1
|
Xu Q, Wang Y, Zheng Y, Zhu Y, Li Z, Liu Y, Ding M. Polymersomes in Drug Delivery─From Experiment to Computational Modeling. Biomacromolecules 2024; 25:2114-2135. [PMID: 38011222 DOI: 10.1021/acs.biomac.3c00903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Polymersomes, composed of amphiphilic block copolymers, are self-assembled vesicles that have gained attention as potential drug delivery systems due to their good biocompatibility, stability, and versatility. Various experimental techniques have been employed to characterize the self-assembly behaviors and properties of polymersomes. However, they have limitations in revealing molecular details and underlying mechanisms. Computational modeling techniques have emerged as powerful tools to complement experimental studies and enabled researchers to examine drug delivery mechanisms at molecular resolution. This review aims to provide a comprehensive overview of the state of the art in the field of polymersome-based drug delivery systems, with an emphasis on insights gained from both experimental and computational studies. Specifically, we focus on polymersome morphologies, self-assembly kinetics, fusion and fission, behaviors in flow, as well as drug encapsulation and release mechanisms. Furthermore, we also identify existing challenges and limitations in this rapidly evolving field and suggest possible directions for future research.
Collapse
Affiliation(s)
- Qianru Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yiwei Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yi Zheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yuling Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Zifen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Mingming Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
2
|
Kim TY, Hur SM, Ramírez-Hernández A. Effect of Block Sequence on the Solution Self-Assembly of Symmetric ABCBA Pentablock Polymers in a Selective Solvent. J Phys Chem B 2023; 127:2575-2586. [PMID: 36917777 DOI: 10.1021/acs.jpcb.2c07930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Solution self-assembly of multiblock polymers offers a platform to create complex functional self-assembled nanostructures. However, a complete understanding of the effect of the different single-molecule-level parameters and solution conditions on the self-assembled morphology is still lacking. In this work, we have used dissipative particle dynamics to investigate the solution self-assembly of symmetric ABCBA linear pentablock polymers in a selective solvent and examined the effect of the block sequence, composition, and polymer concentration on the final morphology and polymer conformations. We confirmed that block sequence has an effect on the self-assembled morphologies, and it has a strong influence on polymer conformations that give place to physical gels for the sequence where the solvophilic block is located in the middle of the macromolecule. Our results are summarized in terms of morphology diagrams in the composition-concentration parameter space.
Collapse
Affiliation(s)
- Tae-Yi Kim
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, South Korea
| | - Su-Mi Hur
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, South Korea
| | - Abelardo Ramírez-Hernández
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
3
|
Tseng YC, Chang HY, Sheng YJ, Tsao HK. Atypical vesicles and membranes with monolayer and multilayer structures formed by graft copolymers with diblock side-chains: nonlamellar structures and curvature-enhanced permeability. SOFT MATTER 2022; 18:7559-7568. [PMID: 36164856 DOI: 10.1039/d2sm01055k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Graft copolymers with diblock side-chains Am(-graft-B3Ay)n in a selective solvent have been reported to self-assemble into vesicles, but the structure is expected to differ distinctly from those of lipid bilayers. Surprisingly, the number of alternating hydrophobic A-block and hydrophilic B-block layers in the vesicle can vary from a monolayer to multilayers such as the hepta-layer, subject to the same copolymer concentration. The area density of the copolymer layer is not uniform across the membrane. This structural difference among different layers is attributed to the neighboring environment and the curvature of the layer. Because of the unusual polymer conformations, nonlamellar structures of polymersomes are formed, and they are much more intricate than those of liposomes. In fact, a copolymer can contribute to a single or two hydrophilic layers, and it can provide up to three hydrophobic layers. The influence of the backbone length (m) and side-chain length (y) and the permeation dynamics are also studied. The thickness of hydrophobic layers is found to increase with increasing side-chain length but is not sensitive to the backbone length. Although the permeation time increases with the layer number for planar membranes, the opposite behavior is observed for spherical vesicles owing to the curvature-enhanced permeability associated with Laplace pressure.
