1
|
Feng J, Jiang Y, Liu S, Deng L, Lv Y, Chen N, Han S. KIT-SNAP-tag/cell membrane chromatography model coupled with liquid chromatography-mass spectrometry for anti-GIST compound screening from Evodia rutaecarpa. Anal Bioanal Chem 2024; 416:1457-1468. [PMID: 38231254 DOI: 10.1007/s00216-024-05148-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/18/2024]
Abstract
Gastrointestinal mesenchymal tumors, as the most common mesenchymal tumors in the gastrointestinal tract, are adjuvantly treated with multi-targeted tyrosine kinase inhibitors, such as imatinib and sunitinib, but there are problems of drug resistance and complex methods of monitoring therapeutic agents. The pathogenesis of this disease is related to mutations in tyrosine kinase (KIT) or platelet-derived growth factor receptor α, an important target for drug therapy. In recent years, the screening of relevant tyrosine kinase inhibitors from traditional Chinese medicine has become a hotspot in antitumor drug research. In the current study, the KIT-SNAP-tag cell membrane chromatography (KIT-SNAP-tag/CMC) column was prepared with satisfying specificity, selectivity, and reproducibility by chemically bonding high KIT expression cell membranes to the silica gel surface using the SNAP-tag technology. The KIT-SNAP-tag/CMC-HPLC-MS two-dimensional coupling system was investigated using the positive drug imatinib, and the results showed that the system was a reliable model for screening potential antitumor compounds from complex systems. This system screened and identified three potential active compounds of evodiamine (EVO), rutaecarpin (RUT), and dehydroevodiamine (DEVO), which possibly target the KIT receptor, from the alcoholic extract of the traditional Chinese medicine Evodia rutaecarpa. Then, the KD values of the interaction of EVO, RUT, and DEVO with KIT receptors measured using nonlinear chromatography were 7.75 (±4.93) × 10-6, 1.42 (±0.71) × 10-6, and 2.34 (±1.86) × 10-6 mol/L, respectively. In addition, the methyl thiazolyl tetrazolium assay validated the active effects of EVO and RUT in inhibiting the proliferation of high KIT-expressing cells in the ranges of 0.1-10 µmol/L and 0.1-50 µmol/L, respectively. In conclusion, the KIT-SNAP-tag/CMC could be a reliable model for screening antitumor components from complex systems.
Collapse
Affiliation(s)
- Jingting Feng
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China
| | - Yuhan Jiang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China
| | - Sihan Liu
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China
| | - Linge Deng
- Health Science Center, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China
| | - Yanni Lv
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China
| | - Nanzheng Chen
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277# Yanta West Road, Xi'an, 710061, China.
| | - Shengli Han
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China.
- Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an, 710115, China.
| |
Collapse
|
2
|
Dreyer R, Pfukwa R, Barth S, Hunter R, Klumperman B. The Evolution of SNAP-Tag Labels. Biomacromolecules 2023; 24:517-530. [PMID: 36607253 DOI: 10.1021/acs.biomac.2c01238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The conjugation of proteins with synthetic molecules can be conducted in many different ways. In this Perspective, we focus on tag-based techniques and specifically on the SNAP-tag technology. The SNAP-tag technology makes use of a fusion protein between a protein of interest and an enzyme tag that enables the actual conjugation reaction. The SNAP-tag is based on the O6-alkylguanine-DNA alkyltransferase (AGT) enzyme and is optimized to react selectively with O6-benzylguanine (BG) substrates. BG-containing dye derivatives have frequently been used to introduce a fluorescent tag to a specific protein. We believe that the site-specific conjugation of polymers to proteins can significantly benefit from the SNAP-tag technology. Especially, polymers synthesized via reversible deactivation radical polymerization allow for the facile introduction of a BG end group to enable SNAP-tag conjugation.
Collapse
Affiliation(s)
- Rudolf Dreyer
- Stellenbosch University, Department of Chemistry and Polymer Science, Private Bag X1, Matieland 7602, South Africa
| | - Rueben Pfukwa
- Stellenbosch University, Department of Chemistry and Polymer Science, Private Bag X1, Matieland 7602, South Africa
| | - Stefan Barth
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7935, South Africa.,South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Observatory 7935, South Africa
| | - Roger Hunter
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch 7701, South Africa
| | - Bert Klumperman
- Stellenbosch University, Department of Chemistry and Polymer Science, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
3
|
Zhou H, Fu J, Jia Q, Wang S, Liang P, Wang Y, Lv Y, Han S. Magnetic nanoparticles covalently immobilizing epidermal growth factor receptor by SNAP-Tag protein as a platform for drug discovery. Talanta 2022; 240:123204. [PMID: 35026637 DOI: 10.1016/j.talanta.2021.123204] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/31/2022]
Abstract
Magnetic nanoparticles (NPs) cloaked with cell membranes expressing high levels of the epidermal growth factor receptor (EGFR) have been used to screen for EGFR-targeting active compounds in traditional Chinese medicine (TCM) formulations. However, previous strategies involved physical immobilization of the biomaterials on the surface of the nanocarrier, resulting in highly unstable platforms since the biological materials could dislodge easily. Chemical bonding of biomaterials to the nanoparticles surface can improve the stability of the biomimetic platforms. In this study, membrane fragments from cells expressing SNAP-Tag-EGFR (ST-EGFR) were immobilized on the surface of magnetic NPs. The ST-EGFR magnetic cell membrane nanoparticles (ST-EGFR/MCMNs) showed greater stability, and higher binding capacity, selectivity adsorption of gefitinib after 7 days compared to the un-immobilized magnetic cell membrane nanoparticles (EGFR/MCMNs). The ST-EGFR/MCMNs were used to screen for the EGFR-targeting active compounds of Zanthoxyli Radix (ZR), and identified toddalolactone and nitidine chloride. The latter significantly inhibited the proliferation of EGFR-overexpressing cancer cells, and was more effective compared to gefitinib. This innovative technology can be used to rapidly screen for active compounds from complex extracts, and aid in drug discovery.
Collapse
Affiliation(s)
- Huaxin Zhou
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China
| | - Jia Fu
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China
| | - Qianqian Jia
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China
| | - Saisai Wang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China
| | - Peida Liang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China
| | - Yamin Wang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China
| | - Yanni Lv
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China
| | - Shengli Han
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou) Implement Planning, Guangzhou, 510289, China.
| |
Collapse
|
4
|
Nayab S, Trouillet V, Gliemann H, Weidler PG, Azeem I, Tariq SR, Goldmann AS, Barner-Kowollik C, Yameen B. Reversible Diels-Alder and Michael Addition Reactions Enable the Facile Postsynthetic Modification of Metal-Organic Frameworks. Inorg Chem 2021; 60:4397-4409. [PMID: 33729794 DOI: 10.1021/acs.inorgchem.0c02492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Functionalization of metal-organic frameworks (MOFs) is critical in exploring their structural and chemical diversity for numerous potential applications. Herein, we report multiple approaches for the tandem postsynthetic modification (PSM) of various MOFs derived from Zr(IV), Al(III), and Zn(II). Our current work is based on our efforts to develop a wide range of MOF platforms with a dynamic functional nature that can be chemically switched via thermally triggered reversible Diels-Alder (DA) and hetero-Diels-Alder (HDA) ligations. Furan-tagged MOFs (furan-UiO-66-Zr) were conjugated with maleimide groups bearing dienophiles to prepare MOFs with a chemically switchable nature. As HDA pairs, phosphoryl dithioester-based moieties and cyclopentadiene (Cp)-grafted MOF (Cp-MIL-53-Al) were utilized to demonstrate the cleavage and rebonding of the linkages as a function of temperature. In addition to these strategies, the Michael addition reaction was also applied for the tandem PSM of IRMOF-3-Zn. Maleimide groups were postsynthetically introduced in the MOF lattice, which were further ligated with cysteine-based biomolecules via the thiol-maleimide Michael addition reaction. On the basis of the versatility of the herein presented chemistry, we expect that these approaches will help in designing a variety of sophisticated functional MOF materials addressing diverse applications.
