1
|
Yang Y, Palacio-Betancur V, Wang X, de Pablo JJ, Abbott NL. Strongly Chiral Liquid Crystals in Nanoemulsions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105835. [PMID: 35023609 DOI: 10.1002/smll.202105835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Liquid crystal (LC) emulsions represent a class of confined soft matter that exhibit exotic internal organizations and size-dependent properties, including responses to chemical and physical stimuli. Past studies have explored micrometer-scale LC emulsion droplets but little is known about LC ordering within submicrometer-sized droplets. This paper reports experiments and simulations that unmask the consequences of confinement in nanoemulsions on strongly chiral LCs that form bulk cholesteric and blue phases (BPs). A method based on light scattering is developed to characterize phase transitions of LCs within the nanodroplets. For droplets with a radius to the pitch ratio (Rv /p0 ) as small as 2/3, the BP-to-cholesteric transition is substantially suppressed, leading to a threefold increase of the BP temperature interval relative to bulk behavior. Complementary simulations align with experimental findings and reveal the dominant role of chiral elastic energy. For Rv /p0 ≈ 1/3, a single LC phase forms below the clearing point, with simulations revealing the new configuration to contain a τ-1/2 disclination that extends across the nanodroplet. These findings are discussed in the context of mechanisms by which polymer networks stabilize BPs and, more broadly, for the design of nanoconfined soft matter.
Collapse
Affiliation(s)
- Yu Yang
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | | | - Xin Wang
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Nicholas L Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
2
|
Zhang YS, Ma CL, Rudyak VY, Jiang SA, Shvetsov SA, Lin JD, Lee CR. Thermal and optical manipulation of morphology in cholesteric liquid crystal microdroplets constrained on microfibers. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Wang X, Zhou Y, Palacio-Betancur V, Kim YK, Delalande L, Tsuei M, Yang Y, de Pablo JJ, Abbott NL. Reconfigurable Multicompartment Emulsion Drops Formed by Nematic Liquid Crystals and Immiscible Perfluorocarbon Oils. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16312-16323. [PMID: 31652070 DOI: 10.1021/acs.langmuir.9b02864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Liquid crystalline (LC) oils offer the basis of stimuli-responsive LC-in-water emulsions. Although past studies have explored the properties of single-phase LC emulsions, few studies have focused on complex multicompartment emulsions containing co-existing isotropic and LC domains. In this paper, we report a study of multiphase emulsions using LCs and immiscible perfluoroalkanes dispersed in water or glycerol (the latter continuous phase is used to enable characterization). We found that the nematogen 4'-pentyl-4-biphenylcarbonitrile (5CB) anchors homeotropically (perpendicularly) and weakly at liquid perfluorononane (F9) interfaces, consistent with the smectic layering of 5CB molecules. The proposed role of smectic layering is supported by experiments performed with 4-(trans-4-pentylcyclohexyl)benzonitrile, a nematogen that possesses a cyclohexyl group that frustrates the smectic packing and leads to tilted orientations at the F9 interface. By employing perfluorocarbon and hydrocarbon surfactants in combination with multiphase 5CB and F9 emulsion droplets dispersed in a continuous water or glycerol phase, we observe a range of emulsion droplet morphologies to form, including core-shell and Janus structures, with internal organizations that reflect an interplay of interfacial (anchoring energies; F9 and glycerol) and elastic energies within the confines of the geometry of the emulsion droplet. By comparing experimental observations to simulations of the LC-perfluorocarbon droplets based on a Landau-de Gennes model of the free energy, we place bounds on the orientation-dependent interfacial energies that underlie the internal ordering of these complex emulsions. Additionally, by forming core-shells emulsion droplets from 5CB (shell) and perfluoroheptane (cores), we demonstrate how a liquid-to-vapor phase transition in the perfluorocarbon core can be used to actuate the droplet and rapidly thin the nematic shell. Overall, the results reported in this paper demonstrate that multiphase LC emulsions formed from mixtures of perfluoroalkanes and LCs provide new opportunities to engineer hierarchical and stimuli-responsive emulsion systems.