Collapse
Affiliation(s)
- Yueh-Chi Tseng
- Department of Chemical and Materials Engineering, National Central University, Jhongli 320, Taiwan.
| | - Hsin-Yu Chang
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Yu-Jane Sheng
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Heng-Kwong Tsao
- Department of Chemical and Materials Engineering, National Central University, Jhongli 320, Taiwan.
| |
Collapse
|
4
|
Tulsi DK, Simmons DS. Hierarchical Shape-Specified Model Polymer Nanoparticles via Copolymer Sequence Control. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Davindra K. Tulsi
- The University of South Florida, 4202 East Fowler Avenue, ENB 118, Tampa, Florida 33620, United States
| | - David S. Simmons
- The University of South Florida, 4202 East Fowler Avenue, ENB 118, Tampa, Florida 33620, United States
| |
Collapse
|
5
|
Guo WX, Hu LF, Feng YH, Chen BZ, Guo XD. Advances in self-assembling of pH-sensitive polymers: A mini review on dissipative particle dynamics. Colloids Surf B Biointerfaces 2021; 210:112202. [PMID: 34840030 DOI: 10.1016/j.colsurfb.2021.112202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
Dissipative Particle Dynamics (DPD) is a mesoscopic simulation program used to simulate the behavior of complex fluids. This work systematically reviews the use of DPD to simulate the self-assembly process of pH-sensitive drug-loaded nanoparticles. pH-sensitive drug-loaded nanoparticles have the characteristics of good targeting and slow release in the body, which is an ideal method for treating cancer and other diseases. As an excellent simulation method, DPD can help people explore the loading and release laws of drugs with complex molecular structures and has extensive applications in other medical fields. This article reviews the self-assembly process of pH-sensitive polymers under neutral conditions and explores the factors that affect the self-assembly structure. It points out that different hydrophilic-hydrophobic ratios, molecular structures, and component distributions will affect the morphology, stability and drug carrying capacity of micelles. This article also introduces the release mechanism of the drug in detail and introduces the factors that affect the release. This article can help relevant researchers to follow the latest advances in the DPD simulation and pH-sensitive drug nano-carrier and insight people to investigate the further application of DPD simulation in biomedical science.
Collapse
Affiliation(s)
- Wei Xin Guo
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Liu Fu Hu
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yun Hao Feng
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Bo Zhi Chen
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Xin Dong Guo
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
6
|
Zanata DDM, Felisberti MI. Self-assembly of dual-responsive amphiphilic POEGMA- b-P4VP- b-POEGMA triblock copolymers: effect of temperature, pH, and complexation with Cu 2+. Polym Chem 2021. [DOI: 10.1039/d1py00716e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilic and dual-responsive triblock copolymer POEGMA-b-P4VP-b-POEGMA synthesized by RAFT self-assemble into spherical or interconnected micelles depending on the external stimulus and their complexation with Cu2+ results in responsive nanogels.
Collapse
Affiliation(s)
- Daniela de Morais Zanata
- Institute of Chemistry, University of Campinas (UNICAMP), P. O. Box 6154, Campinas, SP 13083-970, Brazil
| | - Maria Isabel Felisberti
- Institute of Chemistry, University of Campinas (UNICAMP), P. O. Box 6154, Campinas, SP 13083-970, Brazil
| |
Collapse
|
7
|
Glagoleva AA, Larin DE, Vasilevskaya VV. Unusual Structures of Interpolyelectrolyte Complexes: Vesicles and Perforated Vesicles. Polymers (Basel) 2020; 12:E871. [PMID: 32290145 PMCID: PMC7240553 DOI: 10.3390/polym12040871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/29/2022] Open
Abstract
By means of computer simulation and analytical theory, we first demonstrated that the interpolyelectrolyte complexes in dilute solution can spontaneously form hollow spherical particles with thin continuous shells (vesicles) or with porous shells (perforated vesicles) if the polyions forming the complex differ in their affinity for the solvent. The solvent was considered good for the nonionic groups of one macroion and its quality was varied for the nonionic groups of the other macroion. It was found that if the electrostatic interactions are weak compared to the attraction induced by the hydrophobicity of the monomer units, the complex in poor solvent tends to form "dense core-loose shell" structures of different shapes. The strong electrostatic interactions favor the formation of the layered, the hollow, and the filled structured morphologies with the strongly segregated macroions. Vesicles with perforated walls were distinguished as the intermediate between the vesicular and the structured solid morphologies. The order parameter based on the spherical harmonics expansion was introduced to calculate the pore distribution in the perforated vesicles depending on the solvent quality. The conditions of the core-shell and hollow vesicular-like morphologies formation were determined theoretically via the calculations of their free energy. The results of the simulation and theoretical approaches are in good agreement.