Collapse
Affiliation(s)
- Sana Nayab
- Department of Chemistry & Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Punjab 54792, Pakistan.,Department of Chemistry, Lahore College for Women University, Jail Road, Lahore, Punjab 54000, Pakistan
| | - Vanessa Trouillet
- Institute for Applied Materials (IAM), and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Hartmut Gliemann
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Peter G Weidler
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Iqra Azeem
- Department of Chemistry & Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Punjab 54792, Pakistan
| | - Saadia R Tariq
- Department of Chemistry, Lahore College for Women University, Jail Road, Lahore, Punjab 54000, Pakistan
| | - Anja S Goldmann
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131 Karlsruhe, Germany.,Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Christopher Barner-Kowollik
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131 Karlsruhe, Germany.,Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Basit Yameen
- Department of Chemistry & Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Punjab 54792, Pakistan
| |
Collapse
|
5
|
Gubitosa J, Rizzi V, Fini P, Laurenzana A, Fibbi G, Veiga-Villauriz C, Fanelli F, Fracassi F, Onzo A, Bianco G, Gaeta C, Guerrieri A, Cosma P. Biomolecules from snail mucus (Helix aspersa) conjugated gold nanoparticles, exhibiting potential wound healing and anti-inflammatory activity. SOFT MATTER 2020; 16:10876-10888. [PMID: 33225330 DOI: 10.1039/d0sm01638a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, for the first time, snail slime from garden snails "Helix Aspersa Müller", has been used to induce the formation of eco-friendly gold nanoparticles (AuNPs-SS) suitable for biomedical applications. An AuNPs-SS comprehensive investigation was performed and AuNPs with an average particle size of 14 ± 6 nm were observed, stabilized by a slime snail-based organic layer. Indeed, as recognized in high-resolution MALDI-MS analyses, and corroborated by FESEM, UV-Vis, ATR-FTIR, and XPS results, it was possible to assess the main presence of peptides and amino acids as the main components of the slime, that, combined with the AuNPs confers on them interesting properties. More specifically, we tested, in vitro, the AuNPs-SS safety in human keratinocytes and their potential effect on wound healing as well as their anti-inflammatory properties in murine macrophages. Moreover, the AuNPs-SS treatment resulted in a significant increase of the urokinase-type plasminogen activator receptor (uPAR), essential for keratinocyte adhesion, spreading, and migration, together with the reduction of LPS-induced IL1-β and IL-6 cytokine levels, and completely abrogated the synthesis of inducible nitric oxide synthase (iNOS).
Collapse
Affiliation(s)
- Jennifer Gubitosa
- Università degli Studi "Aldo Moro" di Bari, Dip. Chimica, Via Orabona, 4 - 70126 Bari, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Li M, Cheng F, Li H, Jin W, Chen C, He W, Cheng G, Wang Q. Site-Specific and Covalent Immobilization of His-Tagged Proteins via Surface Vinyl Sulfone-Imidazole Coupling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16466-16475. [PMID: 31756107 DOI: 10.1021/acs.langmuir.9b02933] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Site-specific immobilization of proteins on a surface has been a long-lasting challenge in the fields of biosensing and biotechnology because of the need for improving the biological activity of immobilized protein via the maximal exposure of its bioactive domain. Herein, we reported a new site-specific immobilization method for His-tagged proteins onto a vinyl sulfone (VS)-bearing surface in a covalent manner. X-ray photoelectron spectroscopy characterization indicated the specificity of the addition reaction of the imidazole group in histidine on the VS-bearing surface at pH 7.0. Solution-based experiments were carried out to verify the reaction priority of the imidazole residue of histidine with the VS group at neutral conditions. The real-time immobilization process of two His-tagged proteins (HaloTag-6His and anti-HER2 Fab-6His) on surfaces presenting VS, preactivated carboxyl, and NTA groups were studied by quartz crystal microbalance. Compared to the existing methods utilizing covalent (NHS/EDC activated carboxyl) and coordinate (Ni2+-NTA) linking, our method offers two significant advantages for protein immobilization: high density and high specificity. The orientation of the two His-tagged proteins on the VS-bearing surface was confirmed by an enzyme-linked assay and an HER2+ liposome binding experiment. Our method of site-specific immobilization of His-tagged proteins is efficient and straightforward, which would be helpful to expand the applications of recombinant proteins in enzyme immobilization, biosensor and array fabrication, and drug delivery system.
Collapse
Affiliation(s)
| | | | - Haoqiang Li
- Hangzhou HealSun Biopharm Co., Ltd. , Hangzhou , Zhejiang 735400 , China
| | - Weiwei Jin
- Hangzhou HealSun Biopharm Co., Ltd. , Hangzhou , Zhejiang 735400 , China
| | | | | | - Gang Cheng
- Department of Chemical Engineering , University of Illinois at Chicago , Chicago , Illinois 60607 , United States
| | | |
Collapse
|
7
|
Merlo R, Del Prete S, Valenti A, Mattossovich R, Carginale V, Supuran CT, Capasso C, Perugino G. An AGT-based protein-tag system for the labelling and surface immobilization of enzymes on E. coli outer membrane. J Enzyme Inhib Med Chem 2019; 34:490-499. [PMID: 30724623 PMCID: PMC6366409 DOI: 10.1080/14756366.2018.1559161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022] Open
Abstract
The use of natural systems, such as outer membrane protein A (OmpA), phosphoporin E (PhoE), ice nucleation protein (INP), etc., has been proved very useful for the surface exposure of proteins on the outer membrane of Gram-negative bacteria. These strategies have the clear advantage of unifying in a one-step the production, the purification and the in vivo immobilisation of proteins/biocatalysts onto a specific biological support. Here, we introduce the novel Anchoring-and-Self-Labelling-protein-tag (ASLtag), which allows the in vivo immobilisation of enzymes on E. coli surface and the labelling of the neosynthesised proteins with the engineered alkylguanine-DNA-alkyl-transferase (H5) from Sulfolobus solfataricus. Our results demonstrated that this tag enhanced the overexpression of thermostable enzymes, such as the carbonic anhydrase (SspCA) from Sulfurihydrogenibium yellowstonense and the β-glycoside hydrolase (SsβGly) from S. solfataricus, without affecting their folding and catalytic activity, proposing a new tool for the improvement in the utilisation of biocatalysts of biotechnological interest.
