1
|
Polymer-grafted nanoparticle superlattice monolayers over 100 cm2 through a modified Langmuir-Blodgett method. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
2
|
Yang S, Wen G, Pispas S, You K. Aggregation behavior of symmetric poly(
n
‐butyl acrylate)‐
block
‐poly(acrylic acid) on subphases of different ionic strengths. J Appl Polym Sci 2022. [DOI: 10.1002/app.52641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shicheng Yang
- Department of Polymer Materials and Engineering, College of Material Science and Chemical Engineering Harbin University of Science and Technology Harbin People's Republic of China
| | - Gangyao Wen
- Department of Polymer Materials and Engineering, College of Material Science and Chemical Engineering Harbin University of Science and Technology Harbin People's Republic of China
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| | - Kun You
- Department of Polymer Materials and Engineering, College of Material Science and Chemical Engineering Harbin University of Science and Technology Harbin People's Republic of China
| |
Collapse
|
3
|
Roy D, Naskar B, Bala T. Exploring Langmuir-Blodgett technique to investigate effect of various subphase conditions on monolayers formed by amphiphilic block co-polymers tetronic 701 and tetronic 90R4. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Self-Assembly of Self-Cleaning Polystyrene/Styrene-Butadiene-Styrene Films with Well-Ordered Micro-Structures. COATINGS 2020. [DOI: 10.3390/coatings10111133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Well-ordered porous films have been widely applied in various areas, such as chemical sensors, microreactors, and tissue engineering. In this article, we propose a novel air-liquid interface self-assembly method to fabricate well-ordered porous polystyrene (PS)/styrene–butadiene–styrene (SBS) films by simply dipping the PS/SBS chloroform solutions onto the surface of a mixed water/ethanol liquid phase. The proper volume ratio of water/ethanol is necessary for the formation of films with highly uniform pore size. The effect of weight ratio of PS/SBS, the volume ratio of water/ethanol and the concentration of the solutions were experimentally investigated. The pore size decreases with the concentration of polymer solution, and the structure becomes more regular with the decrease of water/ethanol volume ratio. Ordered structure can be formed under PS/SBS in a certain weight ratio. The self-assembled films also have the function of self-cleaning. Besides the analysis of structural characteristic, the self-assembly mechanism was also discussed.
Collapse
|
5
|
Moghimikheirabadi A, Ilg P, Sagis LMC, Kröger M. Surface Rheology and Structure of Model Triblock Copolymers at a Liquid–Vapor Interface: A Molecular Dynamics Study. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b01995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Patrick Ilg
- School of Mathematical, Physical and Computational Sciences, University of Reading, Reading RG6 6AX, U.K
| | - Leonard M. C. Sagis
- Food Physics Group, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Martin Kröger
- Polymer Physics, Department of Materials, ETH Zürich, Zürich CH-8093, Switzerland
| |
Collapse
|
6
|
Hood J, Van Gordon K, Thomson P, Coleman BR, Burns F, Moffitt MG. Structural hierarchy in blends of amphiphilic block copolymers self-assembled at the air-water interface. J Colloid Interface Sci 2019; 556:392-400. [PMID: 31472313 DOI: 10.1016/j.jcis.2019.08.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 11/26/2022]
Abstract
We present a concurrent self-assembly strategy for patterning hierarchical polymeric surface features by depositing variable-composition blends of polystyrene-block-poly(ethylene oxide) (PS-b-PEO) and polybutadiene-block-poly(ethylene oxide) (PB-b-PEO) block copolymers at the air-water interface. Hierarchical strand networks of hydrophobic PS/PB blocks anchored via PEO blocks to the water surface, with an internal phase-separation structure consisting of periodic domains of PS blocks surrounded and connected by a matrix of PB blocks, are generated by the interplay of interfacial amphiphilic block copolymer aggregation and polymer/polymer phase separation. In contrast to the cylinder-in-strand structures previously formed by our group in which interfacial microphase separation between PS and PB blocks was constrained by chemical connectivity between the blocks, in the current system phase separation between PS and PB is not constrained by chemical connectivity and yet is confined laterally within surface features at the air-water interface. Investigations of multi-component polymer systems with different connectivities constraining repulsive and attractive interactions provides routes to new hierarchical surface patterns for a variety of applications, including photolithography masks, display technology, surface-guided cell growth and tissue engineering.
Collapse
Affiliation(s)
- Janet Hood
- Department of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| | - Kyle Van Gordon
- Department of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| | - Patricia Thomson
- Department of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| | - Brian R Coleman
- Department of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| | - Fraser Burns
- Department of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| | - Matthew G Moffitt
- Department of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
7
|
Xu W, Wen G, Wu T, Chen N. Aggregation Behavior of the Blends of Homo-PS and PS- b-PEO- b-PS at the Air/Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13435-13441. [PMID: 31550898 DOI: 10.1021/acs.langmuir.9b02388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aggregation behaviors of the blended Langmuir monolayers of a homopolymer polystyrene (h-PS) and a triblock copolymer polystyrene-b-poly(ethylene oxide)-b-polystyrene (PS-b-PEO-b-PS) were studied by the Langmuir film balance technique, and the morphologies of their Langmuir-Blodgett (LB) films were studied by atomic force microscopy. The isotherms of the h-PS/PS-b-PEO-b-PS blends shift to small areas with the increase of h-PS content, and a pseudoplateau appears as h-PS content is below 60 wt %. It is worth noting that the blended isotherms appear at the left of their corresponding ideal ones, which means that the blended monolayers are a little more condensed due to attractive interactions between the two components. Hysteresis phenomena exist in all of the blended monolayers, and the higher the PS-b-PEO-b-PS content, the larger the hysteresis degree becomes because of the stronger looped-PEO entanglements. All the blended LB films of h-PS and PS-b-PEO-b-PS prepared under low pressure exhibit the mixed structures of small and large isolated circular aggregates. The small aggregates are the copolymer micelle cores and the large ones are attributed to coalescence of the local h-PS chains and some PS blocks. Upon further compression, the aggregates in the blended LB films become a little denser as h-PS content is below 60 wt %, whereas those become totally close-packed with decreased size as h-PS content is 80 wt %.