Collapse
Affiliation(s)
| | | | - V. V. Vasilevskaya
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia; (A.A.G.); (D.E.L.)
| |
Collapse
|
8
|
Omolo CA, Kalhapure RS, Agrawal N, Jadhav M, Rambharose S, Mocktar C, Govender T. A hybrid of mPEG-b-PCL and G1-PEA dendrimer for enhancing delivery of antibiotics. J Control Release 2018; 290:112-128. [PMID: 30312719 DOI: 10.1016/j.jconrel.2018.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/17/2018] [Accepted: 10/06/2018] [Indexed: 01/02/2023]
|
9
|
Song Y, Xie T, Jiang R, Wang Z, Yin Y, Li B, Shi AC. Effect of Chain Architecture on Self-Assembled Aggregates from Cyclic AB Diblock and Linear ABA Triblock Copolymers in Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:4013-4023. [PMID: 29544246 DOI: 10.1021/acs.langmuir.8b00630] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The self-assembly behaviors of two block copolymers with the same chain length but different chain architectures (cyclic AB, linear ABA) in B-selective solvents are investigated using Monte Carlo simulations. A morphological transition sequence, from spherical micelles to cylindrical micelles, to vesicles and then to multicompartment vesicles, is observed for both copolymer systems when the interaction between the solvophobic A-block and the solvent is increased. In particular, toroidal micelles could be formed in triblock systems due to the presence of the bridging chains at the parameter region between cylindrical micelles and vesicles whereas disklike micelles are formed in cyclic systems. The simulation results demonstrated that the architecture of block copolymers could be used to regulate the structural characteristics and thermal stability of these self-assembled aggregates.
Collapse
Affiliation(s)
- Yongbing Song
- School of Physics , Nankai University , Tianjin 300071 , China
| | - Teng Xie
- School of Physics , Nankai University , Tianjin 300071 , China
| | - Run Jiang
- School of Physics , Nankai University , Tianjin 300071 , China
| | - Zheng Wang
- School of Physics , Nankai University , Tianjin 300071 , China
| | - Yuhua Yin
- School of Physics , Nankai University , Tianjin 300071 , China
| | - Baohui Li
- School of Physics , Nankai University , Tianjin 300071 , China
| | - An-Chang Shi
- Department of Physics and Astronomy , McMaster University , Hamilton , Ontario L8S 4M1 , Canada
| |
Collapse
|
10
|
Nehache S, Semsarilar M, Deratani A, In M, Dieudonné-George P, Lai Kee Him J, Bron P, Quémener D. Nano-porous structuresviaself-assembly of amphiphilic triblock copolymers: influence of solvent and molecular weight. Polym Chem 2018. [DOI: 10.1039/c7py01853c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Self-assembly of ABA triblock copolymer micelles into porous materials which are subsequently used as filtration membranes.
