1
|
Pal T, Wessén J, Das S, Chan HS. Differential Effects of Sequence-Local versus Nonlocal Charge Patterns on Phase Separation and Conformational Dimensions of Polyampholytes as Model Intrinsically Disordered Proteins. J Phys Chem Lett 2024; 15:8248-8256. [PMID: 39105804 DOI: 10.1021/acs.jpclett.4c01973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Conformational properties of intrinsically disordered proteins (IDPs) are governed by a sequence-ensemble relationship. To differentiate the impact of sequence-local versus sequence-nonlocal features of an IDP's charge pattern on its conformational dimensions and its phase-separation propensity, the charge "blockiness" κ and the nonlocality-weighted sequence charge decoration (SCD) parameters are compared for their correlations with isolated-chain radii of gyration (Rgs) and upper critical solution temperatures (UCSTs) of polyampholytes modeled by random phase approximation, field-theoretic simulation, and coarse-grained molecular dynamics. SCD is superior to κ in predicting Rg because SCD accounts for effects of contact order, i.e., nonlocality, on dimensions of isolated chains. In contrast, κ and SCD are comparably good, though nonideal, predictors of UCST because frequencies of interchain contacts in the multiple-chain condensed phase are less sensitive to sequence positions than frequencies of intrachain contacts of an isolated chain, as reflected by κ correlating better with condensed-phase interaction energy than SCD.
Collapse
Affiliation(s)
- Tanmoy Pal
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jonas Wessén
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Suman Das
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Chemistry, Gandhi Institute of Technology and Management, Visakhapatnam, Andhra Pradesh 530045, India
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
2
|
Sood A, Zhang B. Preserving condensate structure and composition by lowering sequence complexity. Biophys J 2024; 123:1815-1826. [PMID: 38824391 PMCID: PMC11267431 DOI: 10.1016/j.bpj.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/25/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024] Open
Abstract
Biomolecular condensates play a vital role in organizing cellular chemistry. They selectively partition biomolecules, preventing unwanted cross talk and buffering against chemical noise. Intrinsically disordered proteins (IDPs) serve as primary components of these condensates due to their flexibility and ability to engage in multivalent interactions, leading to spontaneous aggregation. Theoretical advancements are critical at connecting IDP sequences with condensate emergent properties to establish the so-called molecular grammar. We proposed an extension to the stickers and spacers model, incorporating heterogeneous, nonspecific pairwise interactions between spacers alongside specific interactions among stickers. Our investigation revealed that although spacer interactions contribute to phase separation and co-condensation, their nonspecific nature leads to disorganized condensates. Specific sticker-sticker interactions drive the formation of condensates with well-defined networked structures and molecular composition. We discussed how evolutionary pressures might emerge to affect these interactions, leading to the prevalence of low-complexity domains in IDP sequences. These domains suppress spurious interactions and facilitate the formation of biologically meaningful condensates.
Collapse
Affiliation(s)
- Amogh Sood
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
3
|
Debais G, Missoni LL, Perez Sirkin YA, Tagliazucchi M. Theoretical treatment of complex coacervate core micelles: structure and pH-induced disassembly. SOFT MATTER 2023; 19:7602-7612. [PMID: 37756111 DOI: 10.1039/d3sm01047c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Complex coacervate core micelles (C3Ms) are supramolecular soft nanostructures formed by the assembly of a block copolymer and an oppositely charged homopolymer. The coacervation of the charged segments in both macromolecules drives the formation of the core of the C3M, while the neutral block of the copolymer forms the corona. This work introduces a molecular theory (MOLT) that predicts the internal structure and stimuli-responsive properties of C3Ms and explicitly considers the chemical architecture of the polyelectrolytes, their acid-based equilibria and electrostatic and non-electrostatic interactions. In order to accurately predict complex coacervation, the correlations between charged species are incorporated into MOLT as ion-pairing processes, which are modeled using a coupled chemical equilibrium formalism. Very good agreement was observed between the experimental results in the literature and MOLT predictions for the scaling relationships that relate the dimensions of the micelle (aggregation number and sizes of the micelle and the core) to the lengths of the different blocks. MOLT was used to study the disassembly of the micelles when the solution pH is driven away from the value that guarantees the charge stoichiometry of the core. This study reveals that very sharp disassembly transitions can be obtained by tuning the length or architecture of the copolymer component, thereby suggesting potential routes to design C3Ms capable of releasing their components at very precise pH values.
Collapse
Affiliation(s)
- Gabriel Debais
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física y CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428, Argentina.
| | - Leandro L Missoni
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física y CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428, Argentina.
| | - Yamila A Perez Sirkin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física y CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428, Argentina.
| | - Mario Tagliazucchi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física y CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428, Argentina.
| |
Collapse
|
4
|
Coria-Oriundo LL, Debais G, Apuzzo E, Herrera SE, Ceolín M, Azzaroni O, Battaglini F, Tagliazucchi M. Phase Behavior and Electrochemical Properties of Highly Asymmetric Redox Coacervates. J Phys Chem B 2023; 127:7636-7647. [PMID: 37639479 DOI: 10.1021/acs.jpcb.3c03680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
This work reports the phase behavior and electrochemical properties of liquid coacervates made of ferricyanide and poly(ethylenimine). In contrast to the typical polyanion/polycation pairs used in liquid coacervates, the ferricyanide/poly(ethylenimine) system is highly asymmetric because poly(ethylenimine) has approximately 170 charges per molecule, while ferricyanide has only 3. Two types of phase diagrams were measured and fitted with a theoretical model. In the first type of diagram, the stability of the coacervate was studied in the plane given by the concentration of poly(ethylenimine) versus the concentration of ferricyanide for a fixed concentration of added monovalent salt (NaCl). The second type of diagram involved the plane given by the concentration of poly(ethylenimine) vs the concentration of the added monovalent salt for a fixed poly(ethyleneimine)/ferricyanide ratio. Interestingly, these phase diagrams displayed qualitative similarities to those of symmetric polyanion/polycation systems, suggesting that coacervates formed by a polyelectrolyte and a small multivalent ion can be treated as a specific case of polyelectrolyte coacervate. The characterization of the electrochemical properties of the coacervate revealed that the addition of monovalent salt greatly enhances charge transport, presumably by breaking ion pairs between ferricyanide and poly(ethylenimine). This finding highlights the significant influence of added salt on the transport properties of coacervates. This study provides the first comprehensive characterization of the phase behavior and transport properties of asymmetric coacervates and places these results within the broader context of the better-known symmetric polyelectrolyte coacervates.