Collapse
Affiliation(s)
- Wei Xu
- Department of Polymer Materials and Engineering, College of Material Science and Engineering , Harbin University of Science and Technology , 4 Linyuan Road , Harbin 150040 , P. R. China
| | - Gangyao Wen
- Department of Polymer Materials and Engineering, College of Material Science and Engineering , Harbin University of Science and Technology , 4 Linyuan Road , Harbin 150040 , P. R. China
| | - Tao Wu
- Department of Polymer Materials and Engineering, College of Material Science and Engineering , Harbin University of Science and Technology , 4 Linyuan Road , Harbin 150040 , P. R. China
| | - Nanyang Chen
- Department of Polymer Materials and Engineering, College of Material Science and Engineering , Harbin University of Science and Technology , 4 Linyuan Road , Harbin 150040 , P. R. China
| |
Collapse
|
8
|
Yang S, Wen G, Pispas S, You K. Effects of spreading and subphase conditions on the interfacial behavior of an amphiphilic copolymer poly(n-butylacrylate)-b-poly(acrylic acid). POLYMER 2019. [DOI: 10.1016/j.polymer.2019.03.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Kim BQ, Jung Y, Seo M, Choi SQ. Blending Mechanism of PS- b-PEO and PS Homopolymer at the Air/Water Interface and Their Morphological Control. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10293-10301. [PMID: 30095262 DOI: 10.1021/acs.langmuir.8b02192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report a blending mechanism of polystyrene- b-poly(ethylene oxide) (PS- b-PEO) and PS homopolymer (homoPS) at the air/water interface. Our blending mechanism is completely different from the well-known "wet-dry brush theory" for bulk blends; regardless of the size of homoPS, the domain size increased and the morphology changed without macrophase separation, whereas the homoPS of small molecular weight (MW) leads to a transition after blending into the block copolymer domains, and the large MW homoPS is phase-separated in bulk. The difference in blending mechanism at the interface is attributed to adsorption kinetics at a water/spreading solvent interface. Upon spreading, PS- b-PEO is rapidly adsorbed to the water/spreading solvent interface and forms domain first, and then homoPS accumulates on them as the solvent completely evaporates. On the basis of our proposed mechanism, we demonstrate that rapid PS- b-PEO adsorption is crucial to determine the final morphology of the blends. We additionally found that spreading preformed self-assemblies of the blends slowed down the adsorption, causing them to behave similar to bulk blends, following the "wet-dry brush theory". This new mechanism provides useful information for various block copolymer-homopolymer blending systems with large fluid/fluid interfaces such as emulsions and foams.
Collapse
|
10
|
Gao M, Wen G, Wang L. Effects of Spreading Conditions on the Aggregation Behavior of a Symmetric Diblock Copolymer Polystyrene- block-poly(methyl methacrylate) at the Air/Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9272-9278. [PMID: 30004714 DOI: 10.1021/acs.langmuir.8b01649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Langmuir monolayers and Langmuir-Blodgett (LB) films of a symmetric diblock copolymer polystyrene- block-poly(methyl methacrylate) (PS- b-PMMA) were characterized by the film balance technique and tapping mode atomic force microscopy, respectively. Effects of both the spreading solution concentration and the surface concentration on the aggregation behavior of PS- b-PMMA at the air/water interface and the morphologies of its LB films were studied in detail. When the monolayers spread in different concentrations (≤0.50 mg/mL), all their initial morphologies exhibit tiny circular micelles because of the long hydrophilic PMMA block in the copolymer. The initial tiny circular micelles form spontaneously and then aggregate into small ones upon compression, which can further coalesce into rodlike aggregates or large micelles depending on the spreading concentrations. The LB films of PS- b-PMMA usually exhibit various mixed structures of rodlike aggregates and circular micelles, which can further transform into labyrinth patterns under some special spreading conditions. Besides spreading concentration and volume, we discover that the detailed spreading process should also be responsible for the initial and final morphologies of the LB films. Furthermore, the LB films prepared under different spreading conditions can be regarded as in the equilibrium or nonequilibrium structures because of the kinetic effect difference resulting from the different PS chain entanglement degrees.
Collapse
Affiliation(s)
- Mingming Gao
- Department of Polymer Materials and Engineering, College of Material Science and Engineering , Harbin University of Science and Technology , 4 Linyuan Road , Harbin 150040 , People's Republic of China
| | - Gangyao Wen
- Department of Polymer Materials and Engineering, College of Material Science and Engineering , Harbin University of Science and Technology , 4 Linyuan Road , Harbin 150040 , People's Republic of China
| | - Liang Wang
- Department of Polymer Materials and Engineering, College of Material Science and Engineering , Harbin University of Science and Technology , 4 Linyuan Road , Harbin 150040 , People's Republic of China
| |
Collapse
|
11
|
Appel C, Kraska M, Rüttiger C, Gallei M, Stühn B. Crossover from semi-dilute to densely packed thin polymer films at the air-water interface and structure formation at thin film breakup. SOFT MATTER 2018; 14:4750-4761. [PMID: 29796572 DOI: 10.1039/c8sm00629f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A series of poly(n-butyl acrylate) (PnBA, 5 to 32 kg mol-1) homopolymers and diblock copolymers with poly(ethylene glycol) (PEG, constant molecular weight of 0.3 kg mol-1) is synthesized for the purpose of the investigation of quasi-2D polymer films at the air-water interface. The presented compression isotherms show a transition from θ solvent behavior for PnBA homopolymers to good solvent conditions when the volume fraction of the PEG in the block copolymers is increased by decreasing the molecular weight of PnBA. A transition from a semi-dilute regime to a densely packed layer is observed in the pressure isotherms for all the polymers. In the densely packed films we found first evidence for thin film breakup of a thin polymer film directly at the air-water interface. Combination of results from Brewster-Angle-Microscopy and Surface X-ray scattering provide a consistent picture of the film breakup. Our results suggest a preferred length scale of 2.5 μm. This scenario is analogous to a spinodal mechanism driven by thermal fluctuations of the film height.
Collapse
Affiliation(s)
- Christian Appel
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr. 8, D-64289 Darmstadt, Germany.
| | | | | | | | | |
Collapse
|
12
|
Wang Y, Wen G, Pispas S, Yang S, You K. Effects of subphase pH, temperature and ionic strength on the aggregation behavior of PnBA-b-PAA at the air/water interface. J Colloid Interface Sci 2018; 512:862-870. [DOI: 10.1016/j.jcis.2017.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/27/2017] [Accepted: 11/01/2017] [Indexed: 10/18/2022]
|
13
|
Kim DH, Kim SY. Effective Morphology Control of Block Copolymers and Spreading Area-Dependent Phase Diagram at the Air/Water Interface. J Phys Chem Lett 2017; 8:1865-1871. [PMID: 28383894 DOI: 10.1021/acs.jpclett.7b00471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Over the past several decades, tremendous efforts have been made to understand the fundamental physics of block copolymer (BCP) self-assembly in bulk or thin films, and this has led to the development of BCP-based bottom-up nanofabrication. BCPs also form periodic nanostructures at the air/water interface, which has potential application to ultrathin-film nanopatterning with molecular-level precision. Nonetheless, controlling the nanostructure formation at the air/water interface is restricted by the inherent parameters of BCPs; BCP morphology is determined by the hydrophilic-to-hydrophobic block ratio. Here we show that controlling the spreading area of BCPs at the air/water interface can tune the shape and size of BCP structures, suggesting a new phase diagram of BCP structures as a function of the relative block fraction and spreading area. A neat polystyrene-b-poly(2-vinylpyridine), known to form a dot morphology, instead forms a strand or planar morphology when the spreading area is varied with Langmuir-Blodgett technique.