Collapse
Affiliation(s)
- Rosa Merlo
- Department of Biology Agriculture and Food Sciences, Institute of Bioscience and BioResources – National Research Council of Italy, Naples, Italy
| | - Sonia Del Prete
- Department of Biology Agriculture and Food Sciences, Institute of Bioscience and BioResources – National Research Council of Italy, Naples, Italy
| | - Anna Valenti
- Department of Biology Agriculture and Food Sciences, Institute of Bioscience and BioResources – National Research Council of Italy, Naples, Italy
| | - Rosanna Mattossovich
- Department of Biology Agriculture and Food Sciences, Institute of Bioscience and BioResources – National Research Council of Italy, Naples, Italy
| | - Vincenzo Carginale
- Department of Biology Agriculture and Food Sciences, Institute of Bioscience and BioResources – National Research Council of Italy, Naples, Italy
| | - Claudiu T. Supuran
- Neurofarba Department, University of Florence, Polo Scientifico, Sesto Fiorentino Firenze, Italy
| | - Clemente Capasso
- Department of Biology Agriculture and Food Sciences, Institute of Bioscience and BioResources – National Research Council of Italy, Naples, Italy
| | - Giuseppe Perugino
- Department of Biology Agriculture and Food Sciences, Institute of Bioscience and BioResources – National Research Council of Italy, Naples, Italy
| |
Collapse
|
8
|
|
9
|
Jurzinsky T, Gomez-Villa ED, Kübler M, Bruns M, Elsässer P, Melke J, Scheiba F, Cremers C. Functionalization of multi-walled carbon nanotubes with indazole. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
10
|
Zhou S, Metcalf KJ, Bugga P, Grant J, Mrksich M. Photoactivatable Reaction for Covalent Nanoscale Patterning of Multiple Proteins. ACS APPLIED MATERIALS & INTERFACES 2018; 10:40452-40459. [PMID: 30379516 PMCID: PMC6640637 DOI: 10.1021/acsami.8b16736] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This article describes a photochemical approach for independently patterning multiple proteins to an inert substrate, particularly for studies of cell adhesion. A photoactivatable chloropyrimidine ligand was employed for covalent immobilization of SnapTag fusion proteins on self-assembled monolayers of alkanethiolates on gold. A two-step procedure was used: first, patterned UV illumination of the surface activated protein capture ligands, and second, incubation with a SnapTag fusion protein bound to the surface in illuminated regions. Two different fluorescent proteins were patterned in registry with features of 400 nm in size over a 1 mm2 area. An example is given wherein an anti-carcinoembryonic antigen (anti-CEA) scFv antibody was patterned to direct the selective attachment of a human cancer cell line that express the CEA antigen. This method enables the preparation of surfaces with control over the density and activity of independently patterned proteins.
Collapse
Affiliation(s)
- Shengwang Zhou
- Institute of Chemical Biology and Nanomedicine,
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, People’s
Republic of China
- Department of Biomedical Engineering,
Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United
States
| | - Kevin J. Metcalf
- Department of Biomedical Engineering,
Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United
States
| | - Pradeep Bugga
- Department of Chemistry, Northwestern
University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jennifer Grant
- Department of Chemistry, Northwestern
University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Milan Mrksich
- Institute of Chemical Biology and Nanomedicine,
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, People’s
Republic of China
- Department of Biomedical Engineering,
Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United
States
- Department of Chemistry, Northwestern
University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Dong M, Spelke DP, Lee YK, Chung JK, Yu CH, Schaffer DV, Groves JT. Spatiomechanical Modulation of EphB4-Ephrin-B2 Signaling in Neural Stem Cell Differentiation. Biophys J 2018; 115:865-873. [PMID: 30075851 PMCID: PMC6127455 DOI: 10.1016/j.bpj.2018.06.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/15/2018] [Accepted: 06/06/2018] [Indexed: 01/10/2023] Open
Abstract
Interactions between EphB4 receptor tyrosine kinases and their membrane-bound ephrin-B2 ligands on apposed cells play a regulatory role in neural stem cell differentiation. With both receptor and ligand constrained to move within the membranes of their respective cells, this signaling system inevitably experiences spatial confinement and mechanical forces in conjunction with receptor-ligand binding. In this study, we reconstitute the EphB4-ephrin-B2 juxtacrine signaling geometry using a supported-lipid-bilayer system presenting laterally mobile and monomeric ephrin-B2 ligands to live neural stem cells. This experimental platform successfully reconstitutes EphB4-ephrin-B2 binding, lateral clustering, downstream signaling activation, and neuronal differentiation, all in a configuration that preserves the spatiomechanical aspects of the natural juxtacrine signaling geometry. Additionally, the supported bilayer system allows control of lateral movement and clustering of the receptor-ligand complexes through patterns of physical barriers to lateral diffusion fabricated onto the underlying substrate. The results from this study reveal a distinct spatiomechanical effect on the ability of EphB4-ephrin-B2 signaling to induce neuronal differentiation. These observations parallel similar studies of the EphA2-ephrin-A1 system in a very different biological context, suggesting that such spatiomechanical regulation may be a common feature of Eph-ephrin signaling.
Collapse
Affiliation(s)
- Meimei Dong
- Department of Chemistry, University of California Berkeley, Berkeley, California; Biophysics Graduate Group, University of California Berkeley, Berkeley, California
| | - Dawn P Spelke
- Department of Chemical Engineering, University of California Berkeley, Berkeley, California; Department of Bioengineering, University of California Berkeley, Berkeley, California
| | - Young Kwang Lee
- Department of Chemistry, University of California Berkeley, Berkeley, California
| | - Jean K Chung
- Department of Chemistry, University of California Berkeley, Berkeley, California
| | - Cheng-Han Yu
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - David V Schaffer
- Department of Chemical Engineering, University of California Berkeley, Berkeley, California; Department of Bioengineering, University of California Berkeley, Berkeley, California.
| | - Jay T Groves
- Department of Chemistry, University of California Berkeley, Berkeley, California; Biophysics Graduate Group, University of California Berkeley, Berkeley, California.
| |
Collapse
|
12
|
Krüger S, Schwarze M, Baumann O, Günter C, Bruns M, Kübel C, Szabó DV, Meinusch R, Bermudez VDZ, Taubert A. Bombyx mori silk/titania/gold hybrid materials for photocatalytic water splitting: combining renewable raw materials with clean fuels. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:187-204. [PMID: 29441264 PMCID: PMC5789386 DOI: 10.3762/bjnano.9.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/12/2017] [Indexed: 06/08/2023]
Abstract
The synthesis, structure, and photocatalytic water splitting performance of two new titania (TiO2)/gold(Au)/Bombyx mori silk hybrid materials are reported. All materials are monoliths with diameters of up to ca. 4.5 cm. The materials are macroscopically homogeneous and porous with surface areas between 170 and 210 m2/g. The diameter of the TiO2 nanoparticles (NPs) - mainly anatase with a minor fraction of brookite - and the Au NPs are on the order of 5 and 7-18 nm, respectively. Addition of poly(ethylene oxide) to the reaction mixture enables pore size tuning, thus providing access to different materials with different photocatalytic activities. Water splitting experiments using a sunlight simulator and a Xe lamp show that the new hybrid materials are effective water splitting catalysts and produce up to 30 mmol of hydrogen per 24 h. Overall the article demonstrates that the combination of a renewable and robust scaffold such as B. mori silk with a photoactive material provides a promising approach to new monolithic photocatalysts that can easily be recycled and show great potential for application in lightweight devices for green fuel production.