Collapse
Affiliation(s)
- Lucy L Coria-Oriundo
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), CONICET─Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriel Debais
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), CONICET─Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
| | - Eugenia Apuzzo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA-CONICET), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 64 y Diag. 113, 1900 La Plata, Argentina
| | - Santiago E Herrera
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), CONICET─Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcelo Ceolín
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA-CONICET), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 64 y Diag. 113, 1900 La Plata, Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA-CONICET), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 64 y Diag. 113, 1900 La Plata, Argentina
| | - Fernando Battaglini
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), CONICET─Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
| | - Mario Tagliazucchi
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), CONICET─Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
5
|
Budkov YA, Brandyshev PE, Kalikin NN. Theory of self-coacervation in semi-dilute and concentrated zwitterionic polymer solutions. SOFT MATTER 2023; 19:3281-3289. [PMID: 37089119 DOI: 10.1039/d3sm00140g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Based on the random phase approximation, we develop a molecular theory of self-coacervation in zwitterionic polymer solutions. We show that the interplay between the volume interactions of the monomeric units and electrostatic correlations of charged groups on a polymer backbone can result in liquid-liquid phase separation (self-coacervation). We analyse the behavior of the coacervate phase polymer concentration depending on the electrostatic interaction strength - the ratio of the Bjerrum length to the bond length of the chain. We establish that in a wide range of polymer concentration values - from a semi-dilute to a rather concentrated solution - the chain connectivity and excluded volume interaction of the monomeric units have an extremely weak effect on the contribution of the electrostatic interactions of the dipolar monomeric units to the total free energy. We show that for rather weak electrostatic interactions, the electrostatic correlations manifest themselves as Keesom interactions of point-like freely rotating dipoles (Keesom regime), while in the region of strong electrostatic interactions the electrostatic free energy is described by the Debye-Hückel limiting law (Debye regime). We show that for real zwitterionic coacervates the Keesom regime is realized only for sufficiently small polymer concentrations of the coacervate phase, while the Debye regime is approximately realized for rather dense coacervates. Using the mean-field variant of the density functional theory, we calculate the surface tension (surface free energy) of the "coacervate-solvent" interface as a function of the bulk polymer concentration. Obtained results can be used to estimate the parameters of the polymer chains needed for practical applications such as drug encapsulation and delivery, as well as the design of adhesive materials.
Collapse
Affiliation(s)
- Yury A Budkov
- School of Applied Mathematics, HSE University, Tallinskaya st. 34, 123458 Moscow, Russia.
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya st. 1, Ivanovo, 153045, Russia
| | - Petr E Brandyshev
- School of Applied Mathematics, HSE University, Tallinskaya st. 34, 123458 Moscow, Russia.
| | - Nikolai N Kalikin
- School of Applied Mathematics, HSE University, Tallinskaya st. 34, 123458 Moscow, Russia.
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya st. 1, Ivanovo, 153045, Russia
| |
Collapse
|
6
|
Mitra S, Kundagrami A. Polyelectrolyte complexation of two oppositely charged symmetric polymers: A minimal theory. J Chem Phys 2023; 158:014904. [PMID: 36610965 DOI: 10.1063/5.0128904] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interplay of Coulomb interaction energy, free ion entropy, and conformational elasticity is a fascinating aspect in polyelectrolytes (PEs). We develop a theory for complexation of two oppositely charged PEs, a process known to be the precursor to the formation of complex coacervates in PE solutions, to explore the underlying thermodynamics of complex formation, at low salts. The theory considers general degrees of solvent polarity and dielectricity within an implicit solvent model, incorporating a varying Coulomb strength. Explicit calculation of the free energy of complexation and its components indicates that the entropy of free counterions and salt ions and the Coulomb enthalpy of bound ion-pairs dictate the equilibrium of PE complexation. This helps decouple the self-consistent dependency of charge and size of the uncomplexed parts of the polyions, derive an analytical expression for charge, and evaluate the free energy components as functions of chain overlap. Complexation is observed to be driven by enthalpy gain at low Coulomb strengths, driven by entropy gain of released counterions but opposed by enthalpy loss due to reduction of ion-pairs at moderate Coulomb strengths, and progressively less favorable due to enthalpy loss at even higher Coulomb strengths. The total free energy of the system is found to decrease linearly with an overlap of chains. Thermodynamic predictions from our model are in good quantitative agreement with simulations in literature.
Collapse
Affiliation(s)
- Soumik Mitra
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Arindam Kundagrami
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
7
|
Lin YH, Wessén J, Pal T, Das S, Chan HS. Numerical Techniques for Applications of Analytical Theories to Sequence-Dependent Phase Separations of Intrinsically Disordered Proteins. Methods Mol Biol 2023; 2563:51-94. [PMID: 36227468 DOI: 10.1007/978-1-0716-2663-4_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Biomolecular condensates, physically underpinned to a significant extent by liquid-liquid phase separation (LLPS), are now widely recognized by numerous experimental studies to be of fundamental biological, biomedical, and biophysical importance. In the face of experimental discoveries, analytical formulations emerged as a powerful yet tractable tool in recent theoretical investigations of the role of LLPS in the assembly and dissociation of these condensates. The pertinent LLPS often involves, though not exclusively, intrinsically disordered proteins engaging in multivalent interactions that are governed by their amino acid sequences. For researchers interested in applying these theoretical methods, here we provide a practical guide to a set of computational techniques devised for extracting sequence-dependent LLPS properties from analytical formulations. The numerical procedures covered include those for the determination of spinodal and binodal phase boundaries from a general free energy function with examples based on the random phase approximation in polymer theory, construction of tie lines for multiple-component LLPS, and field-theoretic simulation of multiple-chain heteropolymeric systems using complex Langevin dynamics. Since a more accurate physical picture often requires comparing analytical theory against explicit-chain model predictions, a commonly utilized methodology for coarse-grained molecular dynamics simulations of sequence-specific LLPS is also briefly outlined.
