1
|
Zou X, Xue R, An Z, Li H, Zhang J, Jiang Y, Huang L, Wu W, Wang S, Hu GH, Li RKY, Zhao H. Recent Advances in Flexible CNC-Based Chiral Nematic Film Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303778. [PMID: 37752783 DOI: 10.1002/smll.202303778] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/30/2023] [Indexed: 09/28/2023]
Abstract
Cellulose nanocrystal (CNC) is a renewable resource derived from lignocellulosic materials, known for its optical permeability, biocompatibility, and unique self-assembly properties. Recent years have seen great progresses in cellulose nanocrystal-based chiral photonic materials. However, due to its inherent brittleness, cellulose nanocrystal shows limitations in the fields of flexible materials, optical sensors and food freshness testing. In order to solve the above limitations, attempts have been made to improve the flexibility of cellulose nanocrystal materials without destroying their structural color. Despite these progresses, a systematic review on them is lacking. This review aims to fill this gap by providing an overview of the main strategies and the latest research findings on the flexibilization of cellulose nanocrystal-based chiral nematic film materials (FCNM). Specifically, typical substances and methods used for their preparation are summarized. Moreover, different kinds of cellulose nanocrystal-based composites are compared in terms of flexibility. Finally, potential applications and future challenges of flexible cellulose nanocrystal-based chiral nematic materials are discussed, inspiring further research in this field.
Collapse
Affiliation(s)
- Xuyang Zou
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Rui Xue
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Zewei An
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Hongwei Li
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Jiale Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Yan Jiang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Lijie Huang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Wei Wu
- Jihua Laboratory, Foshan, 528200, China
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Guo-Hua Hu
- Université de Lorraine, CNRS, LRGP, Nancy, F-54001, France
| | - Robert K Y Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong
| | - Hui Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering School of Life Sciences, Hubei University, Wuhan, China
- Key Laboratory of Chemistry and Engineering of Forest Products State Ethnic Affairs Commission Guangxi Key Laboratory of Chemistry and Engineering of Forest Products Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning, 530006, China
| |
Collapse
|
2
|
Brunning H, Sallach JB, Zanchi V, Price O, Boxall A. Toward a Framework for Environmental Fate and Exposure Assessment of Polymers. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:515-540. [PMID: 34913523 DOI: 10.1002/etc.5272] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/08/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Development of risk-assessment methodologies for polymers is an emerging regulatory priority to prevent negative environmental impacts; however, the diversity and complexity of polymers require adaptation of existing environmental risk-assessment approaches. The present review discusses the challenges and opportunities for the fate and exposure assessment of polymers in the context of regulatory environmental risk assessment of chemicals. The review discusses the applicability and adequacy for polymers of existing fate parameters used for nonpolymeric compounds and proposes additional parameters that could inform the fate of polymers. The significance of these parameters in various stages of an exposure-assessment framework is highlighted, with classification of polymers as solid or dissolved being key for identification of those parameters most relevant to environmental fate. Considerations to address the key limitations and knowledge gaps are then identified and discussed, specifically the complexity of polymer identification, with the need for characterization of the most significant parameters for polymer grouping and prioritization; the complexity of polymer degradation in the environment, with the need to incorporate the fate and hazards of degradation products into risk assessment; the requirement for development and standardization of analytical methods for characterization of polymer fate properties and degradation products; and the need to develop exposure modeling approaches for polymers. Environ Toxicol Chem 2022;41:515-540. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Hattie Brunning
- Department of Environment and Geography, University of York, York, United Kingdom
| | - J Brett Sallach
- Department of Environment and Geography, University of York, York, United Kingdom
| | | | | | - Alistair Boxall
- Department of Environment and Geography, University of York, York, United Kingdom
| |
Collapse
|
3
|
Maksimowski P, Kasztankiewicz AB, Kopacz W. 3,3-Bis(azidomethyl)oxetane (BAMO) Synthesis via Pentaerythritol Tosyl Derivates. PROPELLANTS EXPLOSIVES PYROTECHNICS 2017. [DOI: 10.1002/prep.201700039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Paweł Maksimowski
- Division of Highly Energetic Materials; Warsaw University of Technology; Faculty of Chemistry; Noakowskiego 3 00-664 Warsaw Poland
| | - Anna B. Kasztankiewicz
- Division of Highly Energetic Materials; Warsaw University of Technology; Faculty of Chemistry; Noakowskiego 3 00-664 Warsaw Poland
| | - Wioleta Kopacz
- Division of Highly Energetic Materials; Warsaw University of Technology; Faculty of Chemistry; Noakowskiego 3 00-664 Warsaw Poland
| |
Collapse
|
4
|
Affiliation(s)
- Chia-Chun Lin
- Department of Materials Science
and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6272, United States
| | - Emmabeth Parrish
- Department of Materials Science
and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6272, United States
| | - Russell J. Composto
- Department of Materials Science