Collapse
Affiliation(s)
- S. Nehache
- Institut Européen des Membranes – IEM
- Univ Montpellier
- CNRS
- ENSCM
- Place Eugène Bataillon
| | - M. Semsarilar
- Institut Européen des Membranes – IEM
- Univ Montpellier
- CNRS
- ENSCM
- Place Eugène Bataillon
| | - A. Deratani
- Institut Européen des Membranes – IEM
- Univ Montpellier
- CNRS
- ENSCM
- Place Eugène Bataillon
| | - M. In
- Laboratoire Charles Coulomb Université Montpellier – Place Eugène Bataillon
- 34095 Montpellier Cedex 05
- France
| | - P. Dieudonné-George
- Laboratoire Charles Coulomb Université Montpellier – Place Eugène Bataillon
- 34095 Montpellier Cedex 05
- France
| | - J. Lai Kee Him
- Centre de Biochimie Structurale – CBS
- CNRS
- INSERM
- Université Montpellier
- 34090 Montpellier
| | - P. Bron
- Centre de Biochimie Structurale – CBS
- CNRS
- INSERM
- Université Montpellier
- 34090 Montpellier
| | - D. Quémener
- Institut Européen des Membranes – IEM
- Univ Montpellier
- CNRS
- ENSCM
- Place Eugène Bataillon
| |
Collapse
|
11
|
Zhang Q, Lin J, Wang L, Xu Z. Theoretical modeling and simulations of self-assembly of copolymers in solution. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2017.04.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Design of pH-responsive “on-off” emulsions using CTAB/PPA emulsifiers by simulations and experiments. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.08.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Tan H, Yu C, Lu Z, Zhou Y, Yan D. A dissipative particle dynamics simulation study on phase diagrams for the self-assembly of amphiphilic hyperbranched multiarm copolymers in various solvents. SOFT MATTER 2017; 13:6178-6188. [PMID: 28798969 DOI: 10.1039/c7sm01170a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Self-assembly of amphiphilic hyperbranched multiarm copolymers (HMCs) has shown great potential for preparing all kinds of delicate supramolecular structures in all scales and dimensions in solution. However, theoretical studies on the influencing factors for the self-assembly of HMCs have been greatly lagging behind. The phase diagram of HMCs in selective solvents is very necessary but has not been disclosed up to now. Here, the self-assembly of HMCs with different hydrophilic fractions in various solvents was studied systematically by using dissipative particle dynamics (DPD) simulations. Three morphological phase diagrams are constructed and a rich variety of morphologies, ranging from spherical micelles, worm-like micelles, membranes, vesicles, vesosomes, small micellar aggregates (SMAs), and aggregates of spherical and worm-like micelles to helical micelles, are obtained. In addition, both the self-assembly mechanisms and the dynamic processes for the formation of these self-assemblies have been systematically investigated. The simulation results are consistent with available experimental observations. Besides, several novel structures, like aggregates of spherical and worm-like micelles, vesosomes and helical micelles, are firstly discovered for HMC self-assembly. We believe the current work will extend the knowledge on the self-assembly of HMCs, especially on the control of supramolecular structures and on fabricating novel self-assemblies.
Collapse
Affiliation(s)
- Haina Tan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | | | | | | | | |
Collapse
|
14
|
Temperature-dependent self-assembly and rheological behavior of a thermoreversible pmma-Pn
BA-PMMA triblock copolymer gel. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/polb.24336] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Ghelichi M, Qazvini NT. Self-organization of hydrophobic-capped triblock copolymers with a polyelectrolyte midblock: a coarse-grained molecular dynamics simulation study. SOFT MATTER 2016; 12:4611-4620. [PMID: 27116478 DOI: 10.1039/c6sm00414h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present the results of a Langevin dynamics simulation study of micellar organization and hydrogel formation in the solutions of coarse-grained ABA copolymer chains. Polymer chains are modeled as bead-spring chains of Lennard-Jones particles by explicit treatment of ionic species in implicit solvent. The studied copolymer is composed of a polyelectrolyte midblock flanked by two hydrophobic endblocks. We explore the self-assembly of copolymer solutions at a fixed polymer concentration and temperature upon systematic variation of the midblock charge fraction, valency of neutralizing counterions, and the stiffness and length of hydrophobic endblocks. Minimization of the surface energy, conformational entropy of the midblock chains, electrostatic repulsion of midblock charges, and the translational entropy of counterions are found to play central roles in controlling the self-organization features of copolymer solutions. Flower-like micelles with A-blocks forming the core of spherical aggregates and B-blocks constituting the micelle corona are established for the neutral midblocks. Increasing the charge content of B chains lowers the fraction of loop conformations and yields a spanning hydrogel network with midblocks bridging the hydrophobic clusters. Counterion valence is shown to exert a strong effect on the micelle size and network structure. The increase in the rigidity of terminal A-blocks increases the fraction of bridging chains and results in the formation of a hydrogel network with bundle-like hydrophobic domains. Longer endblocks are shown to increase the hydrophobic cluster size and enhance the bridged midblock fraction. The qualitative agreement between the experimental and theoretical studies is also discussed. The comprehensive molecular picture provides a framework for the future studies of stimuli-responsive copolymer systems.