Collapse
Affiliation(s)
- Dong Hyup Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - So Youn Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
14
|
Guennouni Z, Cousin F, Fauré MC, Perrin P, Limagne D, Konovalov O, Goldmann M. Self-Organization of Polystyrene-b-polyacrylic Acid (PS-b-PAA) Monolayer at the Air/Water Interface: A Process Driven by the Release of the Solvent Spreading. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1971-1980. [PMID: 26824719 DOI: 10.1021/acs.langmuir.5b02652] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present an in situ structural study of the surface behavior of PS-b-PAA monolayers at the air/water interface at pH 2, for which the PAA blocks are neutral and using N,N-dimethyformamide (DMF) as spreading solvent. The surface pressure versus molecular area isotherm shows a perfectly reversible pseudoplateau over several cycles of compression/decompression. The width of such plateau enlarges when increasing temperature, conversely to what is classically observed in the case of an in-plane first order transition. We combined specular neutron reflectivity (SNR) experiments with contrast variation to solve the profile of each block perpendicular to the surface with grazing-incidence small-angle scattering (GISAXS) measurements to determine the in-plane structure of the layer. SNR experiments showed that both PS and PAA blocks remain adsorbed on the surface for all surface pressure probed. A correlation peak at Q(xy)* = 0.021 Å(-1) is evidenced by GISAXS at very low surface pressure which intensity first increases on the plateau. When compressing further, its intensity decays while Q(xy)* is shifted toward low Q(xy). The peak fully disappears at the end of the plateau. These results are interpreted by the formation of surface aggregates induced by DMF molecules at the surface. These DMF molecules remain adsorbed within the PS core of the aggregates. Upon compression, they are progressively expelled from the monolayer, which gives rise to the pseudoplateau on the isotherm. The intensity of the GISAXS correlation peak is set by the amount of DMF within the monolayer as it vanishes when all DMF molecules are expelled. This result emphizes the role of the solvent in Langmuir monolayer formed by amphiphilic copolymers which hydrophobic and hydrophilic parts are composed by long polymer chains.
Collapse
Affiliation(s)
- Zineb Guennouni
- Sorbonne Universités, UPMC Univ Paris 06, CNRS-UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu F-75005 Paris, France
- Laboratoire Léon Brillouin, CEA Saclay, 91191 Gif sur Yvette Cedex, France
| | - Fabrice Cousin
- Laboratoire Léon Brillouin, CEA Saclay, 91191 Gif sur Yvette Cedex, France
| | - Marie-Claude Fauré
- Sorbonne Universités, UPMC Univ Paris 06, CNRS-UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu F-75005 Paris, France
- Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes , 45 rue des Saints Pères , 75006 Paris, France
| | - Patrick Perrin
- Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI), ParisTech, PSL Research University, Sciences et Ingénierie de la Matière Molle (SIMM), CNRS UMR 7615, 10, Rue Vauquelin, F-75231 Cedex 05 Paris, France
- Sorbonne-Universités, UPMC Univ Paris 06, SIMM, 10, Rue Vauquelin, F-75231 Cedex 05 Paris, France
| | - Denis Limagne
- Sorbonne Universités, UPMC Univ Paris 06, CNRS-UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu F-75005 Paris, France
| | - Oleg Konovalov
- European Synchrotron Radiation Facility , 6 rue Jules Horowitz 38000 Grenoble, France
| | - Michel Goldmann
- Sorbonne Universités, UPMC Univ Paris 06, CNRS-UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu F-75005 Paris, France
- Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes , 45 rue des Saints Pères , 75006 Paris, France
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| |
Collapse
|
15
|
Zhao X, Zhang X, Liu HG. Composite PS-b-P4VP/Ag and PS-b-P4VP/Au thin films fabricated via a multilevel self-assembly process. RSC Adv 2016. [DOI: 10.1039/c6ra12435f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thin composite films with microstructures doped with Ag or Au species were fabricated at the air/liquid interface, which exhibited effective catalytic activities for heterogeneous catalytic reactions.
Collapse
Affiliation(s)
- Xingjuan Zhao
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry
- Shandong University
- Jinan 250100
- P. R. China
| | - Xiaokai Zhang
- College of Physics and Electronics
- Shandong Normal University
- Jinan 250014
- P. R. China
| | - Hong-Guo Liu
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry
- Shandong University
- Jinan 250100
- P. R. China
| |
Collapse
|
16
|
Cativo MHM, Kim DK, Riggleman RA, Yager KG, Nonnenmann SS, Chao H, Bonnell DA, Black CT, Kagan CR, Park SJ. Air-liquid interfacial self-assembly of conjugated block copolymers into ordered nanowire arrays. ACS NANO 2014; 8:12755-12762. [PMID: 25486546 DOI: 10.1021/nn505871b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The ability to control the molecular packing and nanoscale morphology of conjugated polymers is important for many of their applications. Here, we report the fabrication of well-ordered nanoarrays of conjugated polymers, based on the self-assembly of conjugated block copolymers at the air-liquid interface. We demonstrate that the self-assembly of poly(3-hexylthiophene)-block-poly(ethylene glycol) (P3HT-b-PEG) at the air-water interface leads to large-area free-standing films of well-aligned P3HT nanowires. Block copolymers with high P3HT contents (82-91%) formed well-ordered nanoarrays at the interface. The fluidic nature of the interface, block copolymer architecture, and rigid nature of P3HT were necessary for the formation of well-ordered nanostructures. The free-standing films formed at the interface can be readily transferred to arbitrary solid substrates. The P3HT-b-PEG films are integrated in field-effect transistors and show orders of magnitude higher charge carrier mobility than spin-cast films, demonstrating that the air-liquid interfacial self-assembly is an effective thin film fabrication tool for conjugated block copolymers.