and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6272, United States
| |
Collapse
|
5
|
Kotsmar C, Sells T, Taylor N, Liu DE, Prausnitz JM, Radke CJ. Aqueous Solute Partitioning and Mesh Size in HEMA/MAA Hydrogels. Macromolecules 2012. [DOI: 10.1021/ma3018487] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Csaba Kotsmar
- Department
of Chemical and Biomolecular
Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Teresa Sells
- Department
of Chemical and Biomolecular
Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nicole Taylor
- Department
of Chemical and Biomolecular
Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - David E. Liu
- Department
of Chemical and Biomolecular
Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - J. M. Prausnitz
- Department
of Chemical and Biomolecular
Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - C. J. Radke
- Department
of Chemical and Biomolecular
Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Vision Science Group, University of California, Berkeley, Berkeley, California
94720, United States
| |
Collapse
|
6
|
|
7
|
Fu J, Mao P, Han J. Artificial molecular sieves and filters: a new paradigm for biomolecule separation. Trends Biotechnol 2008; 26:311-20. [PMID: 18430480 DOI: 10.1016/j.tibtech.2008.02.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 02/28/2008] [Accepted: 02/28/2008] [Indexed: 10/22/2022]
Abstract
Patterned regular sieves and filters with comparable molecular dimensions hold great promise as an alternative to conventional polymeric gels and fibrous membranes to improve biomolecule separation. Recent developments of microfabricated nanofluidic sieves and filters have demonstrated superior performance for both analytical and preparative separation of various physiologically relevant macromolecules, including proteins. The insights gained from designing these artificial molecular sieves and filters, along with the promising results gathered from their first applications, serve to illustrate the impact that they can have on improving future separation of complex biological samples. Further development of artificial sieves and filters with more elaborate geometrical constraints and tailored surface functionality is believed to provide more promising ideals and results for biomolecule separation, which has great implications for proteomic research and biomarker discovery.
Collapse
Affiliation(s)
- Jianping Fu
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
8
|
Haraldsson B, Nyström J, Deen WM. Properties of the Glomerular Barrier and Mechanisms of Proteinuria. Physiol Rev 2008; 88:451-87. [DOI: 10.1152/physrev.00055.2006] [Citation(s) in RCA: 611] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This review focuses on the intricate properties of the glomerular barrier. Other reviews have focused on podocyte biology, mesangial cells, and the glomerular basement membrane (GBM). However, since all components of the glomerular membrane are important for its function, proteinuria will occur regardless of which layer is affected by disease. We review the properties of endothelial cells and their surface layer, the GBM, and podocytes, discuss various methods of studying glomerular permeability, and analyze data concerning the restriction of solutes by size, charge, and shape. We also review the physical principles of transport across biological or artificial membranes and various theoretical models used to predict the fluxes of solutes and water. The glomerular barrier is highly size and charge selective, in qualitative agreement with the classical studies performed 30 years ago. The small amounts of albumin filtered will be reabsorbed by the megalin-cubulin complex and degraded by the proximal tubular cells. At present, there is no unequivocal evidence for reuptake of intact albumin from urine. The cellular components are the key players in restricting solute transport, while the GBM is responsible for most of the resistance to water flow across the glomerular barrier.
Collapse
|
9
|
|
10
|
Russell SM, Carta G. Mesh Size of Charged Polyacrylamide Hydrogels from Partitioning Measurements. Ind Eng Chem Res 2005. [DOI: 10.1021/ie050079m] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Kosto KB, Deen WM. Hindered convection of macromolecules in hydrogels. Biophys J 2005; 88:277-86. [PMID: 15516521 PMCID: PMC1305006 DOI: 10.1529/biophysj.104.050302] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Accepted: 10/04/2004] [Indexed: 11/18/2022] Open
Abstract
Hindered convection of macromolecules in gels was studied by measuring the sieving coefficient (theta) of narrow fractions of Ficoll (Stokes-Einstein radius, r(s) = 2.7-5.9 nm) in agarose and agarose-dextran membranes, along with the Darcy permeability (kappa). To provide a wide range of kappa, varying amounts of dextran (volume fractions < or = 0.011) were covalently attached to agarose gels with volume fractions of 0.040 or 0.080. As expected, theta decreased with increasing r(s) or with increasing concentrations of either agarose or dextran. For each molecular size, theta plotted as a function of kappa fell on a single curve for all gel compositions studied. The dependence of theta on kappa and r(s) was predicted well by a hydrodynamic theory based on flow normal to the axes of equally spaced, parallel fibers. Values of the convective hindrance factor (K(c), the ratio of solute to fluid velocity), calculated from Theta and previous equilibrium partitioning data, were unexpectedly large; although K(c) < or = 1.1 in the fiber theory, its apparent value ranged generally from 1.5 to 3. This seemingly anomalous result was explained on the basis of membrane heterogeneity. Convective hindrances in the synthetic gels were quite similar to those in glomerular basement membrane, when compared on the basis of similar solid volume fractions and values of kappa. Overall, the results suggest that convective hindrances can be predicted fairly well from a knowledge of kappa, even in synthetic or biological gels of complex composition.