Collapse
Affiliation(s)
- Xin Wang
- Smith School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , New York 14850 , United States
| | - Ye Zhou
- Pritzker School of Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States
| | - Viviana Palacio-Betancur
- Pritzker School of Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States
| | - Young-Ki Kim
- Smith School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , New York 14850 , United States
- Department of Chemical Engineering , Pohang University of Science and Technology , Pohang , Gyengbuk 37673 , Korea
| | - Lily Delalande
- Pritzker School of Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States
| | - Michael Tsuei
- Smith School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , New York 14850 , United States
| | - Yu Yang
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States
- Center for Molecular Engineering , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Nicholas L Abbott
- Smith School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , New York 14850 , United States
| |
Collapse
|
4
|
Influence of polymer networks on the sensor properties of hydrogel dispersed liquid crystal droplets. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.03.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Peng H, Jiang W, Liu Q, Chen G, Ni M, Liang F, Liao Y, Xie X, Smalyukh II. Liquid Crystals under Confinement in Submicrometer Capsules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10955-10963. [PMID: 30130404 DOI: 10.1021/acs.langmuir.8b01056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Liquid crystal (LC) ordering and phase transition behavior under confined conditions have attracted extensive attention and enabled many applications. However, the ordering and phase transition behavior of LCs in submicrometer capsules have seldom been studied, primarily due to the lack of proper capsulizing and visualization approaches to such small LC microcapsules. Herein, we achieve submicrometer LC capsules with the sizes down to 100 nm by using emulsion-based interfacial sol-gel reaction. The behavior of LCs under the submicrometer confinement conditions is investigated while the sizes and chemical composition of the microcapsule shell surface are tuned in a controllable way. The phase transition temperatures of LCs in the submicrometer capsules shift from those of bulk LCs due to the surface-induced ordering of LCs under the strong confinement conditions, which causes formation of topological defects and alters the order parameter. Using nonlinear optical imaging technology, we explore the structures of director field of LCs that arise as a result of the competition between the surface boundary conditions and LC elasticity. The results show that the nanoscale encapsulation can significantly influence the structural configurations of the director and phase transitions of LCs under various confinement conditions.
Collapse
Affiliation(s)
- Haiyan Peng
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, and Hubei Key Lab of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , P. R. China
- Sino-U.S. Joint Research Center on Liquid Crystal Chemistry and Physics , HUST and CUB
| | - Wenhong Jiang
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, and Hubei Key Lab of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , P. R. China
- State Key Lab of Polymer Physics and Chemistry , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Qingkun Liu
- Department of Physics and Materials Science and Engineering Program , University of Colorado at Boulder (CUB) , Boulder , Colorado 80309 , United States
| | - Guannan Chen
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, and Hubei Key Lab of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , P. R. China
| | - Mingli Ni
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, and Hubei Key Lab of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , P. R. China
| | - Fuxin Liang
- State Key Lab of Polymer Physics and Chemistry , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Yonggui Liao
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, and Hubei Key Lab of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , P. R. China
- Sino-U.S. Joint Research Center on Liquid Crystal Chemistry and Physics , HUST and CUB
| | - Xiaolin Xie
- Key Lab for Material Chemistry of Energy Conversion and Storage, Ministry of Education, and Hubei Key Lab of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , P. R. China
- Sino-U.S. Joint Research Center on Liquid Crystal Chemistry and Physics , HUST and CUB
| | - Ivan I Smalyukh
- Department of Physics and Materials Science and Engineering Program , University of Colorado at Boulder (CUB) , Boulder , Colorado 80309 , United States
- Sino-U.S. Joint Research Center on Liquid Crystal Chemistry and Physics , HUST and CUB
| |
Collapse
|
6
|
Kim YK, Huang Y, Tsuei M, Wang X, Gianneschi NC, Abbott NL. Multi-Scale Responses of Liquid Crystals Triggered by Interfacial Assemblies of Cleavable Homopolymers. Chemphyschem 2018; 19:2037-2045. [PMID: 29682873 DOI: 10.1002/cphc.201800106] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Indexed: 12/17/2022]
Abstract
Liquid crystals (LCs) offer the basis of stimuli-responsive materials that can amplify targeted molecular events into macroscopic outputs. However, general and versatile design principles are needed to realize the full potential of these materials. To this end, we report the synthesis of two homopolymers with mesogenic side chains that can be cleaved upon exposure to either H2 O2 (polymer P1) or UV light (polymer P2). Optical measurements reveal that the polymers dissolve in bulk LC and spontaneously assemble at nematic LC-aqueous interfaces to impose a perpendicular orientation on the LCs. Subsequent addition of H2 O2 to the aqueous phase or exposure of the LC to UV was shown to trigger a surface-driven ordering transition to a planar orientation and an accompanying macroscopic optical output. Differences in the dynamics of the response to each stimulus are consistent with sequential processing of P1 at the LC-aqueous interface (H2 O2 ) and simultaneous transformation of P2 within the LC (UV). The versatility of the approach is demonstrated by creating stimuli-responsive LCs as films or microdroplets, and by dissolving mixtures of P1 and P2 into LCs to create LC materials that respond to two stimuli. Overall, our results validate a simple and generalizable approach to the rational design of polymers that can be used to program stimuli-responsiveness into LC materials.