Collapse
Affiliation(s)
- Mahdi Ghelichi
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| | - Nader Taheri Qazvini
- Polymer Division, School of Chemistry, College of Science, University of Tehran, P. O. Box 14155-6455, Tehran, Iran and Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA.
| |
Collapse
|
16
|
Self-Assembly of Amphiphilic Block Copolymers in Selective Solvents. FLUORESCENCE STUDIES OF POLYMER CONTAINING SYSTEMS 2016. [DOI: 10.1007/978-3-319-26788-3_2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
17
|
Moreno N, Nunes SP, Peinemann KV, Calo VM. Topology and Shape Control for Assemblies of Block Copolymer Blends in Solution. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01891] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Nicolas Moreno
- Biological and Environmental Science and Engineering Division, ‡Center for Numerical Porous Media, §Advanced Membranes and Porous Material Center, and ∥Earth Science & Engineering and Applied Mathematics & Computational Science, King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia 23955-6900
| | - Suzana P. Nunes
- Biological and Environmental Science and Engineering Division, ‡Center for Numerical Porous Media, §Advanced Membranes and Porous Material Center, and ∥Earth Science & Engineering and Applied Mathematics & Computational Science, King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia 23955-6900
| | - Klaus-Viktor Peinemann
- Biological and Environmental Science and Engineering Division, ‡Center for Numerical Porous Media, §Advanced Membranes and Porous Material Center, and ∥Earth Science & Engineering and Applied Mathematics & Computational Science, King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia 23955-6900
| | - Victor M. Calo
- Biological and Environmental Science and Engineering Division, ‡Center for Numerical Porous Media, §Advanced Membranes and Porous Material Center, and ∥Earth Science & Engineering and Applied Mathematics & Computational Science, King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia 23955-6900
| |
Collapse
|
18
|
Rachmawati R, de Gier HD, Woortman AJJ, Loos K. Synthesis of Telechelic and Three-Arm Polytetrahydrofuran-block-amylose. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rachmawati Rachmawati
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747AG Groningen The Netherlands
| | - Hilde D. de Gier
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747AG Groningen The Netherlands
| | - Albert J. J. Woortman
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747AG Groningen The Netherlands
| | - Katja Loos
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747AG Groningen The Netherlands
| |
Collapse
|
19
|
Xu Y, Wang C, Zhong S, Li W, Lin Z. Self-assembly of miktoarm star-like ABn block copolymers: from wet to dry brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:2905-2913. [PMID: 25689323 DOI: 10.1021/acs.langmuir.5b00081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Self-assembly of miktoarm star-like ABn block copolymer in both selective solvent (A- or B-selective) and miscible homopolymer matrix (A or B homopolymer), that is, formation of micelles, was for the first time investigated by theoretical calculations based on self-consistent mean field theory. Interestingly, the calculation revealed that the size of micelles in solvent was smaller than that in homopolymer under the same conditions. In B-selective solvent, with increasing number of B blocks n in miktoarm star-like ABn block copolymer at a fixed volume fraction of A block, the micellar size decreased gradually. In stark contrast, when miktoarm star-like ABn block copolymer dissolved in B homopolymer matrix at molecular weight ratio of B homopolymer to ABn block copolymer fH = 0.30, the overall micellar size decreased nonmonotonically as the number of B blocks n in ABn block copolymer increased. The largest micelle was formed in AB2 (i.e., n = 2). This intriguing finding can be attributed to a wet-to-dry brush transition that occurred from n = 1 to n = 2 in the micellization of miktoarm star-like ABn block copolymer. Moreover, the micellization behaviors of miktoarm star-like ABn block copolymer in A-selective solvent and A homopolymer matrix were also explored, where the overall micellar size in both scenarios was found to decrease monotonically as n in ABn block copolymer increased. These self-assembled nanostructures composed of miktoarm star-like ABn block copolymers may promise a wide range of applications in size-dependent drug delivery and bionanotechnology.