Collapse
Affiliation(s)
- Kimberly B. Kosto
- Department of Chemical Engineering, and Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - William M. Deen
- Department of Chemical Engineering, and Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
12
|
Nykypanchuk D, Strey HH, Hoagland DA. Single Molecule Visualizations of Polymer Partitioning within Model Pore Geometries. Macromolecules 2004. [DOI: 10.1021/ma048062n] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dmytro Nykypanchuk
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, and Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794
| | - Helmut H. Strey
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, and Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794
| | - David A. Hoagland
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, and Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794
| |
Collapse
|
13
|
Kosto KB, Panuganti S, Deen WM. Equilibrium partitioning of Ficoll in composite hydrogels. J Colloid Interface Sci 2004; 277:404-9. [PMID: 15341852 DOI: 10.1016/j.jcis.2004.04.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Accepted: 04/28/2004] [Indexed: 11/26/2022]
Abstract
Equilibrium partition coefficients (phi, the concentration in the gel divided by that in free solution) of fluorescein-labeled Ficolls in pure agarose and agarose-dextran composite gels were measured as a function of gel composition and Ficoll size. The four narrow fractions of Ficoll, a spherical polysaccharide, had Stokes-Einstein radii ranging from 2.7 to 5.9 nm. Gels with agarose volume fractions of 0.040 and 0.080 were studied, with dextran volume fractions (calculated as if the chain were a long fiber) up to 0.011. As expected, phi generally decreased as the Ficoll size increased (for a given gel composition) or as the amount of dextran incorporated into the gel increased (for a given agarose concentration and Ficoll size). The decrease in phi that accompanied dextran addition was predicted well by an excluded volume theory in which agarose and dextran were both treated as rigid, straight, randomly positioned and oriented fibers. Modeling dextran as a spherical coil within a fibrous agarose gel produced much less accurate predictions. The diffusional permeabilities of these gels were assessed by combining the current partitioning data with relative diffusivities (Kd, the diffusivity in the gel divided by that in free solution) reported previously. The values of phi Kd for a synthetic gel with 8.0% agarose and 1.1% dextran (by volume) were found to be very similar to those for the glomerular basement membrane, a physiologically important material which also has a total solids content of approximately 10%.
Collapse
Affiliation(s)
- Kimberly B Kosto
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
14
|
Rastello De Boisseson M, Leonard M, Hubert P, Marchal P, Stequert A, Castel C, Favre E, Dellacherie E. Physical alginate hydrogels based on hydrophobic or dual hydrophobic/ionic interactions: Bead formation, structure, and stability. J Colloid Interface Sci 2004; 273:131-9. [PMID: 15051442 DOI: 10.1016/j.jcis.2003.12.064] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2003] [Accepted: 12/10/2003] [Indexed: 10/26/2022]
Abstract
Hydrophobically associating alginate (AA) derivatives were prepared by covalent fixation of dodecyl or octadecyl chains onto the polysaccharide backbone (AA-C12/AA-C18). In semidilute solution, intermolecular hydrophobic interactions result in the formation of physical hydrogels, the physicochemical properties of which can be controlled through polymer concentration, hydrophobic chain content, and nonchaotropic salts such as sodium chloride. The mechanical properties of these hydrogels can then be reinforced by the addition of calcium chloride. The combination of both calcium bridges and intermolecular hydrophobic interactions leads to a decrease in the swelling ratio accompanied by an increase of elastic and viscous moduli. Beads made of hydrophobically modified alginate were obtained by dropping an aqueous solution of alginate derivative into a NaCl/CaCl2 solution. As compared to unmodified alginate beads, modified alginate particles proved to be stable in the presence of nongelling cations or calcium-sequestering agents. However, evidence is presented for a more heterogeneous structure than that of plain calcium alginate hydrogels with, in particular, an increase in the effective gel mesh size, as determined by partition and diffusion coefficient measurements.