Collapse
Affiliation(s)
- Young-Ki Kim
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison Madison, Wisconsin, 53706, USA
| | - Yuran Huang
- Materials Science & Engineering, University of Califonia, San Diego, La Jolla, CA 92093, USA
| | - Michael Tsuei
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison Madison, Wisconsin, 53706, USA
| | - Xin Wang
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison Madison, Wisconsin, 53706, USA
| | - Nathan C Gianneschi
- Department of Chemistry, Department of Materials Science & Engineering, and Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Nicholas L Abbott
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison Madison, Wisconsin, 53706, USA
| |
Collapse
|
7
|
Sidiq S, Prasad GVRK, Mukhopadhaya A, Pal SK. Poly(l-lysine)-Coated Liquid Crystal Droplets for Cell-Based Sensing Applications. J Phys Chem B 2017; 121:4247-4256. [DOI: 10.1021/acs.jpcb.7b00551] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sumyra Sidiq
- Department
of Chemical Sciences and §Department of Biological Sciences, Indian Institute of Science Education and Research Mohali (IISERM), Knowledge
City, Sector-81, SAS Nagar, Mohali 140306, India
| | - G. V. R. Krishna Prasad
- Department
of Chemical Sciences and §Department of Biological Sciences, Indian Institute of Science Education and Research Mohali (IISERM), Knowledge
City, Sector-81, SAS Nagar, Mohali 140306, India
| | - Arunika Mukhopadhaya
- Department
of Chemical Sciences and §Department of Biological Sciences, Indian Institute of Science Education and Research Mohali (IISERM), Knowledge
City, Sector-81, SAS Nagar, Mohali 140306, India
| | - Santanu Kumar Pal
- Department
of Chemical Sciences and §Department of Biological Sciences, Indian Institute of Science Education and Research Mohali (IISERM), Knowledge
City, Sector-81, SAS Nagar, Mohali 140306, India
| |
Collapse
|
8
|
|
9
|
Londoño-Hurtado A, Armas-Pérez JC, Hernández-Ortiz JP, de Pablo JJ. Homeotropic nano-particle assembly on degenerate planar nematic interfaces: films and droplets. SOFT MATTER 2015; 11:5067-5076. [PMID: 26027806 DOI: 10.1039/c5sm00940e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A continuum theory is used to study the effects of homeotropic nano-particles on degenerate planar liquid crystal interfaces. Particle self-assembly mechanisms are obtained from careful examination of particle configurations on a planar film and on a spherical droplet. The free energy functional that describes the system is minimized according to Ginzburg-Landau and stochastic relaxations. The interplay between elastic and surface distortions and the desire to minimize defect volumes (boojums and half-Saturn rings) is shown to be responsible for the formation of intriguing ordered structures. As a general trend, the particles prefer to localize at defects to minimize the overall free energy. However, multiple metastable configurations corresponding to local minima can be easily observed due to the high energy barriers that separate distinct particle arrangements. We also show that by controlling anchoring strength and temperature one can direct liquid-crystal mediated nanoparticle self-assembly along well defined pathways.