Collapse
Affiliation(s)
- Yi-Hsuan Lin
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Molecular Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Jonas Wessén
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Tanmoy Pal
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Suman Das
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Wessén J, Das S, Pal T, Chan HS. Analytical Formulation and Field-Theoretic Simulation of Sequence-Specific Phase Separation of Protein-Like Heteropolymers with Short- and Long-Spatial-Range Interactions. J Phys Chem B 2022; 126:9222-9245. [PMID: 36343363 DOI: 10.1021/acs.jpcb.2c06181] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A theory for sequence-dependent liquid-liquid phase separation (LLPS) of intrinsically disordered proteins (IDPs) in the study of biomolecular condensates is formulated by extending the random phase approximation (RPA) and field-theoretic simulation (FTS) of heteropolymers with spatially long-range Coulomb interactions to include the fundamental effects of short-range, hydrophobic-like interactions between amino acid residues. To this end, short-range effects are modeled by Yukawa interactions between multiple nonelectrostatic charges derived from an eigenvalue decomposition of pairwise residue-residue contact energies. Chain excluded volume is afforded by incompressibility constraints. A mean-field approximation leads to an effective Flory-Huggins χ parameter, which, in conjunction with RPA, accounts for the contact-interaction effects of amino acid composition and the sequence-pattern effects of long-range electrostatics in IDP LLPS, whereas FTS based on the formulation provides full sequence dependence for both short- and long-range interactions. This general approach is illustrated here by applications to variants of a natural IDP in the context of several different amino-acid interaction schemes as well as a set of different model hydrophobic-polar sequences sharing the same composition. Effectiveness of the methodology is verified by coarse-grained explicit-chain molecular dynamics simulations.
Collapse
Affiliation(s)
- Jonas Wessén
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Suman Das
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tanmoy Pal
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
9
|
Phase Behavior of Ion-Containing Polymers in Polar Solvents: Predictions from a Liquid-State Theory with Local Short-Range Interactions. Polymers (Basel) 2022; 14:polym14204421. [PMID: 36297998 PMCID: PMC9612006 DOI: 10.3390/polym14204421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
The thermodynamic phase behavior of charged polymers is a crucial property underlying their role in biology and various industrial applications. A complete understanding of the phase behaviors of such polymer solutions remains challenging due to the multi-component nature of the system and the delicate interplay among various factors, including the translational entropy of each component, excluded volume interactions, chain connectivity, electrostatic interactions, and other specific interactions. In this work, the phase behavior of partially charged ion-containing polymers in polar solvents is studied by further developing a liquid-state (LS) theory with local shortrange interactions. This work is based on the LS theory developed for fully-charged polyelectrolyte solutions. Specific interactions between charged groups of the polymer and counterions, between neutral segments of the polymer, and between charged segments of the polymer are incorporated into the LS theory by an extra Helmholtz free energy from the perturbed-chain statistical associating fluid theory (PC-SAFT). The influence of the sequence structure of the partially charged polymer is modeled by the number of connections between bonded segments. The effects of chain length, charge fraction, counterion valency, and specific short-range interactions are explored. A computational App for salt-free polymer solutions is developed and presented, which allows easy computation of the binodal curve and critical point by specifying values for the relevant model parameters.
Collapse
|
10
|
Zhao M, Zhang X, Cho J. Phase Behaviors of a Binary Blend of Oppositely Charged Polyelectrolytes: A Weak Segregation Approach. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mingge Zhao
- Department of Polymer Science & Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin, Gyeonggi-do 16890, Korea
| | - Xinyue Zhang
- Department of Polymer Science & Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin, Gyeonggi-do 16890, Korea
| | - Junhan Cho
- Department of Polymer Science & Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin, Gyeonggi-do 16890, Korea
| |
Collapse
|
11
|
Rumyantsev AM, Johner A, Tirrell MV, de Pablo JJ. Unifying Weak and Strong Charge Correlations within the Random Phase Approximation: Polyampholytes of Various Sequences. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Artem M. Rumyantsev
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Albert Johner
- Institut Charles Sadron, Université de Strasbourg, CNRS UPR22, Strasbourg 67034, France
| | - Matthew V. Tirrell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
12
|
Debais G, Tagliazucchi M. Two Sides of the Same Coin: A Unified Theoretical Treatment of Polyelectrolyte Complexation in Solution and Layer-by-Layer Films. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gabriel Debais
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física, Universidad de Buenos Aires, C1053ABH Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE)CONICET- Universidad de Buenos Aires, C1053ABH Buenos Aires, Argentina
| | - Mario Tagliazucchi
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física, Universidad de Buenos Aires, C1053ABH Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE)CONICET- Universidad de Buenos Aires, C1053ABH Buenos Aires, Argentina
| |
Collapse
|
13
|
Sinsinbar G, Palaniappan A, Yildiz UH, Liedberg B. A Perspective on Polythiophenes as Conformation Dependent Optical Reporters for Label-Free Bioanalytics. ACS Sens 2022; 7:686-703. [PMID: 35226461 DOI: 10.1021/acssensors.1c02476] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Poly(3-alkylthiophene) (PT)-based conjugated polyelectrolytes (CPEs) constitute an important class of responsive polymers with excellent optical properties. The electrostatic interactions between PTs and target analytes trigger complexation and concomitant conformational changes of the PT backbones that produce distinct optical responses. These conformation-induced optical responses of the PTs enable them to be utilized as reporters for detection of various analytes by employing simple UV-vis spectrophotometry or the naked eye. Numerous PTs with unique pendant groups have been synthesized to tailor their interactions with analytes such as nucleotides, ions, surfactants, proteins, and bacterial and viral pathogens. In this perspective, we discuss PT-target analyte complexation for bioanalytical applications and highlight recent advancements in point-of-care and field deployable assays. Subsequently, we highlight a few areas of critical importance for future applications of PTs as reporters, including (i) design and synthesis of specific PTs to advance the understanding of the mechanisms of interaction with target analytes, (ii) using arrays of PTs and linear discriminant analysis for selective and specific detection of target analytes, (iii) translation of conventional homogeneous solution-based assays into heterogeneous membrane-based assay formats, and finally (iv) the potential of using PT as an alternative to conjugated polymer nanoparticles and dots in bioimaging.