Collapse
Affiliation(s)
- Ma Helen M Cativo
- Departments of Chemistry, ‡Materials Science and Engineering, §Chemical and Biomolecular Engineering, and ∥Electrical and Systems Engineering, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gargallo L, Becerra N, Encinas MV, Ortega F, Rubio RG, Leiva A, Radic D. Amphiphilic 2-ethyl hexyl methacrylate-b-N
,N
′-dimethylacrylamide diblock copolymer monolayer behaviour at the air − water interface†. POLYM INT 2014. [DOI: 10.1002/pi.4845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ligia Gargallo
- Universidad de Tarapacá; General Velásquez 1775 Arica Chile
| | - Natalia Becerra
- Department of Physical Chemistry, Faculty of Chemistry; Pontificia Universidad Católica de Chile; PO Box 306 Santiago 22 Chile
| | - Maria Victoria Encinas
- Universidad de Santiago de Chile; Facultad de Química y Biología, Depto Fisicoquímica; Santiago Chile
| | - Francisco Ortega
- Departamento de Química Fisica; Universidad Complutense de Madrid; 28040 Madrid Spain
| | - Ramón González Rubio
- Departamento de Química Fisica; Universidad Complutense de Madrid; 28040 Madrid Spain
| | - Angel Leiva
- Department of Physical Chemistry, Faculty of Chemistry; Pontificia Universidad Católica de Chile; PO Box 306 Santiago 22 Chile
| | - Deodato Radic
- Department of Physical Chemistry, Faculty of Chemistry; Pontificia Universidad Católica de Chile; PO Box 306 Santiago 22 Chile
| |
Collapse
|
18
|
Chen X, Perepichka II, Bazuin CG. Double-striped metallic patterns from PS-b-P4VP nanostrand templates. ACS APPLIED MATERIALS & INTERFACES 2014; 6:18360-18367. [PMID: 25260097 DOI: 10.1021/am506332q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A new nanometallic pattern, characterized by randomly disposed double or twin one-dimensional stripes and that adds to the nanotechnology toolbox, has been obtained from a unique template possessing the nanostrand morphology. This morphology had previously been shown to form in Langmuir-Blodgett films made from a polystyrene-poly(4-vinylpyridine) (PS-P4VP) diblock copolymer blended with 3-n-pentadecylphenol (PDP). The nanostrand backbone is composed of PS, and it is bordered along both sides by a P4VP monolayer, visualized for the first time by high resolution atomic force microscopy. The exposed P4VP alongside the nanostrands serves as sites for depositing compounds attracted selectively to P4VP. Here, both gold ions (HAuCl4·3H2O) and gold nanoparticles (AuNP, 12 nm in diameter, stabilized with sodium citrate) were complexed to the P4VP. Plasma treatment of the gold ions led to double stripes of monolayer metallic gold. To obtain dense deposition of AuNP in double rows, it was necessary to acidify the AuNP aqueous solution (pH 5.2 here). The achievement of the metallic double-stripe patterns also confirms the composition of the nanostrand morphology, which up to now had been deduced indirectly. The double-stripe pattern has possible applications for plasmonic lasers, energy transport, and biosensors.
Collapse
Affiliation(s)
- Ximin Chen
- Département de chimie, Centre de recherche sur les matériaux auto-assemblés (CRMAA/CSACS), Université de Montréal , C.P. 6128 Succ. Centre-ville, Montréal, Quebec, Canada , H3C 3J7
| | | | | |
Collapse
|
19
|
Li Destri G, Miano F, Marletta G. Structure-rheology relationship in weakly amphiphilic block copolymer Langmuir monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:3345-3353. [PMID: 24650052 DOI: 10.1021/la4043777] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The linear viscoelastic behavior in the low-frequency regime at the water/air interface of three different polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) copolymer monolayers, with block length ratio varying from 66-33 to 50-50 and 25-75 in molecular units, was studied and related to the interfacial behavior, characterized by means of Langmuir isotherms, and their structure, characterized by means of the atomic force microscopy technique. The two monolayers with the highest PMMA amount showed a single phase transition at about 12 mN/m, the viscoelastic behavior changing from a predominantly elastic to a viscoelastic one. This change in the viscoelastic properties was ascribed to the beginning of entanglement among the PMMA coronas of the predominantly circular quasi-2D micelles formed by the two copolymer systems. Conversely, the polymer with the lowest PMMA amount, despite having the same PMMA block length of the PS-PMMA 50-50 block copolymer, was found to behave as a viscoelastic system at any surface pressure value. This characteristic behavior cannot therefore be simply related to the molecular weight difference, but it has been put in connection to the irregular micelle structure observed in this case, consisting of a mixture of spherical and wormlike micelles, and to the different conformation adopted by the PMMA block. By blending this copolymer with an immiscible elastic homopolymer, namely poly(2-vinylpyridine), it was possible to tune the micelle nanostructure, obtaining regular circular quasi-2D micelles, with viscoelastic properties as expected for the PMMA-rich copolymer monolayers. To the best of our knowledge, this study shows for the first time the explicit dependence upon the relative block length and, in turn, upon the nanostructure of the quasi-2D micelles, of the viscoelastic properties of Langmuir monolayers and suggests that molecular weight and intermolecular interactions are not the only parameters governing the polymer conformation and, in turn, the polymer rheology and dynamics in quasi-2D confined systems.
Collapse
Affiliation(s)
- Giovanni Li Destri
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemistry, University of Catania and CSGI , V.le A Doria 6, 95125 Catania, Italy
| | | | | |
Collapse
|
20
|
Wang X, Wen G, Huang C, Wang Z, Shi Y. Aggregation behavior of the blends of PS-b-PEO-b-PS and PS-b-PMMA at the air/water interface. RSC Adv 2014. [DOI: 10.1039/c4ra08579e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Upon compression, large close-packed aggregates in the mixed LB films split into small uniform ones. Hysteresis degree can be interpreted with chain entanglement and block mobility.
Collapse
Affiliation(s)
- Xiaoqun Wang
- Department of Polymer Materials and Engineering
- College of Materials Science and Engineering
- Harbin University of Science and Technology
- Harbin 150040, P. R. China
| | - Gangyao Wen
- Department of Polymer Materials and Engineering
- College of Materials Science and Engineering
- Harbin University of Science and Technology
- Harbin 150040, P. R. China
| | - Changchun Huang
- Department of Polymer Materials and Engineering
- College of Materials Science and Engineering
- Harbin University of Science and Technology
- Harbin 150040, P. R. China
| | - Zhuang Wang
- Department of Polymer Materials and Engineering
- College of Materials Science and Engineering
- Harbin University of Science and Technology
- Harbin 150040, P. R. China
| | - Yunbo Shi
- Institute of Measurement and Communication
- Harbin University of Science and Technology
- Harbin 150080, P. R. China
| |
Collapse
|
21
|
Wang Z, Wen G, Zhao F, Huang C, Wang X, Shi T, Li H. Effect of selective solvent on the aggregate behavior of the mixed Langmuir monolayers of PS-b-PEO and PS-b-PMMA. RSC Adv 2014. [DOI: 10.1039/c4ra04161e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An interesting way to control morphology evolution in the mixed LB films was performed by mainly using a selective spreading solvent. Furthermore, a peculiar hysteresis phenomenon in the polymeric Langmuir monolayers is reported.