Collapse
|
10
|
Verani CN, Driscoll J, Keyes PH, Heeg MJ. Cationic Copper(II)-containing Surfactants: Molecular Structures, Film Morphology, and Influence on the Alignment of Nematic Mesogens. Inorg Chem 2014; 53:5647-55. [DOI: 10.1021/ic5004098] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cláudio N. Verani
- Department of Chemistry and ‡Department of Physics and Astronomy, Wayne State University, 5101 Cass Avenue, Room 161, Detroit, Michigan 48202, United States
| | - Jeffery Driscoll
- Department of Chemistry and ‡Department of Physics and Astronomy, Wayne State University, 5101 Cass Avenue, Room 161, Detroit, Michigan 48202, United States
| | - Paul H. Keyes
- Department of Chemistry and ‡Department of Physics and Astronomy, Wayne State University, 5101 Cass Avenue, Room 161, Detroit, Michigan 48202, United States
| | - Mary Jane Heeg
- Department of Chemistry and ‡Department of Physics and Astronomy, Wayne State University, 5101 Cass Avenue, Room 161, Detroit, Michigan 48202, United States
| |
Collapse
|
11
|
Bera T, Deng J, Fang J. Protein-Induced Configuration Transitions of Polyelectrolyte-Modified Liquid Crystal Droplets. J Phys Chem B 2014; 118:4970-5. [DOI: 10.1021/jp501587h] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tanmay Bera
- Department of Materials Science
and Engineering, University of Central Florida, Orlando, Florida 32826, United States
| | - Jinan Deng
- Department of Materials Science
and Engineering, University of Central Florida, Orlando, Florida 32826, United States
| | - Jiyu Fang
- Department of Materials Science
and Engineering, University of Central Florida, Orlando, Florida 32826, United States
| |
Collapse
|
12
|
Sidiq S, Das D, Pal SK. A new pathway for the formation of radial nematic droplets within a lipid-laden aqueous-liquid crystal interface. RSC Adv 2014. [DOI: 10.1039/c3ra48044e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new pathway for the formation of liquid crystal (LC) droplets with radial LC ordering is reported for the first time in the presence of surfactants and lipids. Interactions of an enzyme with the topological defects in the LC mediate the response of these droplets and thus provide new designs for stimuli-responsive soft materials.
Collapse
Affiliation(s)
- Sumyra Sidiq
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Mohali
- Mohali 140306, India
| | - Dibyendu Das
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Mohali
- Mohali 140306, India
| | - Santanu Kumar Pal
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Mohali
- Mohali 140306, India
| |
Collapse
|
13
|
Dong Y, Yang Z. Beyond displays: The recent progress of liquid crystals for bio/chemical detections. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-5767-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Carlton RJ, Hunter JT, Miller DS, Abbasi R, Mushenheim PC, Tan LN, Abbott NL. Chemical and biological sensing using liquid crystals. LIQUID CRYSTALS REVIEWS 2013; 1:29-51. [PMID: 24795857 PMCID: PMC4005293 DOI: 10.1080/21680396.2013.769310] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The liquid crystalline state of matter arises from orientation-dependent, non-covalent interaction between molecules within condensed phases. Because the balance of intermolecular forces that underlies formation of liquid crystals is delicate, this state of matter can, in general, be easily perturbed by external stimuli (such as an electric field in a display). In this review, we present an overview of recent efforts that have focused on exploiting the responsiveness of liquid crystals as the basis of chemical and biological sensors. In this application of liquid crystals, the challenge is to design liquid crystalline systems that undergo changes in organization when perturbed by targeted chemical and biological species of interest. The approaches described below revolve around the design of interfaces that selectively bind targeted species, thus leading to surface-driven changes in the organization of the liquid crystals. Because liquid crystals possess anisotropic optical and dielectric properties, a range of different methods can be used to read out the changes in organization of liquid crystals that are caused by targeted chemical and biological species. This review focuses on principles for liquid crystal-based sensors that provide an optical output.