Collapse
Affiliation(s)
- Yuci Xu
- Department of Polymer Science and Engineering, Faculty of Materials Science and Chemical Engineering, Key Laboratory of Specialty Polymers, Ningbo University , Ningbo, Zhejiang 315211, China
| | | | | | | | | |
Collapse
|
20
|
Ma J, Cui J, Han Y, Jiang W, Sun Y. Monte Carlo study of the micelles constructed by ABCA tetrablock copolymers and their formation in A-selective solvents. RSC Adv 2015. [DOI: 10.1039/c5ra11865d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Micelles with hamburger-type and Janus-type solvophobic parts, asymmetric vesicles with multicompartment outer surface formed by ABCA tetrablock copolymers in A-selective solvent.
Collapse
Affiliation(s)
- Jiani Ma
- Northeast Normal University
- School of Physics
- Changchun 130024
- P. R. China
- State Key Laboratory of Polymer Physics and Chemistry
| | - Jie Cui
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Yuanyuan Han
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Wei Jiang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Yingchun Sun
- Northeast Normal University
- School of Physics
- Changchun 130024
- P. R. China
| |
Collapse
|
21
|
Yang G, Yang Z, Mu C, Fan X, Tian W, Wang Q. A dual stimuli responsive fluorescent probe carrier from a double hydrophilic block copolymer capped with β-cyclodextrin. Polym Chem 2015. [DOI: 10.1039/c5py00255a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A β-cyclodextrin terminated triblock copolymer with both hydrophilic temperature and pH sensitive segments was prepared and characterized in terms of self-assembling and encapsulation behaviors.
Collapse
Affiliation(s)
- Guang Yang
- Department of Materials Science and Engineering
- The Pennsylvania State University
- University Park
- Pennsylvania 16802
- USA
| | - Zhen Yang
- The Key Lab of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Lab of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
| | - Chengguang Mu
- The Key Lab of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Lab of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
| | - Xiaodong Fan
- The Key Lab of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Lab of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
| | - Wei Tian
- The Key Lab of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Lab of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
| | - Qing Wang
- Department of Materials Science and Engineering
- The Pennsylvania State University
- University Park
- Pennsylvania 16802
- USA
| |
Collapse
|
22
|
Fan JJ, Han YY, Cui J. Solvent property induced morphological changes of ABA amphiphilic triblock copolymer micelles in dilute solution: A self-consistent field simulation study. CHINESE JOURNAL OF POLYMER SCIENCE 2014. [DOI: 10.1007/s10118-014-1529-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Sheng Y, Yan N, An J, Zhu Y. Multicompartment nanoparticles from the self-assembly of mixtures of ABC and AC block copolymers in C-selective solvents. Chem Phys 2014. [DOI: 10.1016/j.chemphys.2014.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Wu ZQ, Qi CG, Liu N, Wang Y, Yin J, Zhu YY, Qiu LZ, Lu HB. One-pot synthesis of conjugated poly(3-hexylthiophene)-b-poly(phenyl isocyanide) hybrid rod-rod block copolymers and its self-assembling properties. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26689] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zong-Quan Wu
- Key Laboratory of Specific Display Technology, Ministry of Education of People's Republic of China, Key Laboratory of Advanced Functional Materials and Devices, Anhui Province, School of Chemical Engineering; Hefei University of Technology; Hefei Anhui 230009 People's Republic of China
| | - Cheng-Gang Qi
- Key Laboratory of Specific Display Technology, Ministry of Education of People's Republic of China, Key Laboratory of Advanced Functional Materials and Devices, Anhui Province, School of Chemical Engineering; Hefei University of Technology; Hefei Anhui 230009 People's Republic of China
| | - Na Liu
- Key Laboratory of Specific Display Technology, Ministry of Education of People's Republic of China, Key Laboratory of Advanced Functional Materials and Devices, Anhui Province, School of Chemical Engineering; Hefei University of Technology; Hefei Anhui 230009 People's Republic of China
| | - Ying Wang