Collapse
Affiliation(s)
- Gaurav Sinsinbar
- Centre for Biomimetic Sensor Science, School of Materials Science Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore, 637553
| | - Alagappan Palaniappan
- Centre for Biomimetic Sensor Science, School of Materials Science Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore, 637553
| | - Umit Hakan Yildiz
- Department of Chemistry, Izmir Institute of Technology, İzmir 35430, Turkey
- Department of Photonic Science and Engineering, Izmir Institute of Technology, İzmir 35430, Turkey
- Department of Polymer Science and Engineering, Izmir Institute of Technology, İzmir 35430, Turkey
| | - Bo Liedberg
- Centre for Biomimetic Sensor Science, School of Materials Science Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore, 637553
| |
Collapse
|
14
|
Tian WD, Ghasemi M, Larson RG. Extracting free energies of counterion binding to polyelectrolytes by molecular dynamics simulations. J Chem Phys 2021; 155:114902. [PMID: 34551524 DOI: 10.1063/5.0056853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We use all-atom molecular dynamics simulations to extract ΔGeff, the free energy of binding of potassium ions K+ to the partially charged polyelectrolyte poly(acrylic acid), or PAA, in dilute regimes. Upon increasing the charge fraction of PAA, the chains adopt more extended conformations, and simultaneously, potassium ions bind more strongly (i.e., with more negative ΔGeff) to the highly charged chains to relieve electrostatic repulsions between charged monomers along the chains. We compare the simulation results with the predictions of a model that describes potassium binding to PAA chains as a reversible reaction whose binding free energy (ΔGeff) is adjusted from its intrinsic value (ΔG) by electrostatic correlations, captured by a random phase approximation. The bare or intrinsic binding free energy ΔG, which is an input in the model, depends on the binding species and is obtained from the radial distribution function of K+ around the charged monomer of a singly charged, short PAA chain in dilute solutions. We find that the model yields semi-quantitative predictions for ΔGeff and the degree of potassium binding to PAA chains, α, as a function of PAA charge fraction without using fitting parameters.
Collapse
Affiliation(s)
- Wen-de Tian
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | - Mohsen Ghasemi
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ronald G Larson
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
15
|
Friedowitz S, Qin J. Reversible ion binding for polyelectrolytes with adaptive conformations. AIChE J 2021. [DOI: 10.1002/aic.17426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sean Friedowitz
- Department of Chemical Engineering Stanford University Stanford California USA
| | - Jian Qin
- Department of Chemical Engineering Stanford University Stanford California USA
| |
Collapse
|
16
|
Sherck N, Shen K, Nguyen M, Yoo B, Köhler S, Speros JC, Delaney KT, Shell MS, Fredrickson GH. Molecularly Informed Field Theories from Bottom-up Coarse-Graining. ACS Macro Lett 2021; 10:576-583. [PMID: 35570772 DOI: 10.1021/acsmacrolett.1c00013] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polymer formulations possessing mesostructures or phase coexistence are challenging to simulate using atomistic particle-explicit approaches due to the disparate time and length scales, while the predictive capability of field-based simulations is hampered by the need to specify interactions at a coarser scale (e.g., χ-parameters). To overcome the weaknesses of both, we introduce a bottom-up coarse-graining methodology that leverages all-atom molecular dynamics to molecularly inform coarser field-theoretic models. Specifically, we use relative-entropy coarse-graining to parametrize particle models that are directly and analytically transformable into statistical field theories. We demonstrate the predictive capability of this approach by reproducing experimental aqueous poly(ethylene oxide) (PEO) cloud-point curves with no parameters fit to experimental data. This synergistic approach to multiscale polymer simulations opens the door to de novo exploration of phase behavior across a wide variety of polymer solutions and melt formulations.
Collapse
Affiliation(s)
- Nicholas Sherck
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Kevin Shen
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - My Nguyen
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Brian Yoo
- BASF Corporation, Tarrytown, New York 10591, United States
| | | | - Joshua C. Speros
- California Research Alliance (CARA) by BASF, Berkeley, California 94720, United States
| | - Kris T. Delaney
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - M. Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Glenn H. Fredrickson
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Department of Materials, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
17
|
Pal T, Wessén J, Das S, Chan HS. Subcompartmentalization of polyampholyte species in organelle-like condensates is promoted by charge-pattern mismatch and strong excluded-volume interaction. Phys Rev E 2021; 103:042406. [PMID: 34005864 DOI: 10.1103/physreve.103.042406] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Polyampholyte field theory and explicit-chain molecular dynamics models of sequence-specific phase separation of a system with two intrinsically disordered protein (IDP) species indicate consistently that a substantial polymer excluded volume and a significant mismatch of the IDP sequence charge patterns can act in concert, but not in isolation, to demix the two IDP species upon condensation. This finding reveals an energetic-geometric interplay in a stochastic, "fuzzy" molecular recognition mechanism that may facilitate subcompartmentalization of membraneless organelles.
Collapse
Affiliation(s)
- Tanmoy Pal
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jonas Wessén
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Suman Das
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
18
|
Ghasemi M, Larson RG. Role of electrostatic interactions in charge regulation of weakly dissociating polyacids. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2020.101322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Debais G, Tagliazucchi M. Microphase separation and aggregate self-assembly in brushes of oppositely charged polyelectrolytes triggered by ion pairing. J Chem Phys 2020; 153:144903. [PMID: 33086835 DOI: 10.1063/5.0020779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This work applies a molecular theory to study the formation of lateral self-assembled aggregates in mixed brushes composed of polyanion and polycation chains. In order to overcome the well-known limitations of mean-field electrostatics to capture polyelectrolyte complexation, the formation of ion pairs between anionic and cationic groups in the polyelectrolytes is explicitly modeled in our theory as an association reaction. This feature is essential to capture the microphase separation of the mixed brush and the formation of lateral aggregates triggered by polyelectrolyte complexation. The effects of solution pH and ionic strength, surface coverage, and chain length on the morphology of the mixed brush are systematically explored. It is shown that increasing salt concentration leads to the rupture of polyelectrolyte complexes and the stabilization of the homogeneous, non-aggregated brush, providing that the formation of ion pairs between the polyelectrolytes and the salt ions in solution is explicitly accounted for by the theory. The inclusion of ion-pairing association reactions between oppositely charged polyelectrolytes within a mean-field description of electrostatics emerges from this work as a useful and simple theoretical approach to capture the formation of polyelectrolyte complexes and their responsiveness to solution ionic strength and pH.