Collapse
Affiliation(s)
- Stefanie Krüger
- Institute of Chemistry, University of Potsdam, D-14476 Potsdam, Germany
| | - Michael Schwarze
- Institute of Chemistry, Technical University Berlin, D-10623 Berlin, Germany
| | - Otto Baumann
- Institute of Biochemistry and Biology, University of Potsdam, D-14476 Potsdam, Germany
| | - Christina Günter
- Institute of Earth and Environmental Science, University of Potsdam, D-14476 Potsdam, Germany
| | - Michael Bruns
- Institute for Applied Materials (IAM) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
| | - Christian Kübel
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
| | - Dorothée Vinga Szabó
- Institute for Applied Materials (IAM) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
| | - Rafael Meinusch
- Institute of Physical Chemistry, Justus-Liebig-University Giessen, D-35392 Giessen, Germany
| | - Verónica de Zea Bermudez
- Department of Chemistry and CQ-VR, University of Trás-os-Montes e Alto Douro, Pt-5001-801 Vila Real, Portugal
| | - Andreas Taubert
- Institute of Chemistry, University of Potsdam, D-14476 Potsdam, Germany
| |
Collapse
|
13
|
Meldal M, Schoffelen S. Recent advances in covalent, site-specific protein immobilization. F1000Res 2016; 5:F1000 Faculty Rev-2303. [PMID: 27785356 PMCID: PMC5022707 DOI: 10.12688/f1000research.9002.1] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2016] [Indexed: 01/25/2023] Open
Abstract
The properties of biosensors, biomedical implants, and other materials based on immobilized proteins greatly depend on the method employed to couple the protein molecules to their solid support. Covalent, site-specific immobilization strategies are robust and can provide the level of control that is desired in this kind of application. Recent advances include the use of enzymes, such as sortase A, to couple proteins in a site-specific manner to materials such as microbeads, glass, and hydrogels. Also, self-labeling tags such as the SNAP-tag can be employed. Last but not least, chemical approaches based on bioorthogonal reactions, like the azide-alkyne cycloaddition, have proven to be powerful tools. The lack of comparative studies and quantitative analysis of these immobilization methods hampers the selection process of the optimal strategy for a given application. However, besides immobilization efficiency, the freedom in selecting the site of conjugation and the size of the conjugation tag and the researcher's expertise regarding molecular biology and/or chemical techniques will be determining factors in this regard.
Collapse
Affiliation(s)
- Morten Meldal
- Center for Evolutionary Chemical Biology, Department of Chemistry & Nano-Science Center, University of Copenhagen, Copenhagen, Denmark
| | - Sanne Schoffelen
- Center for Evolutionary Chemical Biology, Department of Chemistry & Nano-Science Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Babu DJ, Kühl FG, Yadav S, Markert D, Bruns M, Hampe MJ, Schneider JJ. Adsorption of pure SO2 on nanoscaled graphene oxide. RSC Adv 2016. [DOI: 10.1039/c6ra07518e] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Carbon materials are widely used for adsorptive removal of corrosive or green-house gases like SO2 or CO2. Graphene oxide is accessible in bulk quantities and thus may represent a viable replacement for other nanostructured carbon materials.
Collapse
Affiliation(s)
- Deepu J. Babu
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie
- Technische Universität Darmstadt
- 64287 Darmstadt
- Germany
| | - Frank G. Kühl
- Fachgebiet Thermische Verfahrenstechnik
- Technische Universität Darmstadt
- 64287 Darmstadt
- Germany
| | - Sandeep Yadav
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie
- Technische Universität Darmstadt
- 64287 Darmstadt
- Germany
| | - Daniel Markert
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie
- Technische Universität Darmstadt
- 64287 Darmstadt
- Germany
| | - Michael Bruns
- Institute for Applied Materials (IAM-ESS) and Karlsruhe Nano Micro Facility (KNMF)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Manfred J. Hampe
- Fachgebiet Thermische Verfahrenstechnik
- Technische Universität Darmstadt
- 64287 Darmstadt
- Germany
| | - Jörg J. Schneider
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie
- Technische Universität Darmstadt
- 64287 Darmstadt
- Germany
| |
Collapse
|
15
|
Abstract
INTRODUCTION The past decade has witnessed tremendous progress in surface micropatterning techniques for generating arrays of various types of biomolecules. Multiplexed protein micropatterning has tremendous potential for drug discovery providing versatile means for high throughput assays required for target and lead identification as well as diagnostics and functional screening for personalized medicine. However, ensuring the functional integrity of proteins on surfaces has remained challenging, in particular in the case of membrane proteins, the most important class of drug targets. Yet, generic strategies to control functional organization of proteins into micropatterns are emerging. AREAS COVERED This review includes an overview introducing the most common approaches for surface modification and functional protein immobilization. The authors present the key photo and soft lithography techniques with respect to compatibility with functional protein micropatterning and multiplexing capabilities. In the second part, the authors present the key applications of protein micropatterning techniques in drug discovery with a focus on membrane protein interactions and cellular signaling. EXPERT OPINION With the growing importance of target discovery as well as protein-based therapeutics and personalized medicine, the application of protein arrays can play a fundamental role in drug discovery. Yet, important technical breakthroughs are still required for broad application of these approaches, which will include in vitro "copying" of proteins from cDNA arrays into micropatterns, direct protein capturing from single cells as well as protein microarrays in living cells.
Collapse
Affiliation(s)
- Changjiang You
- a Department of Biology, Division of Biophysics , University of Osnabrück , Osnabrück 49076 , Germany
| | - Jacob Piehler
- a Department of Biology, Division of Biophysics , University of Osnabrück , Osnabrück 49076 , Germany
| |
Collapse
|
16
|
Kashef J, Franz CM. Quantitative methods for analyzing cell–cell adhesion in development. Dev Biol 2015; 401:165-74. [DOI: 10.1016/j.ydbio.2014.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/07/2014] [Accepted: 11/08/2014] [Indexed: 11/26/2022]
|
17
|
Abstract
Chemists and biologists have long recognized small molecule probes as powerful tools for functional genomics and proteomics studies. The possibility of specifically attaching chemical probes to individual proteins with spatial and temporal resolution has greatly improved our ability to visualize and characterize proteins in their native environment. The continued development of novel molecular probes for protein labeling is, therefore, of fundamental importance to gain new insights into biological processes in living cells and organisms. Several excellent approaches for the site-specific labeling of fusion proteins with chemical probes exist. Herein I discuss the design and generation of chemical probes for the SNAP-tag and CLIP-tag systems. The first part of this chapter is dedicated to reviewing the principles of the SNAP-tag technology, followed by a section dedicated to the development of chemical probes for unique applications, such as super-resolution imaging, protein trafficking and recycling, protein-protein interactions, and biomolecular sensing. The last part of the chapter contains experimental protocols and technical notes for the synthesis of selected SNAP-tag substrates and labeling of SNAP-tag fusion proteins in vitro and in living cells.