- Key Laboratory of Specific Display Technology, Ministry of Education of People's Republic of China, Key Laboratory of Advanced Functional Materials and Devices, Anhui Province, School of Chemical Engineering; Hefei University of Technology; Hefei Anhui 230009 People's Republic of China
| | - Jun Yin
- Key Laboratory of Specific Display Technology, Ministry of Education of People's Republic of China, Key Laboratory of Advanced Functional Materials and Devices, Anhui Province, School of Chemical Engineering; Hefei University of Technology; Hefei Anhui 230009 People's Republic of China
| | - Yuan-Yuan Zhu
- Key Laboratory of Specific Display Technology, Ministry of Education of People's Republic of China, Key Laboratory of Advanced Functional Materials and Devices, Anhui Province, School of Chemical Engineering; Hefei University of Technology; Hefei Anhui 230009 People's Republic of China
| | - Long-Zhen Qiu
- Key Laboratory of Specific Display Technology, Ministry of Education of People's Republic of China, Key Laboratory of Advanced Functional Materials and Devices, Anhui Province, School of Chemical Engineering; Hefei University of Technology; Hefei Anhui 230009 People's Republic of China
| | - Hong-Bo Lu
- Key Laboratory of Specific Display Technology, Ministry of Education of People's Republic of China, Key Laboratory of Advanced Functional Materials and Devices, Anhui Province, School of Chemical Engineering; Hefei University of Technology; Hefei Anhui 230009 People's Republic of China
| |
Collapse
|
25
|
|
26
|
Han Y, Cui J, Jiang W. Vesicle Structure and Formation of AB/BC Amphiphile Mixture Based on Hydrogen Bonding in a Selective Solvent: A Monte Carlo Study. J Phys Chem B 2012; 116:9208-14. [DOI: 10.1021/jp3009783] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuanyuan Han
- State Key
Laboratory of Polymer Physics and Chemistry, Changchun Institute of
Applied Chemistry, Chinese Academy of Sciences, Changchun 130022,
P. R. China
| | - Jie Cui
- State Key
Laboratory of Polymer Physics and Chemistry, Changchun Institute of
Applied Chemistry, Chinese Academy of Sciences, Changchun 130022,
P. R. China
| | - Wei Jiang
- State Key
Laboratory of Polymer Physics and Chemistry, Changchun Institute of
Applied Chemistry, Chinese Academy of Sciences, Changchun 130022,
P. R. China
| |
Collapse
|
27
|
Dynamic Interactive Membranes with Pressure-Driven Tunable Porosity and Self-Healing Ability. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201686] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Tyagi P, Deratani A, Bouyer D, Cot D, Gence V, Barboiu M, Phan TNT, Bertin D, Gigmes D, Quemener D. Dynamic Interactive Membranes with Pressure-Driven Tunable Porosity and Self-Healing Ability. Angew Chem Int Ed Engl 2012; 51:7166-70. [DOI: 10.1002/anie.201201686] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Indexed: 11/08/2022]
|
29
|
ZHUANG Y, WANG L, LIN J. SELF-ASSEMBLY BEHAVIOR OF SUPRAMOLECULAR DIBLOCK COPOLYMER/HOMOPOLYMER MIXTURES WITH NON-COVALENT BONDING INTERACTIONS IN SELECTIVE SOLVENTS. ACTA POLYM SIN 2011. [DOI: 10.3724/sp.j.1105.2011.11017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Cui J, Jiang W. Structure of ABCA tetrablock copolymer vesicles and their formation in selective solvents: a Monte Carlo study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:10141-10147. [PMID: 21744835 DOI: 10.1021/la202377t] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Vesicles formed by ABCA tetrablock copolymers in solvents that are selective for block A are studied using the Monte Carlo simulation. Simulation results show that the chain length ratio and hydrophobicity of blocks B and C are key factors determining the hydrophobic layer structure of the vesicles. If the B and C blocks are of the same hydrophobicity, the longer block C tends to form the closed hydrophobic layer, whereas the shorter block B is located on the outer surface of the closed hydrophobic layer. However, if the hydrophobicity difference between blocks B and C is high enough, the reverse will occur given that block B has a higher hydrophobicity and block C has a lower hydrophobicity. The kinetics of vesicle formation is also studied. Simulation results reveal that the hydrophobic layer structure is formed through the migration of the polymer chain within the vesicle membrane after the formation of the vesicle profile. This migration is independent of the differences in chain length ratio and the hydrophobicity between the blocks B and C. The packing mode and the migration of polymer chains within the vesicle membrane are also presented and discussed.
