F, Rieger J, Li X, Men Y. Structural reorganization of a polymeric latex film during dry sintering at elevated temperatures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:8458-8463. [PMID: 21627138 DOI: 10.1021/la201084j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Structural rearrangement in a latex powder during dry sintering at temperatures higher than the minimum film formation temperature was investigated by means of synchrotron small-angle X-ray scattering. Two major effects were identified: (1) Deformation of latex particles leads to a closure of voids between them and an extensive perfectioning of the face centered cubic colloidal crystalline ordering. Such an improvement of the colloidal crystalline structure involves preferential crystal growth along certain crystallographic directions as was evidenced by the measured unmatched relative diffraction intensity distribution of the crystallographic (111) and (220) planes. (2) Interdiffusion of polymeric chains between adjacent particles promotes a nanometer sized aggregation of nonpolymeric materials previously located in the interstices between particles. Size and size distribution of the aggregates at different dry sintering conditions were evaluated by using a model considering spheres dispersed in the system.
Collapse
Affiliation(s)
- Xuelian Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, Renmin Street 5625, 130022 Changchun, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|