Collapse
Affiliation(s)
- Zhuang Wang
- Department of Polymer Materials and Engineering
- College of Materials Science and Engineering
- Harbin University of Science and Technology
- Harbin 150040, P. R. China
| | - Gangyao Wen
- Department of Polymer Materials and Engineering
- College of Materials Science and Engineering
- Harbin University of Science and Technology
- Harbin 150040, P. R. China
| | - Fengyang Zhao
- Department of Polymer Materials and Engineering
- College of Materials Science and Engineering
- Harbin University of Science and Technology
- Harbin 150040, P. R. China
| | - Changchun Huang
- Department of Polymer Materials and Engineering
- College of Materials Science and Engineering
- Harbin University of Science and Technology
- Harbin 150040, P. R. China
| | - Xiaoqun Wang
- Department of Polymer Materials and Engineering
- College of Materials Science and Engineering
- Harbin University of Science and Technology
- Harbin 150040, P. R. China
| | - Tongfei Shi
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
| | - Hongfei Li
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
| |
Collapse
|
22
|
Perepichka II, Lu Q, Badia A, Bazuin CG. Understanding and controlling morphology formation in Langmuir-Blodgett block copolymer films using PS-P4VP and PS-P4VP/PDP. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:4502-19. [PMID: 23383750 DOI: 10.1021/la3040962] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
This contribution offers a comprehensive understanding of the factors that govern the morphologies of Langmuir-Blodgett (LB) monolayers of amphiphilic diblock copolymers (BCs). This is achieved by a detailed investigation of a wide range of polystyrene-poly(4-vinyl pyridine) (PS-P4VP) block copolymers, in contrast to much more limited ranges in previous studies. Parameters that are varied include the block ratios (mainly for similar total molecular weights, occasionally other total molecular weights), the presence or not of 3-n-pentadecylphenol (PDP, usually equimolar with VP, with which it hydrogen bonds), the spreading solution concentration ("low" and "high"), and the LB technique (standard vs "solvent-assisted"). Our observations are compared with previously published results on other amphiphilic diblock copolymers, which had given rise to contradictory interpretations of morphology formation. Based on the accumulated results, we re-establish early literature conclusions that three main categories of LB block copolymer morphologies are obtained depending on the block ratio, termed planar, strand, and dot regimes. The block composition boundaries in terms of mol % block content are shown to be similar for all BCs having alkyl chain substituents on the hydrophilic block (such as PS-P4VP/PDP) and are shifted to higher values for BCs with no alkyl chain substituents (such as PS-P4VP). This is attributed to the higher surface area per repeat unit of the hydrophilic block monolayer on the water surface for the former, as supported by the onset and limiting areas of the Langmuir isotherms for the BCs in the dot regime. 2D phase diagrams are discussed in terms of relative effective surface areas of the two blocks. We identify and discuss how kinetic effects on morphology formation, which have been highlighted in more recent literature, are superposed on the compositional effects. The kinetic effects are shown to depend on the morphology regime, most strongly influencing the strand and, especially, planar regimes, where they give rise to a diversity of specific structures. Besides film dewetting mechanisms, which are different when occurring in structured versus unstructured films (the latter previously discussed in the literature), kinetic influences are discussed in terms of chain association dynamics leading to depletion effects that impact on growing aggregates. These depletion effects particularly manifest themselves in more dilute spreading solutions, with higher molecular weight polymers, and in composition regimes characterized by equilibrium degrees of aggregation that are effectively infinite. It is by understanding these various kinetic influences that the diversity of structures can be classified by the three main composition-dependent regimes.
Collapse
Affiliation(s)
- Iryna I Perepichka
- Département de Chimie, Centre de Recherche sur les Matériaux Auto-Assemblés (CRMAA/CSACS), Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal (QC), Canada H3C 3J7
| | | | | | | |
Collapse
|
23
|
Nanopatterning of substrates by self-assembly in supramolecular block copolymer monolayer films. Sci China Chem 2012. [DOI: 10.1007/s11426-012-4776-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Jheng KT, Hsu WP. Isobaric relaxation phenomenon of mixed PMMA/PS- b-PEO monolayers at different temperatures. J Appl Polym Sci 2012. [DOI: 10.1002/app.36828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Glagola CP, Miceli LM, Milchak MA, Halle EH, Logan JL. Polystyrene-poly(ethylene oxide) diblock copolymer: the effect of polystyrene and spreading concentration at the air/water interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:5048-5058. [PMID: 22339480 DOI: 10.1021/la204100d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Polystyrene-block-poly(ethylene oxide) (PS-PEO) is an amphiphilic diblock copolymer that undergoes microphase separation when spread at the air/water interface, forming nanosized domains. In this study, we investigate the impact of PS by examining a series of PS-PEO samples containing constant PEO (~17,000 g·mol(-1)) and variable PS (from 3600 to 200,000 g·mol(-1)) through isothermal characterization and atomic force microscopy (AFM). The polymers separated into two categories: predominantly hydrophobic and predominantly hydrophilic with a weight percent of PEO of ~20% providing the boundary between the two. AFM results indicated that predominantly hydrophilic PS-PEO forms dots while more hydrophobic samples yield a mixture of dots and spaghetti with continent-like structures appearing at ~7% PEO or less. These structures reflect a blend of polymer spreading, entanglement, and vitrification as the solvent evaporates. Changing the spreading concentration provides insight into this process with higher concentrations representing earlier kinetic stages and lower concentrations demonstrating later ones. Comparison of isothermal results and AFM analysis shows how polymer behavior at the air/water interface correlates with the observed nanostructures. Understanding the impact of polymer composition and spreading concentration is significant in leading to greater control over the nanostructures obtained through PS-PEO self-assembly and their eventual application as polymer templates.
Collapse
Affiliation(s)
- Cameron P Glagola
- Department of Chemistry, Washington & Jefferson College, Washington, Pennsylvania 15301, United States
| | | | | | | | | |
Collapse
|
26
|
Jheng KT, Hsu WP. Molecular weight effect of PMMA on its miscibility with PS-b-PEO at the air/water interface. J Appl Polym Sci 2012. [DOI: 10.1002/app.35456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Li Q, Sun J, Wang J, Chen GX, Li F, Zhang Y. Preparation of diblock copolymer films for the localization of C60 and multiwalled carbon nanotubes on aqueous substrate. RSC Adv 2012. [DOI: 10.1039/c2ra20250f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
28
|
Effect of the graft chain length and density on the morphology of radiation-modified polysilane monolayers at the air/water interface. J Colloid Interface Sci 2011; 363:440-5. [PMID: 21855884 DOI: 10.1016/j.jcis.2011.07.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 07/25/2011] [Accepted: 07/26/2011] [Indexed: 11/22/2022]
Abstract
The variation in the morphology of monolayers at the air/water interface is investigated for two kinds of radiation-modified polysilanes with different structures: poly(diethyl fumarate)-grafted poly(methyl-n-propylsilane) (PMPrS-g-PDEF) and maleic anhydride-grafted PMPrS (PMPrS-g-MAH). PMPrS-g-PDEF has long but sparsely-attached PDEF graft chains, while PMPrS-g-MAH has short but densely-attached MAH graft units. Surface pressure-area measurements indicate that PMPrS-g-PDEF monolayers extensively spread at the air/water interface though PMPrS homopolymer hardly spreads. AFM observation reveals that PMPrS-g-PDEF monolayers have an inhomogeneous structure containing string-like microstructures. This result suggests that PMPrS main chains are detached from the water surface to aggregate together and only PDEF chains spread over the water surface. In contrast, PMPrS-g-MAH forms uniform monolayers with a smooth surface. PMPrS main chains of PMPrS-g-MAH are anchored to the water surface by densely grafted MAH units. It is also demonstrated that only the PMPrS-g-MAH monolayers are successfully deposited layer-by-layer on a solid substrate by the Y-type deposition.