Collapse
Affiliation(s)
- Ivan R Corrêa
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA,
| |
Collapse
|
18
|
Tischer T, Claus TK, Oehlenschlaeger KK, Trouillet V, Bruns M, Welle A, Linkert K, Goldmann AS, Börner HG, Barner-Kowollik C. Ambient Temperature Ligation of Diene Functional Polymer and Peptide Strands onto Cellulose via Photochemical and Thermal Protocols. Macromol Rapid Commun 2014; 35:1121-7. [DOI: 10.1002/marc.201400088] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 03/13/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Thomas Tischer
- Preparative Macromolecular Chemistry; Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT); Engesserstr. 18 76128 Karlsruhe Germany
- Institut für Biologische Grenzflächen; Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Tanja K. Claus
- Preparative Macromolecular Chemistry; Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT); Engesserstr. 18 76128 Karlsruhe Germany
- Institut für Biologische Grenzflächen; Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Kim K. Oehlenschlaeger
- Preparative Macromolecular Chemistry; Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT); Engesserstr. 18 76128 Karlsruhe Germany
- Institut für Biologische Grenzflächen; Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Vanessa Trouillet
- Institute for Applied Materials (IAM) and Karlsruhe Nano Micro Facility (KNMF); Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Michael Bruns
- Institute for Applied Materials (IAM) and Karlsruhe Nano Micro Facility (KNMF); Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Alexander Welle
- Preparative Macromolecular Chemistry; Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT); Engesserstr. 18 76128 Karlsruhe Germany
- Institut für Biologische Grenzflächen; Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Katharina Linkert
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry, Humboldt-Universität zu Berlin; D-12489 Berlin Germany
| | - Anja S. Goldmann
- Preparative Macromolecular Chemistry; Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT); Engesserstr. 18 76128 Karlsruhe Germany
- Institut für Biologische Grenzflächen; Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry, Humboldt-Universität zu Berlin; D-12489 Berlin Germany
| | - Christopher Barner-Kowollik
- Preparative Macromolecular Chemistry; Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT); Engesserstr. 18 76128 Karlsruhe Germany
- Institut für Biologische Grenzflächen; Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
19
|
Fichtner D, Lorenz B, Engin S, Deichmann C, Oelkers M, Janshoff A, Menke A, Wedlich D, Franz CM. Covalent and density-controlled surface immobilization of E-cadherin for adhesion force spectroscopy. PLoS One 2014; 9:e93123. [PMID: 24675966 PMCID: PMC3968077 DOI: 10.1371/journal.pone.0093123] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/02/2014] [Indexed: 11/18/2022] Open
Abstract
E-cadherin is a key cell-cell adhesion molecule but the impact of receptor density and the precise contribution of individual cadherin ectodomains in promoting cell adhesion are only incompletely understood. Investigating these mechanisms would benefit from artificial adhesion substrates carrying different cadherin ectodomains at defined surface density. We therefore developed a quantitative E-cadherin surface immobilization protocol based on the SNAP-tag technique. Extracellular (EC) fragments of E-cadherin fused to the SNAP-tag were covalently bound to self-assembled monolayers (SAM) of thiols carrying benzylguanine (BG) head groups. The adhesive functionality of the different E-cadherin surfaces was then assessed using cell spreading assays and single-cell (SCSF) and single-molecule (SMSF) force spectroscopy. We demonstrate that an E-cadherin construct containing only the first and second outmost EC domain (E1-2) is not sufficient for mediating cell adhesion and yields only low single cadherin-cadherin adhesion forces. In contrast, a construct containing all five EC domains (E1-5) efficiently promotes cell spreading and generates strong single cadherin and cell adhesion forces. By varying the concentration of BG head groups within the SAM we determined a lateral distance of 5–11 nm for optimal E-cadherin functionality. Integrating the results from SCMS and SMSF experiments furthermore demonstrated that the dissolution of E-cadherin adhesion contacts involves a sequential unbinding of individual cadherin receptors rather than the sudden rupture of larger cadherin receptor clusters. Our method of covalent, oriented and density-controlled E-cadherin immobilization thus provides a novel and versatile platform to study molecular mechanisms underlying cadherin-mediated cell adhesion under defined experimental conditions.
Collapse
Affiliation(s)
- Dagmar Fichtner
- Karlsruhe Institute of Technology (KIT), DFG-Center for Functional Nanostructures, Karlsruhe, Germany
| | - Bärbel Lorenz
- University of Göttingen, Institute of Physical Chemistry, Göttingen, Germany
| | - Sinem Engin
- Karlsruhe Institute of Technology (KIT), DFG-Center for Functional Nanostructures, Karlsruhe, Germany
| | - Christina Deichmann
- Karlsruhe Institute of Technology (KIT), DFG-Center for Functional Nanostructures, Karlsruhe, Germany
| | - Marieelen Oelkers
- University of Göttingen, Institute of Physical Chemistry, Göttingen, Germany
| | - Andreas Janshoff
- University of Göttingen, Institute of Physical Chemistry, Göttingen, Germany
| | - Andre Menke
- Justus-Liebig-University Gieβen, Molecular Oncology of Solid Tumors, Gieβen, Germany
| | - Doris Wedlich
- Karlsruhe Institute of Technology (KIT), DFG-Center for Functional Nanostructures, Karlsruhe, Germany
| | - Clemens M. Franz
- Karlsruhe Institute of Technology (KIT), DFG-Center for Functional Nanostructures, Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
20
|
Schneider D, Baronsky T, Pietuch A, Rother J, Oelkers M, Fichtner D, Wedlich D, Janshoff A. Tension monitoring during epithelial-to-mesenchymal transition links the switch of phenotype to expression of moesin and cadherins in NMuMG cells. PLoS One 2013; 8:e80068. [PMID: 24339870 PMCID: PMC3855076 DOI: 10.1371/journal.pone.0080068] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 10/09/2013] [Indexed: 01/06/2023] Open
Abstract
Structural alterations during epithelial-to-mesenchymal transition (EMT) pose a substantial challenge to the mechanical response of cells and are supposed to be key parameters for an increased malignancy during metastasis. Herein, we report that during EMT, apical tension of the epithelial cell line NMuMG is controlled by cell-cell contacts and the architecture of the underlying actin structures reflecting the mechanistic interplay between cellular structure and mechanics. Using force spectroscopy we find that tension in NMuMG cells slightly increases 24 h after EMT induction, whereas upon reaching the final mesenchymal-like state characterized by a complete loss of intercellular junctions and a concerted down-regulation of the adherens junction protein E-cadherin, the overall tension becomes similar to that of solitary adherent cells and fibroblasts. Interestingly, the contribution of the actin cytoskeleton on apical tension increases significantly upon EMT induction, most likely due to the formation of stable and highly contractile stress fibers which dominate the elastic properties of the cells after the transition. The structural alterations lead to the formation of single, highly motile cells rendering apical tension a good indicator for the cellular state during phenotype switching. In summary, our study paves the way towards a more profound understanding of cellular mechanics governing fundamental morphological programs such as the EMT.