Collapse
Affiliation(s)
- M Rastello De Boisseson
- Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS-INPL 7568, Groupe ENSIC, BP 451, 54001 Nancy Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Hermsen G, Wessling M, van der Vegt N. Polymer intrusion into narrow pores at the interface between a poor solvent and adsorbing and non-adsorbing surfaces. POLYMER 2004. [DOI: 10.1016/j.polymer.2004.02.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Tzafriri AR, Bercovier M, Parnas H. Reaction diffusion model of the enzymatic erosion of insoluble fibrillar matrices. Biophys J 2002; 83:776-93. [PMID: 12124264 PMCID: PMC1302186 DOI: 10.1016/s0006-3495(02)75208-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Predicting the time course of in vivo biodegradation is a key issue in the design of an increasing number of biomedical applications such as sutures, tissue analogs and drug-delivery devices. The design of such biodegradable devices is hampered by the absence of quantitative models for the enzymatic erosion of solid protein matrices. In this work, we derive and simulate a reaction diffusion model for the enzymatic erosion of fibrillar gels that successfully reproduces the main qualitative features of this process. A key aspect of the proposed model is the incorporation of steric hindrance into the standard Michaelis-Menten scheme for enzyme kinetics. In the limit of instantaneous diffusion, the model equations are analogous to the standard equations for enzymatic degradation in solution. Invoking this analogy, the total quasi-steady-state approximation is used to derive approximate analytical solutions that are valid for a wide range of in vitro conditions. Using these analytical approximations, an experimental-theoretical method is derived to unambiguously estimate all the kinetic model parameters. Moreover, the analytical approximations correctly describe the characteristic hyperbolic dependence of the erosion rate on enzyme concentration and the zero-order erosion of thin fibers. For definiteness, the analysis of published experimental results of enzymatic degradation of fibrillar collagen is demonstrated, and the role of diffusion in these experiments is elucidated.
Collapse
Affiliation(s)
- Abraham R Tzafriri
- School of Computer Science and Engineering, Department of Neurobiology, The Hebrew University, Jerusalem 91904, Israel.
| | | | | |
Collapse
|
17
|
White JA, Deen WM. Effects of Solute Concentration on Equilibrium Partitioning of Flexible Macromolecules in Fibrous Membranes and Gels. Macromolecules 2001. [DOI: 10.1021/ma0022046] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jeffrey A. White
- Department of Chemical Engineering and Division of Bioengineering and Environmental Health, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - William M. Deen
- Department of Chemical Engineering and Division of Bioengineering and Environmental Health, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
18
|
Abstract
Recent progress in relating the functional properties of the glomerular capillary wall to its unique structure is reviewed. The fenestrated endothelium, glomerular basement membrane (GBM), and epithelial filtration slits form a series arrangement in which the flow diverges as it enters the GBM from the fenestrae and converges again at the filtration slits. A hydrodynamic model that combines morphometric findings with water flow data in isolated GBM has predicted overall hydraulic permeabilities that are consistent with measurements in vivo. The resistance of the GBM to water flow, which accounts for roughly half that of the capillary wall, is strongly dependent on the extent to which the GBM surfaces are blocked by cells. The spatial frequency of filtration slits is predicted to be a very important determinant of the overall hydraulic permeability, in keeping with observations in several glomerular diseases in humans. Whereas the hydraulic resistances of the cell layers and GBM are additive, the overall sieving coefficient for a macromolecule (its concentration in Bowman's space divided by that in plasma) is the product of the sieving coefficients for the individual layers. Models for macromolecule filtration reveal that the individual sieving coefficients are influenced by one another and by the filtrate velocity, requiring great care in extrapolating in vitro observations to the living animal. The size selectivity of the glomerular capillary has been shown to be determined largely by the cellular layers, rather than the GBM. Controversial findings concerning glomerular charge selectivity are reviewed, and it is concluded that there is good evidence for a role of charge in restricting the transmural movement of albumin. Also discussed is an effect of albumin that has received little attention, namely, its tendency to increase the sieving coefficients of test macromolecules via steric interactions. Among the unresolved issues are the specific contributions of the endothelial glycocalyx and epithelial slit diaphragm to the overall hydraulic resistance and macromolecule selectivity and the nanostructural basis for the observed permeability properties of the GBM.
Collapse
Affiliation(s)
- W M Deen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
19
|
Johnston ST, Deen WM. Hindered Convection of Ficoll and Proteins in Agarose Gels. Ind Eng Chem Res 2001. [DOI: 10.1021/ie010085s] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Scott T. Johnston
- Department of Chemical Engineering and Division of Bioengineering and Environmental Health, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - William M. Deen
- Department of Chemical Engineering and Division of Bioengineering and Environmental Health, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|