Collapse
|
29
|
Zhang Y, Wang Q. Ultrathin and large-area macroporous polymeric membranes formed through self-assembly of sub-10 nm elastic nanoparticles. Macromol Rapid Commun 2011; 32:1645-51. [PMID: 21842507 DOI: 10.1002/marc.201100389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Indexed: 11/05/2022]
Abstract
A variety of sub-10 nm nanoparticles are successfully prepared by crosslinking of polystyrene-b-poly(1,3-butadiene) (PS-b-PB) and polystyrene-b-poly(4-vinyl pyridine) (PS-b-P4VP) block copolymer micelles and inverse micelles. Among them, the core-crosslinked PS-b-PB micelles can self-assemble into ultrathin (< 10 nm) macroporous (pore size <1 µm) membranes in a facile way, i.e., by simply drop-coating the particle solution onto a mica surface. No continuous/porous membranes are produced from shell-crosslinked PS-b-PB micelles and both forms of PS-b-P4VP micelles. This suggests that the unique structure of the block copolymer precursor, including the very flexible core-forming block and the glassy corona-forming block and the specific block length ratio, directly determines the formation of the macroporous membrane.
Collapse
Affiliation(s)
- Yong Zhang
- Bayreuther Zentrum fuer Kolloide und Grenzflaechen, Universitaet Bayreuth, D-95440 Bayreuth, Germany.
| | | |
Collapse
|
30
|
He WD, Sun XL, Wan WM, Pan CY. Multiple Morphologies of PAA-b-PSt Assemblies throughout RAFT Dispersion Polymerization of Styrene with PAA Macro-CTA. Macromolecules 2011. [DOI: 10.1021/ma2000674] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wei-Dong He
- Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiao-Li Sun
- Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wen-Ming Wan
- Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Cai-Yuan Pan
- Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
31
|
Price EW, Harirchian-Saei S, Moffitt MG. Strands, networks, and continents from polystyrene dewetting at the air-water interface: implications for amphiphilic block copolymer self-assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:1364-1372. [PMID: 21190349 DOI: 10.1021/la1040618] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We demonstrate that nanoscale aggregates similar to those formed via amphiphilic block copolymer self-assembly at the air-water interface, including strands, networks, and continents, can be generated by the simple spreading of PS homopolymer solutions on water. Two different PS homopolymers of different molecular weight (PS-405k, M(n) = 405 000 g mol(-1) and PS-33k, M(n) = 33 000 g mol(-1)) are spread at the air-water interface at various spreading concentrations ranging from 0.25 to 3.0 mg/mL. Aggregate formation is driven by PS dewetting from water as the spreading solvent evaporates. We propose that a high spreading concentration or a high molecular weight lead to chain entanglements that restrict macromolecular mobility in the solution, enabling the kinetic trapping of nanostructures associated with early and intermediate stages of PS dewetting. Comparison of PS-405k with a mainly hydrophobic PS-b-PEO block copolymer of similar molecular weight (PSEO-392k, M(n) = 392 000 g mol(-1), 2.0 wt % PEO) allows the effect of a relatively short surface active block on aggregate formation to be investigated. We show that whereas the PEO block is not a required component for the formation of strands and other nonglobular aggregates, it does increase the number of these aggregates at a given spreading concentration and decreases the minimum spreading concentration at which these aggregates are observed, along with decreasing the dimensions and polydispersity of specific surface features. The results provide supporting evidence for the role of PS dewetting in the generation of multiple PS-b-PEO aggregate morphologies at the air-water interface, as originally described in earlier paper from our group.
Collapse
Affiliation(s)
- Eric W Price
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| | | | | |
Collapse
|
32
|
Perepichka II, Badia A, Bazuin CG. Nanostrand formation of block copolymers at the air/water interface. ACS NANO 2010; 4:6825-6835. [PMID: 20979365 DOI: 10.1021/nn101318e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Langmuir-Blodgett monolayers consisting of a network of nanostrands have occasionally been reported in the literature, but are often coexistent with other morphologies, which is not useful for potential applications. With the use of PS-P4VP/PDP, a polystyrene-poly(4-vinyl pyridine) diblock copolymer of 12 mol % VP content mixed with 3-pentadecylphenol, it is shown that the disordered nanostrand network morphology can be obtained reproducibly and uniformly over large surface areas by spreading chloroform solutions of relatively high copolymer concentration. Use of a more slowly evaporating spreading solvent, 1,1,2,2-tetrachloroethane, and a low subphase temperature, 8-9 °C, results in much more densely aligned nanostrands. Poorly spreading solvents such as nitrobenzene produce the well-known fingerprint pattern often observed in spin- or dip-coated thin films of block copolymers. A mechanism for nanostrand network formation is proposed that involves the momentary formation of a fingerprint morphology in spreading drops followed by its breakup at the level of the mobile P4VP/PDP stripes as spreading continues, leaving P4VP-anchored PS nanostrands floating on the water surface.
Collapse
Affiliation(s)
- Iryna I Perepichka
- Département de Chimie, Centre de Recherche sur les Matériaux Auto-Assemblés (CRMAA/CSACS), Université de Montréal, Montréal (QC), Canada H3C 3J7
| | | | | |
Collapse
|
33
|
Lu HW, Logan JL, Hosoi AE, Baker SM. Tuning nanoscopic self-assembly of diblock copolymer blends on a two-dimensional interface. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/polb.22126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Pohjalainen E, Pohjakallio M, Johans C, Kontturi K, Timonen JVI, Ikkala O, Ras RHA, Viitala T, Heino MT, Seppälä ET. Cobalt nanoparticle Langmuir-Schaefer films on ethylene glycol subphase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:13937-13943. [PMID: 20687577 DOI: 10.1021/la101630q] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The Langmuir-Schaefer (LS) technique was applied to prepare two-dimensional films of tridodecylamine (TDA)-stabilized Co nanoparticles. Ethylene glycol was used as the subphase because the Co nanoparticles spread better on it than on water. Surface pressure-area isotherms provided very little information on the floating films, and Brewster angle microscopy (BAM) was needed to characterize the film formation in situ. In addition to the subphase, various other experimental factors were tested in the LS film preparation, including solvent and presence of free TDA ligands and poly(styrene-b-ethylene oxide) (PS-b-PEO) in the nanoparticle dispersion. LS films deposited from dispersions from which the excess TDA ligands had been removed by washing the Co nanoparticles with 2-propanol consisted of hexagonally organized particles in rafts that were organized in necklace structures. The addition of PS-b-PEO to the deposition dispersion resulted in small nanoparticle rafts evenly distributed over the substrate surface. The best Co-nanoparticle-PS-b-PEO films were obtained with a mass ratio of 20:1 between Co (9 nm) and block copolymer (38 200 g/mol, PEO content 22 mass %). These films were successfully transferred onto Formvar-coated TEM grids and characterized by transmission electron microscopy (TEM) and a superconducting quantum interference device (SQUID) magnetometer. At room temperature the films showed superparamagnetic behavior with a saturation magnetization M(s) of 100 emu/g (Co). Our work indicates that it is possible to obtain thin superparamagnetic LS films of TDA-stabilized Co nanoparticles. This is an important result as the TDA-stabilized Co nanoparticles show a very good resistance to corrosion.