Collapse
Affiliation(s)
- Gabriel Debais
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía and Departamento de Química Inorgánica Analítica y Química Física, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón 2, Ciudad Autónoma de Buenos Aires C1428EHA, Argentina
| | - Mario Tagliazucchi
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía and Departamento de Química Inorgánica Analítica y Química Física, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón 2, Ciudad Autónoma de Buenos Aires C1428EHA, Argentina
| |
Collapse
|
20
|
Bello L, Sing CE. Mechanisms of Diffusive Charge Transport in Redox-Active Polymer Solutions. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01672] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Liliana Bello
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Charles E. Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
21
|
|
22
|
Xu X, Shi H, Wang F. Near-Critical Phase Behavior in Polyelectrolyte Solutions: Effect of Charge Fluctuations. J Phys Chem B 2020; 124:4203-4210. [PMID: 32340454 DOI: 10.1021/acs.jpcb.0c01511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The critical behaviors in polyelectrolyte (PE) solutions are studied by a renormalized Gaussian fluctuation theory. PEs are fully charged linear wormlike chains. The electrostatic interactions are considered in a continuum solvent while ignoring other interactions. The effects of temperature on the criticality are explored in a salt-free polyanion solution, and the effects of salt are explored in a symmetric mixed solution of polycation and polyanion. An unphysical phase coexistence (UPPC), in which a metastable dense phase coexists with an unstable dilute phase, always exists in the phase diagram. In the near-critical region, the UPPC could interfere with the real phase coexistence. The classical critical point is replaced by a "critical line", giving a flat top for the phase diagram. These behaviors are due to the effect of charge fluctuation in the near-critical region. Our results explain why the mean field approach overestimates the critical salt density by about 10% to experimental data in the study of coacervation between oppositely charged PEs.
Collapse
Affiliation(s)
- Xiaofei Xu
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Shi
- School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Fuhan Wang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, Jiangsu Province 215006, China
| |
Collapse
|
23
|
Abstract
Many biomolecular condensates appear to form via spontaneous or driven processes that have the hallmarks of intracellular phase transitions. This suggests that a common underlying physical framework might govern the formation of functionally and compositionally unrelated biomolecular condensates. In this review, we summarize recent work that leverages a stickers-and-spacers framework adapted from the field of associative polymers for understanding how multivalent protein and RNA molecules drive phase transitions that give rise to biomolecular condensates. We discuss how the valence of stickers impacts the driving forces for condensate formation and elaborate on how stickers can be distinguished from spacers in different contexts. We touch on the impact of sticker- and spacer-mediated interactions on the rheological properties of condensates and show how the model can be mapped to known drivers of different types of biomolecular condensates.
Collapse
Affiliation(s)
- Jeong-Mo Choi
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA; , ,
- Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri, 63130, USA
- Natural Science Research Institute, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Alex S Holehouse
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA; , ,
- Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA; , ,
- Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| |
Collapse
|
24
|
Rumyantsev AM, de Pablo JJ. Microphase Separation in Polyelectrolyte Blends: Weak Segregation Theory and Relation to Nuclear “Pasta”. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02466] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Artem M. Rumyantsev
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
25
|
Lin YH, Brady JP, Chan HS, Ghosh K. A unified analytical theory of heteropolymers for sequence-specific phase behaviors of polyelectrolytes and polyampholytes. J Chem Phys 2020; 152:045102. [PMID: 32007034 PMCID: PMC7043852 DOI: 10.1063/1.5139661] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/23/2019] [Indexed: 12/20/2022] Open
Abstract
The physical chemistry of liquid-liquid phase separation (LLPS) of polymer solutions bears directly on the assembly of biologically functional dropletlike bodies from proteins and nucleic acids. These biomolecular condensates include certain extracellular materials and intracellular compartments that are characterized as "membraneless organelles." Analytical theories are a valuable, computationally efficient tool for addressing general principles. LLPS of neutral homopolymers is quite well described by theory, but it has been a challenge to develop general theories for the LLPS of heteropolymers involving charge-charge interactions. Here, we present a theory that combines a random-phase-approximation treatment of polymer density fluctuations and an account of intrachain conformational heterogeneity based on renormalized Kuhn lengths to provide predictions of LLPS properties as a function of pH, salt, and charge patterning along the chain sequence. Advancing beyond more limited analytical approaches, our LLPS theory is applicable to a wide variety of charged sequences ranging from highly charged polyelectrolytes to neutral or nearly neutral polyampholytes. This theory should be useful in high-throughput screening of protein and other sequences for their LLPS propensities and can serve as a basis for more comprehensive theories that incorporate nonelectrostatic interactions. Experimental ramifications of our theory are discussed.