Collapse
Affiliation(s)
- David Schneider
- Institute of Physical Chemistry, Georg-August-University Göttingen, Göttingen, Germany
| | - Thilo Baronsky
- Institute of Physical Chemistry, Georg-August-University Göttingen, Göttingen, Germany
| | - Anna Pietuch
- Institute of Physical Chemistry, Georg-August-University Göttingen, Göttingen, Germany
| | - Jan Rother
- Institute of Physical Chemistry, Georg-August-University Göttingen, Göttingen, Germany
| | - Marieelen Oelkers
- Institute of Physical Chemistry, Georg-August-University Göttingen, Göttingen, Germany
| | - Dagmar Fichtner
- Institute for Cell and Developmental Biology, Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 2, Karlsruhe, Germany
| | - Doris Wedlich
- Institute for Cell and Developmental Biology, Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 2, Karlsruhe, Germany
| | - Andreas Janshoff
- Institute of Physical Chemistry, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
21
|
Richter B, Pauloehrl T, Kaschke J, Fichtner D, Fischer J, Greiner AM, Wedlich D, Wegener M, Delaittre G, Barner-Kowollik C, Bastmeyer M. Three-dimensional microscaffolds exhibiting spatially resolved surface chemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:6117-22. [PMID: 24038437 DOI: 10.1002/adma.201302678] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Indexed: 05/08/2023]
Abstract
Spatial control over the surface chemistry of 3D organic-inorganic hybrid microscaffolds is achieved by a two-photon-triggered cycloaddition. Following a coating step with photoactivatable dienes via silanization, surface irradiation with a femtosecond-pulsed laser in the presence of functional dienophiles enables a site-selective alteration of the surface chemistry. Bioconjugation with fluorescent protein tags is employed to reveal the 3D molecular patterns.
Collapse
Affiliation(s)
- Benjamin Richter
- Cell- and Neurobiology, Zoological Institute, Haid-und-Neu-Strasse 9, 76131 Karlsruhe, Germany and Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Steen Redeker E, Ta DT, Cortens D, Billen B, Guedens W, Adriaensens P. Protein Engineering For Directed Immobilization. Bioconjug Chem 2013; 24:1761-77. [DOI: 10.1021/bc4002823] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Erik Steen Redeker
- Biomolecule Design Group
(BDG), Institute for Materials Research (IMO), Chemistry Division, Hasselt University, Agoralaan
Building D, 3590 Diepenbeek, Belgium
| | - Duy Tien Ta
- Biomolecule Design Group
(BDG), Institute for Materials Research (IMO), Chemistry Division, Hasselt University, Agoralaan
Building D, 3590 Diepenbeek, Belgium
| | - David Cortens
- Biomolecule Design Group
(BDG), Institute for Materials Research (IMO), Chemistry Division, Hasselt University, Agoralaan
Building D, 3590 Diepenbeek, Belgium
| | - Brecht Billen
- Biomolecule Design Group
(BDG), Institute for Materials Research (IMO), Chemistry Division, Hasselt University, Agoralaan
Building D, 3590 Diepenbeek, Belgium
| | - Wanda Guedens
- Biomolecule Design Group
(BDG), Institute for Materials Research (IMO), Chemistry Division, Hasselt University, Agoralaan
Building D, 3590 Diepenbeek, Belgium
| | - Peter Adriaensens
- Biomolecule Design Group
(BDG), Institute for Materials Research (IMO), Chemistry Division, Hasselt University, Agoralaan
Building D, 3590 Diepenbeek, Belgium
| |
Collapse
|
23
|
Tran TNN, Cui J, Hartman MR, Peng S, Funabashi H, Duan F, Yang D, March JC, Lis JT, Cui H, Luo D. A universal DNA-based protein detection system. J Am Chem Soc 2013; 135:14008-11. [PMID: 23978265 DOI: 10.1021/ja405872g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein immune detection requires secondary antibodies which must be carefully selected in order to avoid interspecies cross-reactivity, and is therefore restricted by the limited availability of primary/secondary antibody pairs. Here we present a versatile DNA-based protein detection system using a universal adapter to interface between IgG antibodies and DNA-modified reporter molecules. As a demonstration of this capability, we successfully used DNA nano-barcodes, quantum dots, and horseradish peroxidase enzyme to detect multiple proteins using our DNA-based labeling system. Our system not only eliminates secondary antibodies but also serves as a novel method platform for protein detection with modularity, high capacity, and multiplexed capability.
Collapse
Affiliation(s)
- Thua N N Tran
- Department of Biological & Environmental Engineering, ∥Department of Molecular Biology and Genetics, and ⊥Kavli Institute at Cornell for Nanoscale Science, Cornell University , Ithaca, New York 14853, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wasserberg D, Uhlenheuer DA, Neirynck P, Cabanas-Danés J, Schenkel JH, Ravoo BJ, An Q, Huskens J, Milroy LG, Brunsveld L, Jonkheijm P. Immobilization of Ferrocene-Modified SNAP-Fusion Proteins. Int J Mol Sci 2013; 14:4066-80. [PMID: 23429193 PMCID: PMC3588085 DOI: 10.3390/ijms14024066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/04/2013] [Accepted: 02/04/2013] [Indexed: 12/16/2022] Open
Abstract
The supramolecular assembly of proteins on surfaces has been investigated via the site-selective incorporation of a supramolecular moiety on proteins. To this end, fluorescent proteins have been site-selectively labeled with ferrocenes, as supramolecular guest moieties, via SNAP-tag technology. The assembly of guest-functionalized SNAP-fusion proteins on cyclodextrin- and cucurbit[7]uril-coated surfaces yielded stable monolayers. The binding of all ferrocene fusion proteins is specific as determined by surface plasmon resonance. Micropatterns of the fusion proteins, on patterned cyclodextrin and cucurbituril surfaces, have been visualized using fluorescence microscopy. The SNAP-fusion proteins were also immobilized on cyclodextrin vesicles. The supramolecular SNAP-tag labeling of proteins, thus, allows for the assembly of modified proteins via supramolecular host-guest interaction on different surfaces in a controlled manner. These findings extend the toolbox of fabricating supramolecular protein patterns on surfaces taking advantage of the high labeling efficiency of the SNAP-tag with versatile supramolecular moieties.
Collapse
Affiliation(s)
- Dorothee Wasserberg
- Molecular NanoFabrication Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands; E-Mails: (D.W.); (J.C.-D.); (Q.A.); (J.H.)
| | - Dana A. Uhlenheuer
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands; E-Mails: (D.A.U.); (P.N.); (L.-G.M.)
| | - Pauline Neirynck
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands; E-Mails: (D.A.U.); (P.N.); (L.-G.M.)
| | - Jordi Cabanas-Danés
- Molecular NanoFabrication Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands; E-Mails: (D.W.); (J.C.-D.); (Q.A.); (J.H.)
| | - Jan Hendrik Schenkel
- Institute of Organic Chemistry, Westfaelische Wilhelms-Universität Muenster, Corrensstrasse 40, 48149 Münster, Germany; E-Mails: (J.H.S.); (B.J.R.)
| | - Bart Jan Ravoo
- Institute of Organic Chemistry, Westfaelische Wilhelms-Universität Muenster, Corrensstrasse 40, 48149 Münster, Germany; E-Mails: (J.H.S.); (B.J.R.)
| | - Qi An
- Molecular NanoFabrication Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands; E-Mails: (D.W.); (J.C.-D.); (Q.A.); (J.H.)
| | - Jurriaan Huskens
- Molecular NanoFabrication Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands; E-Mails: (D.W.); (J.C.-D.); (Q.A.); (J.H.)
| | - Lech-Gustav Milroy
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands; E-Mails: (D.A.U.); (P.N.); (L.-G.M.)
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands; E-Mails: (D.A.U.); (P.N.); (L.-G.M.)