Collapse
Affiliation(s)
- Elina Pohjalainen
- Department of Chemistry, Aalto University, P.O.B. 16100, FI-00076 Aalto, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Azzam T, Eisenberg A. Fully collapsed (kippah) vesicles: preparation and characterization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:10513-10523. [PMID: 20443619 DOI: 10.1021/la1004837] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A study is presented of the formation of a kippah or hemispherical dome structure, a new morphology generated when a vesicle completely collapses to a hollow hemisphere. Justification for the new name is given in the Introduction. Relatively large vesicles of ca. approximately 500 nm in diameter were prepared from poly(acrylic acid)-block-polystyrene (PAA-b-PS) amphiphilic copolymer in the dioxane/water system. The vesicle specimens for transmission electron microscopy (TEM) were prepared using four different methods: drying under ambient conditions, freeze-drying, freeze-drying and subsequent resuspension in water, and drying under vacuum. The formation of the kippah was found to be strongly influenced by the method of preparation. When the vesicles were allowed to dry on the grid, either by drying under ambient conditions or by direct freeze-drying, "normal" vesicles (i.e., not kippah) with the classical indentation pattern were the only structures to be observed. Kippah vesicles, on the other hand, were obtained only by freeze-drying and subsequent rehydration in water or by direct drying under vacuum where no freezing is involved. The cause of the kippah vesicle formation is not yet completely understood for all methods of preparation; however, it was postulated to be strongly influenced by one or more of the following parameters: the relative flexibility of the vesicle wall, pressure gradient, and surface tension. Unlike "normal" vesicles, which exhibit, in TEM, a classical indentation pattern, kippah vesicles appear nearly round but with average wall thickness twice as large as in the "normal" vesicles. The study illustrates also the usefulness of specimen tilting in the analysis of the kippah. In addition, specimen tilting was found to allow the unambiguous determination of the orientation of the kippah on the surface (i.e., open-side-up or open-side-down).
Collapse
Affiliation(s)
- Tony Azzam
- Department of Chemistry and Centre for Self Assembled Chemical Structures, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 2K6, Canada
| | | |
Collapse
|
37
|
Park JY, Ponnapati R, Taranekar P, Advincula RC. Carbazole peripheral poly(benzyl ether) dendrimers at the air-water interface: electrochemical cross-linking and electronanopatterning. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:6167-6176. [PMID: 19799458 DOI: 10.1021/la902404b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A Langmuir film of a third-generation carbazole-terminated poly(benzyl ether) (G3-CtPBE) dendrimer was investigated at the air-water interface. Langmuir-Blodgett (LB) films were deposited on gold substrates and investigated by atomic force microscopy (AFM), followed by electrochemical and electronanopatterning studies. For the G3-CtPBE dendrimer aggregates, variable concentration and surface pressure gave control over aggregate size and shape at the air-water interface. At a lower concentration C1, aggregate-spherical nanoparticles were observed with a face-on or overlapped orientation with increasing surface pressure. However, at a higher concentration C2, their surface morphologies exhibited circular and rod-shaped aggregates with respect to increasing surface pressure attributed to an edge-on configurational change. Moreover, in situ simultaneous interfacial potentiostatic electrodeposition with LB transfer at the air-water interface was employed for the first time with the G3-CtPBE dendrimers onto a hydrophilic surface under constant voltage (i.e., close to the oxidation potential of G3-CtPBE for electrochemical cross-linking). Electrochemical cross-linking on G3-CtPBE dendrimer LB films was also performed ex situ to investigate electrochemical and optical properties. Finally, as an application of a cross-linkable LB film, electronanolithography was carried out to prepare nanopatterns using the current sensing atomic force microscopy (CS-AFM) technique.
Collapse
Affiliation(s)
- Jin Young Park
- Department of Chemistry, University of Houston, Houston, Texas 77204, USA
| | | | | | | |
Collapse
|
38
|
Harirchian-Saei S, Wang MCP, Gates BD, Moffitt MG. Patterning block copolymer aggregates via Langmuir-Blodgett transfer to microcontact-printed substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:5998-6008. [PMID: 20334416 DOI: 10.1021/la904561b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We demonstrate a new strategy for producing hierarchical polymer nanostructures, which combines nanoscale self-assembly of amphiphilic block copolymers at the air-water interface with microscale templated assembly of the resulting aggregates on chemically patterned substrates. Aggregates are formed via interfacial self-assembly of 141k polystyrene-b-poly(ethylene oxide) (PS-b-PEO, MW = 141k, 11.4 wt % PEO) or a blend of 185k PS-b-PEO (MW = 185k, 18.9 wt % PEO) and PS-coated CdS nanoparticles to form strandlike copolymer or copolymer-nanoparticle aggregates. Using Langmuir-Blodgett (LB) techniques, the aggregates are then transferred to patterned substrates possessing alternating hydrophilic/hydrophobic stripes, obtained by microcontact printing octadecyltrichlorosilane (OTS) on glass. The aggregates are transferred under various conditions of surface pressure, orientation of the patterned substrate, and withdrawal speed. Templated assembly of aggregates into the hydrophilic substrate domains is achieved when the hydrophilic/hydrophobic stripes are oriented perpendicular to the water surface during LB transfer; this is explained by surface energy heterogeneities along the subphase-substrate contact line, which induce selective dewetting and concomitant monolayer rearrangement at the drying front. In contrast, parallel orientation of stripes results in nonselective transfer of the monolayer without registration to the underlying surface pattern. By studying the effect of surface pressure, we show that packing constraints imposed by compression of aggregates to high surface densities prevent the formation of patterned LB films that match the established periodicity of the OTS-patterned glass. As well, it is shown that efficient transfer of aggregates to the patterned glass requires slower substrate withdrawal speeds compared to transfer to unpatterned hydrophilic glass.