Collapse
Affiliation(s)
- Yi-Hsuan Lin
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jacob P Brady
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Kingshuk Ghosh
- Department of Physics and Astronomy, University of Denver, Colorado, Colorado 80208, USA
| |
Collapse
|
26
|
Das S, Amin AN, Lin YH, Chan HS. Coarse-grained residue-based models of disordered protein condensates: utility and limitations of simple charge pattern parameters. Phys Chem Chem Phys 2018; 20:28558-28574. [PMID: 30397688 DOI: 10.1039/c8cp05095c] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biomolecular condensates undergirded by phase separations of proteins and nucleic acids serve crucial biological functions. To gain physical insights into their genetic basis, we study how liquid-liquid phase separation (LLPS) of intrinsically disordered proteins (IDPs) depends on their sequence charge patterns using a continuum Langevin chain model wherein each amino acid residue is represented by a single bead. Charge patterns are characterized by the "blockiness" measure κ and the "sequence charge decoration" (SCD) parameter. Consistent with random phase approximation (RPA) theory and lattice simulations, LLPS propensity as characterized by critical temperature Tcr* increases with increasingly negative SCD for a set of sequences showing a positive correlation between κ and -SCD. Relative to RPA, the simulated sequence-dependent variation in Tcr* is often-though not always-smaller, whereas the simulated critical volume fractions are higher. However, for a set of sequences exhibiting an anti-correlation between κ and -SCD, the simulated Tcr*'s are quite insensitive to either parameter. Additionally, we find that blocky sequences that allow for strong electrostatic repulsion can lead to coexistence curves with upward concavity as stipulated by RPA, but the LLPS propensity of a strictly alternating charge sequence was likely overestimated by RPA and lattice models because interchain stabilization of this sequence requires spatial alignments that are difficult to achieve in real space. These results help delineate the utility and limitations of the charge pattern parameters and of RPA, pointing to further efforts necessary for rationalizing the newly observed subtleties.
Collapse
Affiliation(s)
- Suman Das
- Department of Biochemistry, University of Toronto, Medical Sciences Building - 5th Fl., 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| | | | | | | |
Collapse
|
27
|
Advances in Understanding Stimulus-Responsive Phase Behavior of Intrinsically Disordered Protein Polymers. J Mol Biol 2018; 430:4619-4635. [DOI: 10.1016/j.jmb.2018.06.031] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 12/20/2022]
|
28
|
Friedowitz S, Salehi A, Larson RG, Qin J. Role of electrostatic correlations in polyelectrolyte charge association. J Chem Phys 2018; 149:163335. [DOI: 10.1063/1.5034454] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Sean Friedowitz
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | - Ali Salehi
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ronald G. Larson
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jian Qin
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
29
|
Rumyantsev AM, Kramarenko EY, Borisov OV. Microphase Separation in Complex Coacervate Due to Incompatibility between Polyanion and Polycation. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00721] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Artem M. Rumyantsev
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, UMR 5254 CNRS UPPA, Pau, France
| | | | - Oleg V. Borisov
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, UMR 5254 CNRS UPPA, Pau, France
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia
- Peter the Great
St. Petersburg State Polytechnic University, 195251 St. Petersburg, Russia
| |
Collapse
|
30
|
Shen K, Wang ZG. Electrostatic correlations and the polyelectrolyte self energy. J Chem Phys 2018; 146:084901. [PMID: 28249457 DOI: 10.1063/1.4975777] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We address the effects of chain connectivity on electrostaticfluctuations in polyelectrolyte solutions using a field-theoretic, renormalizedGaussian fluctuation (RGF) theory. As in simple electrolyte solutions [Z.-G. Wang,Phys. Rev. E 81, 021501 (2010)], the RGF provides a unified theory forelectrostatic fluctuations, accounting for both dielectric and charge correlationeffects in terms of the self-energy. Unlike simple ions, the polyelectrolyte self energydepends intimately on the chain conformation, and our theory naturally provides aself-consistent determination of the response of intramolecular chain structure topolyelectrolyte and salt concentrations. The effects of the chain-conformation on theself-energy and thermodynamics are especially pronounced for flexiblepolyelectrolytes at low polymer and salt concentrations, where application of thewrong chain structure can lead to a drastic misestimation of the electrostaticcorrelations. By capturing the expected scaling behavior of chain size from dilute tosemi-dilute regimes, our theory provides improved estimates of the self energy at lowpolymer concentrations and correctly predicts the eventual N-independenceof the critical temperature and concentration of salt-free solutions of flexiblepolyelectrolytes. We show that the self energy can be interpreted in terms of aninfinite-dilution energy μm,0el and a finite concentrationcorrelation correction μcorr which tends to cancel out the formerwith increasing concentration.
Collapse
Affiliation(s)
- Kevin Shen
- Division of Chemistry andChemical Engineering, California Institute of TechnologyPasadena, Pasadena, California 91125,USA
| | - Zhen-Gang Wang
- Division of Chemistry andChemical Engineering, California Institute of TechnologyPasadena, Pasadena, California 91125,USA
| |
Collapse
|
31
|
Gordievskaya YD, Budkov YA, Kramarenko EY. An interplay of electrostatic and excluded volume interactions in the conformational behavior of a dipolar chain: theory and computer simulations. SOFT MATTER 2018; 14:3232-3235. [PMID: 29683178 DOI: 10.1039/c8sm00346g] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effect of an interplay between electrostatic and excluded volume interactions on the conformational behavior of a dipolar chain has been studied theoretically and by means of molecular dynamics simulations. Every monomer unit of the dipolar chain comprises a dipole formed by a charged group of the chain and an oppositely charged counterion. The counterion is assumed to freely move around the chain but keeping the distance between oppositely charged ions (the dipole length) fixed. The novelty of the developed mean-field theory is that variations of the dipole parameters (the dipole length and the counterion size) have been accounted for in both electrostatic and excluded volume contributions to the total free energy of the dipolar chain. It has been shown that conformational transitions between swollen and collapsed states of the chain can be induced by fine-tuning the balance between electrostatic and excluded volume interactions. In particular, in low-polar media not only globule but also extended coil conformations can be realized even under strong electrostatic attraction. The results of MD simulations of a dipolar chain with variable dipolar length support theoretical conclusions.