- Authors to whom correspondence should be addressed; E-Mails: (L.B.); (P.J.); Tel.: +31-53-489-2987 (P.J.); Fax: +31-53-489-4546 (P.J.)
| | - Pascal Jonkheijm
- Molecular NanoFabrication Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands; E-Mails: (D.W.); (J.C.-D.); (Q.A.); (J.H.)
- Authors to whom correspondence should be addressed; E-Mails: (L.B.); (P.J.); Tel.: +31-53-489-2987 (P.J.); Fax: +31-53-489-4546 (P.J.)
| |
Collapse
|
25
|
Puettmann C, Kolberg K, Hagen S, Schmies S, Fischer R, Naehring J, Barth S. A monoclonal antibody for the detection of SNAP/CLIP-tagged proteins. Immunol Lett 2013; 150:69-74. [DOI: 10.1016/j.imlet.2012.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 10/04/2012] [Accepted: 10/09/2012] [Indexed: 10/27/2022]
|
26
|
Sobieściak TD, Zielenkiewicz P. Non-specific clustering of histidine tagged green fluorescent protein mediated by surface interactions: the collective effect in the protein-adsorption behaviour. RSC Adv 2013. [DOI: 10.1039/c3ra42154f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
27
|
Glassner M, Oehlenschlaeger KK, Welle A, Bruns M, Barner-Kowollik C. Polymer surface patterningvia Diels–Alder trapping of photo-generated thioaldehydes. Chem Commun (Camb) 2013; 49:633-5. [DOI: 10.1039/c2cc37651b] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Bodor DL, Rodríguez MG, Moreno N, Jansen LET. Analysis of protein turnover by quantitative SNAP-based pulse-chase imaging. CURRENT PROTOCOLS IN CELL BIOLOGY 2012; Chapter 8:Unit8.8. [PMID: 23129118 DOI: 10.1002/0471143030.cb0808s55] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Assessment of protein dynamics in living cells is crucial for understanding their biological properties and functions. The SNAP-tag, a self labeling suicide enzyme, presents a tool with unique features that can be adopted for determining protein dynamics in living cells. Here we present detailed protocols for the use of SNAP in fluorescent pulse-chase and quench-chase-pulse experiments. These time-slicing methods provide powerful tools to assay and quantify the fate and turnover rate of proteins of different ages. We cover advantages and pitfalls of SNAP-tagging in fixed- and live-cell studies and evaluate the recently developed fast-acting SNAPf variant. In addition, to facilitate the analysis of protein turnover datasets, we present an automated algorithm for spot recognition and quantification.
Collapse
Affiliation(s)
- Dani L Bodor
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | | |
Collapse
|
29
|
Uhlenheuer DA, Wasserberg D, Haase C, Nguyen HD, Schenkel JH, Huskens J, Ravoo BJ, Jonkheijm P, Brunsveld L. Directed Supramolecular Surface Assembly of SNAP-tag Fusion Proteins. Chemistry 2012; 18:6788-94. [DOI: 10.1002/chem.201200238] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Indexed: 02/04/2023]
|
30
|
Bruns M, Barth C, Brüner P, Engin S, Grehl T, Howell C, Koelsch P, Mack P, Nagel P, Trouillet V, Wedlich D, White RG. Structure and chemical composition of mixed benzylguanine- and methoxy-terminated self-assembled monolayers for immobilization of biomolecules. SURF INTERFACE ANAL 2012. [DOI: 10.1002/sia.4876] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- M. Bruns
- Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-WPT) and Karlsruhe Nano Micro Facility (KNMF); Hermann-von-Helmholtz-Platz 1; D-76344; Eggenstein-Leopoldshafen; Germany
| | | | - P. Brüner
- ION-TOF GmbH; Heisenbergstr; 15, 48149; Münster; Germany
| | - S. Engin
- Karlsruhe Institute of Technology (KIT), Zoological Institute 2; Fritz-Haber-Weg 4; D-76131; Karlsruhe; Germany
| | - T. Grehl
- ION-TOF GmbH; Heisenbergstr; 15, 48149; Münster; Germany
| | | | | | - P. Mack
- ThermoFisher Scientific, Unit 24; The Birches Industrial Estate; East Grinstead; RH 19 1UB; UK
| | - P. Nagel
- Karlsruhe Institute of Technology (KIT), Institute for Solid-State Physics (IFP); Hermann-von-Helmholtz-Platz 1; D-76344; Eggenstein-Leopoldshafen; Germany
| | - V. Trouillet
- Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-WPT) and Karlsruhe Nano Micro Facility (KNMF); Hermann-von-Helmholtz-Platz 1; D-76344; Eggenstein-Leopoldshafen; Germany
| | - D. Wedlich
- Karlsruhe Institute of Technology (KIT), Zoological Institute 2; Fritz-Haber-Weg 4; D-76131; Karlsruhe; Germany
| | - R. G. White
- ThermoFisher Scientific, Unit 24; The Birches Industrial Estate; East Grinstead; RH 19 1UB; UK
| |
Collapse
|
31
|
Rossi EA, Goldenberg DM, Chang CH. The dock-and-lock method combines recombinant engineering with site-specific covalent conjugation to generate multifunctional structures. Bioconjug Chem 2012; 23:309-23. [PMID: 22168393 DOI: 10.1021/bc2004999] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Advances in recombinant protein technology have facilitated the production of increasingly complex fusion proteins with multivalent, multifunctional designs for use in various in vitro and in vivo applications. In addition, traditional chemical conjugation remains a primary choice for linking proteins with polyethylene glycol (PEG), biotin, fluorescent markers, drugs, and others. More recently, site-specific conjugation of two or more interactive modules has emerged as a valid approach to expand the existing repertoires produced by either recombinant engineering or chemical conjugation alone, thus advancing the range of potential applications. Five such methods, each involving a specific binding event, are highlighted in this review, with a particular focus on the Dock-and-Lock (DNL) method, which exploits the natural interaction between the dimerization and docking domain (DDD) of cAMP-dependent protein kinase (PKA) and the anchoring domain (AD) of A-kinase anchoring proteins (AKAP). The various enablements of DNL to date include trivalent, tetravalent, pentavalent, and hexavalent antibodies of monospecificity or bispecificity; immnocytokines comprising multiple copies of interferon-alpha (IFNα); and site-specific PEGylation. These achievements attest to the power of the DNL platform technology to develop novel therapeutic and diagnostic agents from both proteins and nonproteins for unmet medical needs.
Collapse
Affiliation(s)
- Edmund A Rossi
- IBC Pharmaceuticals, Inc., Morris Plains, New Jersey, USA.
| | | | | |
Collapse
|
32
|
Barner L, Quick AS, Vogt AP, Winkler V, Junkers T, Barner-Kowollik C. Thermally responsive core–shell microparticles and cross-linked networks based on nitrone chemistry. Polym Chem 2012. [DOI: 10.1039/c2py20272g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Complex cross-linked soluble architectures are generated using nitrone mediated chemistry and are subsequently cleaved into network fragments. Nitrone mediated reactions are additionally applied for the synthesis of stimuli-responsive microspheres.