Collapse
Affiliation(s)
- Saman Harirchian-Saei
- Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC, V8W 3V6 Canada
| | | | | | | |
Collapse
|
39
|
Wang CW, Xin GQ, Lee YI, Hao J, Jiang J, Liu HG. Poly(9-vinylcarbazole)/silver composite nanotubes and networks formed at the airâwater interface. J Appl Polym Sci 2010. [DOI: 10.1002/app.31443] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Wen G. Network Structure Control of Binary Mixed Langmuir Monolayers of Homo-PS and PS-b-P2VP. J Phys Chem B 2010; 114:3827-32. [DOI: 10.1021/jp909588p] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gangyao Wen
- Department of Polymer Materials and Engineering, College of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| |
Collapse
|
41
|
|
42
|
Zhao L, Byun M, Rzayev J, Lin Z. Polystyrene−Polylactide Bottlebrush Block Copolymer at the Air/Water Interface. Macromolecules 2009. [DOI: 10.1021/ma9016345] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lei Zhao
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011
| | - Myunghwan Byun
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011
| | - Javid Rzayev
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000
| | - Zhiqun Lin
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
43
|
Li Z, Schön V, Huber P, Kressler J, Busse K. Comparison of the Monolayer Formation of Fluorinated and Nonfluorinated Amphiphilic Block Copolymers at the Air−Water Interface. J Phys Chem B 2009; 113:11841-7. [DOI: 10.1021/jp905016s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zheng Li
- Institute of Physical Chemistry, Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany, and Faculty of Physics and Mechatronics Engineering, Department of Engineering Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - Volker Schön
- Institute of Physical Chemistry, Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany, and Faculty of Physics and Mechatronics Engineering, Department of Engineering Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - Patrick Huber
- Institute of Physical Chemistry, Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany, and Faculty of Physics and Mechatronics Engineering, Department of Engineering Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - Jörg Kressler
- Institute of Physical Chemistry, Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany, and Faculty of Physics and Mechatronics Engineering, Department of Engineering Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - Karsten Busse
- Institute of Physical Chemistry, Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany, and Faculty of Physics and Mechatronics Engineering, Department of Engineering Physics, Saarland University, D-66123 Saarbrücken, Germany
| |
Collapse
|
44
|
Price EW, Guo Y, Wang CW, Moffitt MG. Block copolymer strands with internal microphase separation structure via self-assembly at the air-water interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:6398-6406. [PMID: 19466788 DOI: 10.1021/la804317s] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Block copolymer microphase separation in the bulk is coupled to amphiphilic block copolymer self-assembly at the air-water interface to yield hierarchical Langmuir-Blodgett (LB) structures combining organization at the meso- and nanoscales. A blend of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) (Mn=141K, 11.4 wt % PEO) and polystyrene-b-poly(butadiene) (PS-b-PB) (Mn=31.9K, 28.5 wt % PB) containing a PS-b-PB weight fraction of f=0.75 was deposited at the air-water interface, resulting in the spontaneous generation of aggregates with multiscale organization, including nanoscale cylinders in mesoscale strands, via evaporation of the spreading solvent. The resulting features were characterized in LB films via AFM and TEM and at the air-water interface via Langmuir compression isotherms. Blends containing lower PS-b-PB contents formed mesoscale aggregate morphologies of continents and strands (f=0.50) or mesoscale continents with holes (f=0.25), but without the internal nanoscale organization found in the f=0.75 blend. The interfacial self-assembly of pure PS-b-PB at the air-water interface (f=1) yielded taller and more irregularly shaped aggregates than blends containing PS-b-PEO, indicating the integral role of the amphiphilic copolymer in regulating the mesoscale organization of the hierarchically structured features.
Collapse
Affiliation(s)
- Eric W Price
- Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3V6, Canada
| | | | | | | |
Collapse
|
45
|
ABIKO S, TANAKA M, KINOSHITA T. pH-Induced Morphological Change of Molecular Membrane Composed of Amphiphilic Polypeptide-Poly(ethylene glycol) Diblock Copolymer at Air/Water Interface. KOBUNSHI RONBUNSHU 2009. [DOI: 10.1295/koron.66.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Njikang GN, Cao L, Gauthier M. Pressure- and temperature-induced association of arborescent polystyrene-graft-poly(ethylene oxide) copolymers at the air-water interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:12919-12927. [PMID: 18850728 DOI: 10.1021/la802163k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The influence of surface pressure and subphase temperature on the association of arborescent polystyrene- graft-poly(ethylene oxide) (PS- g-PEO) copolymers at the air-water interface was investigated using the Langmuir balance and atomic force microscopy (AFM) techniques. These dendritic molecules form stable condensed monolayers with surface compressional moduli >250 mN/m. The variation in film thickness observed as a function of surface pressure suggests that at low surface pressures (gaslike phase) the PEO chains remain adsorbed at the air-water interface. At higher surface pressures (condensed phase), the PEO chains partially desorb into the subphase and adopt a more brushlike conformation. Large islandlike clusters with a broad size distribution were observed for samples with PEO contents of up to 15% by weight. In contrast, copolymers with PEO contents of 22-43% displayed enhanced side-by-side association into ribbonlike superstructures upon compression. The same effect was observed even in the absence of compression when the subphase temperature was increased from 12 to 27 degrees C. The temperature-induced association was attributed to increased van der Waals attractive forces between the PS cores relative to the steric repulsive forces between PEO chains in the coronas because the solvent quality for the PEO segments decreased at higher temperatures. The restricted number of superstructures observed for arborescent copolymers as compared with linear- and star-branched PS-PEO block copolymers is attributed to the enhanced structural rigidity of the molecules due to branching.
Collapse
Affiliation(s)
- Gabriel N Njikang
- Department of Chemistry, Institute for Polymer Research, University of Waterloo, Ontario, Canada
| | | | | |
Collapse
|
47
|
Liu L, Kim JK, Lee M. Interfacial Organization of Y-Shaped Rod-Coil Molecules Packed into Cylindrical Nanoarchitectures. Chemphyschem 2008; 9:1585-92. [DOI: 10.1002/cphc.200800124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Wen G, Chung B, Chang T. Aggregation Behavior of Homo‐PS/PS‐b‐P2VP Blends at the Air/Water Interface. Macromol Rapid Commun 2008. [DOI: 10.1002/marc.200800106] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Njikang GN, Cao L, Gauthier M. Self-Assembly of Arborescent Polystyrene-graft-Poly(ethylene oxide) Copolymers at the Air/Water Interface. MACROMOL CHEM PHYS 2008. [DOI: 10.1002/macp.200700619] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Deschênes L, Bousmina M, Ritcey AM. Micellization of PEO/PS block copolymers at the air/water interface: a simple model for predicting the size and aggregation number of circular surface micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:3699-3708. [PMID: 18321139 DOI: 10.1021/la702141h] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Isotherms of monolayers of poly(ethylene oxide) (PEO) and polystyrene (PS) triblock copolymers spread at the air/water interface were obtained by film balance technique. In a low concentration regime, the PEO segments surrounding the PS cores behave the same way as in monolayers of PEO homopolymers. Langmuir-Blodgett (LB) films prepared by transferring the monolayers onto mica at various surface pressures were analyzed by atomic force microscopy (AFM). The results reveal that these block copolymers form micelles at the air/water interface. Within the micelles, the PS blocks act as anchoring structures at the interface. In several cases, aggregation patterns were modified by the dewetting processes that occur in Langmuir-Blodgett films transferred to solid substrates. High transfer surface pressures and metastable states favored these changes in morphology. A flowerlike surface micelle model is proposed to explain the organization of the surface circular micelles. The model can be generalized and applied to diblock copolymers as well. The model permits prediction of the aggregation number and the size of circular surface micelles formed by PEO/PS block copolymers at the air/water interface.
Collapse
Affiliation(s)
- Louise Deschênes
- Food Research and Development Centre, Agriculture and Agri-Food Canada, St-Hyacinthe, Québec, Canada.
| | | | | |
Collapse
|