Collapse
Affiliation(s)
- Yu D Gordievskaya
- Faculty of Physics, Lomonosov Moscow State University, Leninskie gory, 1-2, 119991, Moscow, Russia.
| | | | | |
Collapse
|
32
|
Li L, Srivastava S, Andreev M, Marciel AB, de Pablo JJ, Tirrell MV. Phase Behavior and Salt Partitioning in Polyelectrolyte Complex Coacervates. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00238] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lu Li
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Samanvaya Srivastava
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Marat Andreev
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Amanda B. Marciel
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Juan J. de Pablo
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Matthew V. Tirrell
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
33
|
Affiliation(s)
- Kevin Shen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
34
|
Das S, Eisen A, Lin YH, Chan HS. A Lattice Model of Charge-Pattern-Dependent Polyampholyte Phase Separation. J Phys Chem B 2018; 122:5418-5431. [DOI: 10.1021/acs.jpcb.7b11723] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Suman Das
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Adam Eisen
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Mathematics & Statistics, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Yi-Hsuan Lin
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
35
|
Muthukumar M. 50th Anniversary Perspective: A Perspective on Polyelectrolyte Solutions. Macromolecules 2017; 50:9528-9560. [PMID: 29296029 PMCID: PMC5746850 DOI: 10.1021/acs.macromol.7b01929] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/27/2017] [Indexed: 12/17/2022]
Abstract
From the beginning of life with the information-containing polymers until the present era of a plethora of water-based materials in health care industry and biotechnology, polyelectrolytes are ubiquitous with a broad range of structural and functional properties. The main attribute of polyelectrolyte solutions is that all molecules are strongly correlated both topologically and electrostatically in their neutralizing background of charged ions in highly polarizable solvent. These strong correlations and the necessary use of numerous variables in experiments on polyelectrolytes have presented immense challenges toward fundamental understanding of the various behaviors of charged polymeric systems. This Perspective presents the author's subjective summary of several conceptual advances and the remaining persistent challenges in the contexts of charge and size of polymers, structures in homogeneous solutions, thermodynamic instability and phase transitions, structural evolution with oppositely charged polymers, dynamics in polyelectrolyte solutions, kinetics of phase separation, mobility of charged macromolecules between compartments, and implications to biological systems.
Collapse
Affiliation(s)
- M. Muthukumar
- Department of Polymer Science
and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
36
|
Rumyantsev AM, Kramarenko EY. Two regions of microphase separation in ion-containing polymer solutions. SOFT MATTER 2017; 13:6831-6844. [PMID: 28926068 DOI: 10.1039/c7sm01340j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The phenomenon of spinodal decomposition in weakly charged polyelectrolyte solutions is studied theoretically within the random phase approximation. A novel feature of the theoretical approach is that it accounts for the effects of ionic association, i.e. ion pair and multiplet formation between counterions and ions in polymer chains, as well as the dependence of local dielectric permittivity on the polymer volume fraction Φ. The main focus is on the spinodal instability of polyelectrolyte solutions towards microscopic phase separation. It has been shown that increasing the binding energy of ions decreases the classical microphase separation region (possible at low polymer concentrations) due to the effective neutralization of the chains. A qualitatively new type of microphase separation is found in the presence of a dielectric mismatch between polymer and solvent. This new branch of microphase separation is realized at high polymer concentrations where ion association processes are the most pronounced. Typical microstructures are shown to have a period of a few nanometers like in ionomers. The driving force for the microphase formation of a new type is more favourable ion association in polymer-rich domains where ionomer-type behavior takes place. Effective attraction due to ion association promotes microscopic as well as macroscopic phase separation, even under good solvent conditions for uncharged monomer units of polymer chains. Polyelectrolyte-type behavior at low Φ and ionomer-type behavior at high Φ result in the presence of two critical points on the phase diagrams of polyelectrolyte solutions as well as two separate regions of possible microscopic structuring. Our predictions on the new type of microphase separation are supported by experimental data on polymer solutions, membranes and gels.
Collapse
Affiliation(s)
- Artem M Rumyantsev
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russian Federation.
| | - Elena Yu Kramarenko
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russian Federation.
| |
Collapse
|
37
|
Lin YH, Song J, Forman-Kay JD, Chan HS. Random-phase-approximation theory for sequence-dependent, biologically functional liquid-liquid phase separation of intrinsically disordered proteins. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.09.090] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
38
|
Rumyantsev AM, Potemkin II. Explicit description of complexation between oppositely charged polyelectrolytes as an advantage of the random phase approximation over the scaling approach. Phys Chem Chem Phys 2017; 19:27580-27592. [DOI: 10.1039/c7cp05300b] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Formation of single globules via 1 : 1 complexation of oppositely charged linear chains occurs prior to coacervation. Fcorr is proved to be negative which is the difference between the random phase approximation (RPA) correction term and the self-energy of the chains.
Collapse
Affiliation(s)
- Artem M. Rumyantsev
- Physics Department
- Lomonosov Moscow State University
- 119991 Moscow
- Russian Federation
- DWI – Leibniz Institute for Interactive Materials
| | - Igor I. Potemkin
- Physics Department
- Lomonosov Moscow State University
- 119991 Moscow
- Russian Federation
- DWI – Leibniz Institute for Interactive Materials
| |
Collapse
|
39
|
Salehi A, Larson RG. A Molecular Thermodynamic Model of Complexation in Mixtures of Oppositely Charged Polyelectrolytes with Explicit Account of Charge Association/Dissociation. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01464] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ali Salehi
- Department of Chemical
Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ronald G. Larson
- Department of Chemical
Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
40
|
Zhang P, Alsaifi NM, Wu J, Wang ZG. Salting-Out and Salting-In of Polyelectrolyte Solutions: A Liquid-State Theory Study. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02160] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pengfei Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Chemical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Nayef M. Alsaifi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Chemical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Jianzhong Wu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Chemical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Chemical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
41
|
Muthukumar M. Electrostatic Correlations in Polyelectrolyte Solutions. POLYMER SCIENCE SERIES A 2016; 58:852-863. [PMID: 29707042 DOI: 10.1134/s0965545x16060146] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The major attribute of polyelectrolyte solutions is that all chains are strongly correlated both electrostatically and topologically. Even in very dilute solutions such that the chains are not interpenetrating, the chains are still strongly correlated. These correlations are manifest in the measured scattering intensity when such solutions are subjected to light, X-ray, and neutron radiation. The behavior of scattering intensity from polyelectrolyte solutions is qualitatively different from that of solutions of uncharged polymers. Using the technique introduced by Sir Sam Edwards, and extending the earlier work by the author on the thermodynamics of polyelectrolyte solutions, extrapolation formulas are derived for the scattering intensity from polyelectrolyte solutions. The emergence of the polyelectrolyte peak and its concentration dependence are derived. The derived theory shows that there are five regimes. Published experimental data from many laboratories are also collected into a master figure and a comparison between the present theory and experiments is presented.