Collapse
Affiliation(s)
- Leonie Barner
- Soft Matter Synthesis Laboratory
- Institut für Biologische Grenzflächen 1, and Institut für Funktionelle Grenzflächen
- Karlsruhe Institute of Technology KIT
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Alexander S. Quick
- Preparative Macromolecular Chemistry
- Institut für Technische Chemie und Polymerchemie
- Karlsruhe Institute of Technology KIT
- 76128 Karlsruhe
- Germany
| | - Andrew P. Vogt
- Preparative Macromolecular Chemistry
- Institut für Technische Chemie und Polymerchemie
- Karlsruhe Institute of Technology KIT
- 76128 Karlsruhe
- Germany
| | - Volker Winkler
- Preparative Macromolecular Chemistry
- Institut für Technische Chemie und Polymerchemie
- Karlsruhe Institute of Technology KIT
- 76128 Karlsruhe
- Germany
| | - Tanja Junkers
- Institute for Materials Research
- Polymer Reaction Design Group
- Universiteit Hasselt, Agoralaan
- BE-3590 Diepenbeek
- Belgium
| | - Christopher Barner-Kowollik
- Soft Matter Synthesis Laboratory
- Institut für Biologische Grenzflächen 1, and Institut für Funktionelle Grenzflächen
- Karlsruhe Institute of Technology KIT
- 76344 Eggenstein-Leopoldshafen
- Germany
| |
Collapse
|
33
|
Blinco JP, Trouillet V, Bruns M, Gerstel P, Gliemann H, Barner-Kowollik C. Dynamic covalent chemistry on surfaces employing highly reactive cyclopentadienyl moieties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:4435-4439. [PMID: 21960480 DOI: 10.1002/adma.201102875] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Indexed: 05/31/2023]
Affiliation(s)
- James P Blinco
- Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology, Engesserstrasse 18, Karlsruhe, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Kwok CW, Strähle U, Zhao Y, Scharnweber T, Weigel S, Welle A. Selective immobilization of Sonic hedgehog on benzylguanine terminated patterned self-assembled monolayers. Biomaterials 2011; 32:6719-28. [DOI: 10.1016/j.biomaterials.2011.05.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 05/24/2011] [Indexed: 11/16/2022]
|
35
|
Kaltenbach M, Stein V, Hollfelder F. SNAP dendrimers: multivalent protein display on dendrimer-like DNA for directed evolution. Chembiochem 2011; 12:2208-16. [PMID: 21780273 DOI: 10.1002/cbic.201100240] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Indexed: 01/25/2023]
Abstract
Display systems connect a protein with the DNA encoding it. Such systems (e.g., phage or ribosome display) have found widespread application in the directed evolution of protein binders and constitute a key element of the biotechnological toolkit. In this proof-of-concept study we describe the construction of a system that allows the display of multiple copies of a protein of interest in order to take advantage of avidity effects during affinity panning. To this end, dendrimer-like DNA is used as a scaffold with docking points that can join the coding DNA with multiple protein copies. Each DNA construct is compartmentalised in water-in-oil emulsion droplets. The corresponding protein is expressed, in vitro, inside the droplets as a SNAP-tag fusion. The covalent bond between DNA and the SNAP-tag is created by reaction with dendrimer-bound benzylguanine (BG). The ability to form dendrimer-like DNA straightforwardly from oligonucleotides bearing BG allowed the comparison of a series of templates differing in size, valency and position of BG. In model selections the most efficient constructs show recoveries of up to 0.86 % and up to 400-fold enrichments. The comparison of mono- and multivalent constructs suggests that the avidity effect enhances enrichment by up to fivefold and recovery by up to 25-fold. Our data establish a multivalent format for SNAP-display based on dendrimer-like DNA as the first in vitro display system with defined tailor-made valencies and explore a new application for DNA nanostructures. These data suggest that multivalent SNAP dendrimers have the potential to facilitate the selection of protein binders especially during early rounds of directed evolution, allowing a larger diversity of candidate binders to be recovered.
Collapse
Affiliation(s)
- Miriam Kaltenbach
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, UK
| | | | | |
Collapse
|
36
|
Melo LD, Palombo RR, Petri DFS, Bruns M, Pereira EMA, Carmona-Ribeiro AM. Structure-activity relationship for quaternary ammonium compounds hybridized with poly(methyl methacrylate). ACS APPLIED MATERIALS & INTERFACES 2011; 3:1933-1939. [PMID: 21591705 DOI: 10.1021/am200150t] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Hybrid films from poly (methylmethacrylate) (PMMA) and dioctadecyldimethylammonium bromide (DODAB), cetyltrimethylammonium bromide (CTAB), or tetrapropylammonium bromide (TPAB) were characterized by determination of wettability, ellipsometry, atomic force microscopy, active compounds diffusion to water, X-ray photoelectron spectroscopy (XPS) with determination of atomic composition on the films surface, and biocidal activity against Pseudomonas aeruginosa or Staphylococcus aureus. QAC mobility in the films increased from DODAB to CTAB to TPAB. Diffusion and optimal hydrophobic-hydrophilic balance imparted the highest bioactivity to CTAB. DODAB sustained immobilization at the film surface killed bacteria upon contact. TPAB ability to diffuse was useless because of its unfavorable hydrophobic-hydrophilic balance for bioactivity.
Collapse
Affiliation(s)
- Leticia D Melo
- Biocolloids Lab, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05513-970, São Paulo/SP, Brazil
| | | | | | | | | | | |
Collapse
|
37
|
Chen CH, Yang KL. Improving protein transfer efficiency and selectivity in affinity contact printing by using UV-modified surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:5427-5432. [PMID: 21466171 DOI: 10.1021/la200535c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Affinity contact printing (αCP) is a technique that allows the selective capture of a target protein from solutions to a polymeric stamp decorated with an antibody, and then the target protein is printed onto a solid surface. The success of αCP critically relies on the precise control of protein-surface interactions. Here, we report a study on the effect of UV on the protein-surface interactions between protein and polydimethylsiloxane stamps and between protein and glass slides decorated with N,N-dimethyl-n-octadecyl-3-aminopropyltrimethoxysilyl chloride (DMOAP). Our results show that UV-modified surfaces can be used to improve the transfer efficiency and selectivity of proteins during αCP. For example, the protein transfer efficiency of human IgG onto a DMOAP-coated slide increases from 7.2% to 45.1% after the UV treatment. On the basis of these results, UV-modified surfaces were employed to develop a αCP system for protein detection. The detection limit of anti-IgG in this system is around 10 ng/mL, and the dynamic range is 4 orders of magnitude.
Collapse
Affiliation(s)
- Chih-Hsin Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
| | | |
Collapse
|
38
|
Goldmann AS, Tischer T, Barner L, Bruns M, Barner-Kowollik C. Mild and Modular Surface Modification of Cellulose via Hetero Diels−Alder (HDA) Cycloaddition. Biomacromolecules 2011; 12:1137-45. [DOI: 10.1021/bm101461h] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anja S. Goldmann
- Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany
| | - Thomas Tischer
- Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany
| | - Leonie Barner
- Fraunhofer Institut für Chemische Technologie, Umwelt-Engineering, Joseph-von-Fraunhofer-Str. 7, 76327 Pfinztal, Germany
| | - Michael Bruns
- Institute for Materials Research III and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Christopher Barner-Kowollik
- Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany
| |
Collapse
|
39
|
Petershans A, Wedlich D, Fruk L. Bioconjugation of CdSe/ZnS nanoparticles with SNAP tagged proteins. Chem Commun (Camb) 2011; 47:10671-3. [DOI: 10.1039/c1cc12874d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
40
|
|