Collapse
Affiliation(s)
- Rebecca J Carlton
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Jacob T Hunter
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Daniel S Miller
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Reza Abbasi
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Peter C Mushenheim
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Lie Na Tan
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Nicholas L Abbott
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
15
|
Aliño VJ, Sim PH, Choy WT, Fraser A, Yang KL. Detecting proteins in microfluidic channels decorated with liquid crystal sensing dots. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:17571-7. [PMID: 23163482 DOI: 10.1021/la303213h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this paper, we report the integration of liquid crystal (LC) dots on microfluidic channels as microscopic protein sensors. Flexibility of patterning LC dots on a surface to fit small microfluidic channels is achieved by using inkjet printing technology. These LC dots (1 pL) remain stable when they are subjected to flowing buffer solution at a high flow velocity (v ≥ 0.198 cm/s). When the buffer solution contains protein, such as bovine serum albumin (BSA), it causes a change in the orientational ordering of the LC dots as indicated by a distinct dark-to-bright transition in the optical appearance of the LC dots. Moreover, we are able estimate the concentration of BSA by simply counting the number of bright LC dot sections. This microscopic protein sensor has potential applications in the real-time detection and quantification of proteins in aqueous solutions. This detection method is advantageous because protein labeling and complex instrumentation are not required.
Collapse
Affiliation(s)
- Vera Joanne Aliño
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, Singapore 117576
| | | | | | | | | |
Collapse
|
16
|
Aliño VJ, Tay KX, Khan SA, Yang KL. Inkjet printing and release of monodisperse liquid crystal droplets from solid surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:14540-14546. [PMID: 22991961 DOI: 10.1021/la3028463] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Recently, liquid crystal (LC) droplets in aqueous solutions have become a new platform for chemical and biological sensing applications. In this work, we present a two-step method to generate monodisperse LC droplets in aqueous solutions for sensing applications. In the first step, we exploit inkjet printing to dispense uniform LC droplets on a solid surface. Uniform LC droplets, ranging from 35 to 136 μm in diameter, can be prepared by printing multiple times on the same spot. In the second step, we flush the LC droplets with a stream of aqueous solution in an open rectangular channel. Factors that determine the polydispersity of the LC droplets include flow rates and surface wettability. Under appropriate experimental conditions (i.e., when the surface is glass and the flow rate is sufficiently high), the LC droplets can be lifted off completely and carried away by the solution, forming free LC droplets (15-62 μm in diameter). These free LC droplets can respond to a chemical reaction and change their optical textures uniformly.
Collapse
Affiliation(s)
- Vera Joanne Aliño
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
| | | | | | | |
Collapse
|
17
|
Carlton RJ, Gupta JK, Swift CL, Abbott NL. Influence of simple electrolytes on the orientational ordering of thermotropic liquid crystals at aqueous interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:31-6. [PMID: 22106820 PMCID: PMC3254853 DOI: 10.1021/la203729t] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We report orientational anchoring transitions at aqueous interfaces of a water-immiscible, thermotropic liquid crystal (LC; nematic phase of 4'-pentyl-4-cyanobiphenyl (5CB)) that are induced by changes in pH and the addition of simple electrolytes (NaCl) to the aqueous phase. Whereas measurements of the zeta potential on the aqueous side of the interface of LC-in-water emulsions prepared with 5CB confirm pH-dependent formation of an electrical double layer extending into the aqueous phase, quantification of the orientational ordering of the LC leads to the proposition that an electrical double layer is also formed on the LC-side of the interface with an internal electric field that drives the LC anchoring transition. Further support for this conclusion is obtained from measurements of the dependence of LC ordering on pH and ionic strength, as well as a simple model based on the Poisson-Boltzmann equation from which we calculate the contribution of an electrical double layer to the orientational anchoring energy of the LC. Overall, the results presented herein provide new fundamental insights into ionic phenomena at LC-aqueous interfaces, and expand the range of solutes known to cause orientational anchoring transitions at LC-aqueous interfaces beyond previously examined amphiphilic adsorbates.