Collapse
Affiliation(s)
- M Muthukumar
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts, 01003 USA
| |
Collapse
|
42
|
Lin YH, Forman-Kay JD, Chan HS. Sequence-Specific Polyampholyte Phase Separation in Membraneless Organelles. PHYSICAL REVIEW LETTERS 2016; 117:178101. [PMID: 27824447 DOI: 10.1103/physrevlett.117.178101] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Indexed: 05/05/2023]
Abstract
Liquid-liquid phase separation of charge- and/or aromatic-enriched intrinsically disordered proteins (IDPs) is critical in the biological function of membraneless organelles. Much of the physics of this recent discovery remains to be elucidated. Here, we present a theory in the random phase approximation to account for electrostatic effects in polyampholyte phase separations, yielding predictions consistent with recent experiments on the IDP Ddx4. The theory is applicable to any charge pattern and thus provides a general analytical framework for studying sequence dependence of IDP phase separation.
Collapse
Affiliation(s)
- Yi-Hsuan Lin
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
- Molecular Structure and Function Program, Hospital for Sick Children, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada
| | - Julie D Forman-Kay
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
- Molecular Structure and Function Program, Hospital for Sick Children, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, 1 King's College Circle, Ontario M5S 1A8, Canada
| |
Collapse
|
43
|
Affiliation(s)
| | - Matthew V. Tirrell
- Institute for Molecular Engineering; The University of Chicago; Chicago IL USA
| |
Collapse
|
44
|
Pryamitsyn V, Ganesan V. Pair interactions in polyelectrolyte-nanoparticle systems: Influence of dielectric inhomogeneities and the partial dissociation of polymers and nanoparticles. J Chem Phys 2015; 143:164904. [DOI: 10.1063/1.4934242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Victor Pryamitsyn
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Venkat Ganesan
- Department of Chemical Engineering and Institute for Computational and Engineering Sciences, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
45
|
Budkov YA, Kolesnikov AL, Georgi N, Nogovitsyn EA, Kiselev MG. A new equation of state of a flexible-chain polyelectrolyte solution: Phase equilibria and osmotic pressure in the salt-free case. J Chem Phys 2015; 142:174901. [DOI: 10.1063/1.4919251] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Yu. A. Budkov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo, Russia
- National Research University Higher School of Economics, Department of Applied Mathematics, Moscow, Russia
| | - A. L. Kolesnikov
- Ivanovo State University, Ivanovo, Russia
- Institut für Nichtklassische Chemie e.V., Universitat Leipzig, Leipzig, Germany
| | - N. Georgi
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
| | | | - M. G. Kiselev
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo, Russia
| |
Collapse
|
46
|
Audus DJ, Gopez JD, Krogstad DV, Lynd NA, Kramer EJ, Hawker CJ, Fredrickson GH. Phase behavior of electrostatically complexed polyelectrolyte gels using an embedded fluctuation model. SOFT MATTER 2015; 11:1214-25. [PMID: 25567551 DOI: 10.1039/c4sm02299h] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nanostructured, responsive hydrogels formed due to electrostatic interactions have promise for applications such as drug delivery and tissue mimics. These physically cross-linked hydrogels are composed of an aqueous solution of oppositely charged triblocks with charged end-blocks and neutral, hydrophilic mid-blocks. Due to their electrostatic interactions, the end-blocks microphase separate and form physical cross-links that are bridged by the mid-blocks. The structure of this system was determined using a new, efficient embedded fluctuation (EF) model in conjunction with self-consistent field theory. The calculations using the EF model were validated against unapproximated field-theoretic simulations with complex Langevin sampling and were found consistent with small angle X-ray scattering (SAXS) measurements on an experimental system. Using both the EF model and SAXS, phase diagrams were generated as a function of end-block fraction and polymer concentration. Several structures were observed including a body-centered cubic sphere phase, a hexagonally packed cylinder phase, and a lamellar phase. Finally, the EF model was used to explore how parameters that directly relate to polymer chemistry can be tuned to modify the resulting phase diagram, which is of practical interest for the development of new hydrogels.
Collapse
Affiliation(s)
- Debra J Audus
- Materials Research Laboratory, University of California, Santa Barbara, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Kolesnikov AL, Budkov YA, Nogovitsyn EA. Coarse-Grained Model of Glycosaminoglycans in Aqueous Salt Solutions. A Field-Theoretical Approach. J Phys Chem B 2014; 118:13037-49. [DOI: 10.1021/jp503749a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrei L. Kolesnikov
- Institut
fur Nichtklassische Chemie e.V., Universität Leipzig, 04109 Leipzig, Germany
- Department
of Physics, Ivanovo State University, Ermaka 39, 153025 Ivanovo, Russia
| | - Yurij A. Budkov
- Institute
of Solution Chemistry, Russian Academy of Sciences 153045, Academicheskaya 1, Ivanovo, Russia
- National Research University Higher School of Economics, 101000 Moscow, Russia
| | | |
Collapse
|
48
|
Budkov YA, Kolesnikov AL, Nogovitsyn EA, Kiselev MG. Electrostatic-interaction-induced phase separation in solutions of flexible-chain polyelectrolytes. POLYMER SCIENCE SERIES A 2014. [DOI: 10.1134/s0965545x14050022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Kumar R, Sumpter BG, Muthukumar M. Enhanced Phase Segregation Induced by Dipolar Interactions in Polymer Blends. Macromolecules 2014. [DOI: 10.1021/ma501067r] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | | | - M. Muthukumar
- Polymer
Science and Engineering Department, University of Massachusetts, Amherst, Massachusetts 01002, United States
| |
Collapse
|
50
|
Interplay between Depletion and Electrostatic Interactions in Polyelectrolyte–Nanoparticle Systems. Macromolecules 2014. [DOI: 10.1021/ma501014u] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|