Collapse
Affiliation(s)
- Jie Cui
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | | |
Collapse
|
31
|
Mohd Yusoff SF, Gilroy JB, Cambridge G, Winnik MA, Manners I. End-to-end coupling and network formation behavior of cylindrical block copolymer micelles with a crystalline polyferrocenylsilane core. J Am Chem Soc 2011; 133:11220-30. [PMID: 21615167 DOI: 10.1021/ja202340s] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cylindrical block copolymer micelles with a crystalline poly(ferrocenyldimethylsilane) (PFDMS) core and a long corona-forming block are known to elongate through an epitaxial growth mechanism on addition of further PFDMS block copolymer unimers. We now report that addition of the semicrystalline homopolymer PFDMS(28) to monodisperse short (ca. 200 nm), cylindrical seed micelles of PFDMS block copolymers results in the formation of aggregated structures by end-to-end coupling to form micelle networks. The resulting aggregates were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). In some cases, a core-thickening effect was also observed where the added homopolymer appeared to deposit and crystallize at the core-corona interface, which resulted in an increase of the width of the micelles within the networks. No evidence for aggregation was detected when the amorphous homopolymer poly(ferrocenylethylmethylsilane) (PFEMS(25)) was added to the cylindrical seed micelles whereas similar behavior to PFDMS(28) was noted for semicrystalline polyferrocenyldimethylgermane (PFDMG(30)). This suggested that the crystallinity of the added homopolymer is critical for subsequent end-to-end coupling and network formation to occur. We also explored the tendency of the cylindrical seed micelles to form aggregates by the addition of PI-b-PFDMS (PI = polyisoprene) block copolymers (block ratios 6:1, 3.8:1, 2:1, or 1:1), and striking differences were noted. The results ranged from typical micelle elongation, as reported in previous work, at high corona to core-forming block ratios (PI-b-PFDMS; 6:1) to predominantly end-to-end coupling at lower ratios (PI-b-PFDMS; 2:1, 1:1) to form long, essentially linear structures. The latter process, especially for the 2:1 block copolymer, led to much more controlled aggregate formation compared with that observed on addition of homopolymers.
Collapse
Affiliation(s)
- Siti F Mohd Yusoff
- School of Chemistry, University of Bristol, Bristol, United Kingdom BS8 1TS
| | | | | | | | | |
Collapse
|
32
|
Jiang T, Wang L, Lin S, Lin J, Li Y. Structural evolution of multicompartment micelles self-assembled from linear ABC triblock copolymer in selective solvents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:6440-6448. [PMID: 21506539 DOI: 10.1021/la201080z] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Using dissipative particle dynamics simulation, structural evolution from concentric multicompartment micelles to raspberry-like multicompartment micelles self-assembled from linear ABC triblock copolymers in selective solvents was investigated. The structural transformation from concentric micelles to raspberry-like micelles can be controlled by changing either the length of B blocks or the solubility of B block. It was found that the structures with B bumps on C surface (B-bump-C) are formed at shorter B block length and the structures with C bumps on B surface (C-bump-B) are formed at relative lower solubility of B blocks. The formation of B-bump-C is entropy-driven, while the formation of C-bump-B is enthalpy-dominated. Furthermore, when the length of C blocks is much lower than that of B blocks, an inner-penetrating vesicle was discovered. The results gained through the simulations provide an insight into the mechanism behind the formation of raspberry-like micelles.
Collapse
Affiliation(s)
- Tao Jiang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | | | | | | | | |
Collapse
|
33
|
Abstract
Block copolymers (BCs) are well-known building blocks for the creation of a large variety of nanostructured materials or objects through a dynamic assembly stage which can be either autonomous or guided by an external force. Today's nanotechnologies require sharp control of the overall architecture from the nanoscale to the macroscale. BCs enable this dynamic assembly through all the scales, from few aggregated polymer chains to large bulk polymer materials. Since the discovery of controlled methods to polymerize monomers with different functionalities, a broad diversity of BCs exists, giving rise to many different nanoobjects and nanostructured materials. This chapter will explore the potentialities of block copolymer chains to be assembled through dynamic interactions either in solution or in bulk.
Collapse
|
34
|
He P, Li X, Kou D, Deng M, Liang H. Complex micelles from the self-assembly of amphiphilic triblock copolymers in selective solvents. J Chem Phys 2010; 132:204905. [DOI: 10.1063/1.3431203] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|