Collapse
Affiliation(s)
- Rebecca J. Carlton
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Jugal K. Gupta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Candice L. Swift
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Nicholas L. Abbott
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
18
|
Bera T, Fang J. Polyelectrolyte-coated liquid crystal droplets for detecting charged macromolecules. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm00038e] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Khan W, Choi JH, Kim GM, Park SY. Microfluidic formation of pH responsive 5CB droplets decorated with PAA-b-LCP. LAB ON A CHIP 2011; 11:3493-3498. [PMID: 21874196 DOI: 10.1039/c1lc20402e] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We are reporting for the first time the pH responsiveness of liquid crystal (LC) microdroplets decorated with an amphiphilic block copolymer of PAA-b-LCP. We successfully demonstrated the adsorption of block copolymer on LC droplets by fluorescence microscopy and pH response to the radial-to-bipolar orientational change of the LC droplets by changing pH from 12 to 2 through the polarized optical microscope (POM). We believe that our results may pave the way for the generation of monodisperse droplets decorated by various amphiphilic block copolymers which respond to several kinds of the external stimuli. These developments may be important for potential applications of the LC droplets in sensing and encapsulation fields.
Collapse
Affiliation(s)
- Waliullah Khan
- Department of Polymer Science, Kyungpook National University, Buk-gu, Daegu, South Korea
| | | | | | | |
Collapse
|
20
|
Zou J, Bera T, Davis AA, Liang W, Fang J. Director Configuration Transitions of Polyelectrolyte Coated Liquid-Crystal Droplets. J Phys Chem B 2011; 115:8970-4. [DOI: 10.1021/jp201909m] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jianhua Zou
- Advanced Materials Processing and Analysis Center, Department of Mechanical, Materials, and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Tanmay Bera
- Advanced Materials Processing and Analysis Center, Department of Mechanical, Materials, and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Alicia A. Davis
- Advanced Materials Processing and Analysis Center, Department of Mechanical, Materials, and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Wenlang Liang
- Advanced Materials Processing and Analysis Center, Department of Mechanical, Materials, and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Jiyu Fang
- Advanced Materials Processing and Analysis Center, Department of Mechanical, Materials, and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
21
|
Kinsinger MI, Buck ME, Abbott NL, Lynn DM. Immobilization of polymer-decorated liquid crystal droplets on chemically tailored surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:10234-42. [PMID: 20405867 PMCID: PMC2883006 DOI: 10.1021/la100376u] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We demonstrate that the assembly of an amphiphilic polyamine on the interfaces of micrometer-sized droplets of a thermotropic liquid crystal (LC) dispersed in aqueous solutions can be used to facilitate the immobilization of LC droplets on chemically functionalized surfaces. Polymer 1 was designed to contain both hydrophobic (alkyl-functionalized) and hydrophilic (primary and tertiary amine-functionalized) side chain functionality. The assembly of this polymer at the interfaces of aqueous dispersions of LC droplets was achieved by the spontaneous adsorption of polymer from aqueous solution. Polymer adsorption triggered transitions in the orientational ordering of the LCs, as observed by polarized light and bright-field microscopy. We demonstrate that the presence of polymer 1 on the interfaces of these droplets can be exploited to immobilize LC droplets on planar solid surfaces through covalent bond formation (e.g., for surfaces coated with polymer multilayers containing reactive azlactone functionality) or through electrostatic interactions (e.g., for surfaces coated with multilayers containing hydrolyzed azlactone functionality). The characterization of immobilized LC droplets by polarized, fluorescence, and laser scanning confocal microscopy revealed the general spherical shape of the polymer-coated LC droplets to be maintained after immobilization, and that immobilization led to additional ordering transitions within the droplets that were dependent on the nature of the surfaces with which they were in contact. Polymer 1-functionalized LC droplets were not immobilized on polymer multilayers treated with poly(ethylene imine) (PEI). We demonstrate that the ability to design surfaces that promote or prevent the immobilization of polymer-functionalized LC droplets can be exploited to pattern the immobilization of LC droplets on surfaces. The results of this investigation provide the basis of an approach that could be used to tailor the properties of dispersed LC emulsions and to immobilize these droplets on functional surfaces of interest in a broad range of fundamental and applied contexts.
Collapse
Affiliation(s)
- Michael I Kinsinger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|