1
|
Wang M, Li C, Napolitano S, Wang D, Liu G. Quantifying and Modeling the Crystallinity of Polymers Confined in Nanopores. ACS Macro Lett 2024; 13:908-914. [PMID: 38990566 DOI: 10.1021/acsmacrolett.4c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
We propose a methodology to characterize the crystalline content of interfacial polymer layers in systems confined at the nanoscale level in a 2D geometry. Based on the crystallinity data of a set of polymers, we introduce a simple model to describe the gradient in crystallinity introduced by confining polymer chains in nanopores. Our model underscores the pivotal role that interfaces play in crystallization and unequivocally contradicts the existence of interfacial "dead" layers where crystallization cannot take place. Further, we verified that the organization of crystals near the pore walls resembles the macromolecular architecture of adsorbed layers, hinting at a strong interplay between crystallization and adsorption.
Collapse
Affiliation(s)
- Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun Li
- Laboratory of Polymer and Soft Matter Dynamics, Experimental Soft Matter and Thermal Physics (EST), Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Simone Napolitano
- Laboratory of Polymer and Soft Matter Dynamics, Experimental Soft Matter and Thermal Physics (EST), Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Di Sacco F, de Jong L, Pelras T, Portale G. Confined crystallization and polymorphism in iPP thin films. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Chen B, Torkelson JM. Development of rigid amorphous fraction in cold‐crystallized syndiotactic polystyrene films confined near the nanoscale: Novel analysis via ellipsometry. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Boran Chen
- Department of Chemical and Biological Engineering Northwestern University Evanston Illinois USA
| | - John M. Torkelson
- Department of Chemical and Biological Engineering Northwestern University Evanston Illinois USA
- Department of Materials Science and Engineering Northwestern University Evanston Illinois USA
| |
Collapse
|
4
|
Park J, Nagamachi T, Aoyama T, Hanada K, Harada A, Sera M, Takashima Y. Additional crystalline structures of syndiotactic polystyrene composites with acetylated cyclodextrin. Polym Chem 2022. [DOI: 10.1039/d2py00390b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Addition of acetylated cyclodextrin to syndiotactic polystyrene forms additional crystalline structures based on molecular recognition.
Collapse
Affiliation(s)
- Junsu Park
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Toshiki Nagamachi
- Advanced Technology Research Laboratories, Idemitsu Kosan Co., Ltd, 1280 Kamiizumi, Sodegaura, Chiba 299-0293, Japan
| | - Takuma Aoyama
- Performance Materials Laboratories, Idemitsu Kosan Co., Ltd, 1-1 Anesaki-Kaigan, Ichihara, Chiba 299-0193, Japan
| | - Kazuto Hanada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Akira Harada
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Masanori Sera
- Advanced Technology Research Laboratories, Idemitsu Kosan Co., Ltd, 1280 Kamiizumi, Sodegaura, Chiba 299-0293, Japan
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Project Research Centre for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Rigid amorphous fraction and crystallinity in cold-crystallized syndiotactic polystyrene: Characterization by differential scanning calorimetry. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Abstract
Crystallization of polymeric materials under nanoscopic confinement is highly relevant for nanotechnology applications. When a polymer is confined within rigid nanoporous anodic aluminum oxide (AAO) templates, the crystallization behavior experiences dramatic changes as the pore size is reduced, including nucleation mechanism, crystal orientation, crystallization kinetics, and polymorphic transition, etc. As an experimental prerequisite, exhaustive cleaning procedures after infiltrations of polymers in AAO pores must be performed to ensure producing an ensemble of isolated polymer-filled nanopores. Layers of residual polymers on the AAO surface percolate nanopores and lead to the so-called "fractionated crystallization", i.e., multiple crystallization peaks during cooling.Because the density of isolated nanopores in a typical AAO template exceeds the density of heterogeneities in bulk polymers, the majority of nanopores will be heterogeneity-free. This means that the nucleation will proceed by surface or homogeneous nucleation. As a consequence, a very large supercooling is necessary for crystallization, and its kinetics is reduced to a first-order process that is dominated by nucleation. Self-nucleation is a powerful method to exponentially increase nucleation density. However, when the diameter of the nanopores is lower than a critical value, confinement prevents the possibility to self-nucleate the material.Because of the anisotropic nature of AAO pores, polymer crystals inside AAO also exhibit anisotropy, which is determined by thermodynamic stability and kinetic selection rules. For low molecular weight poly(ethylene oxide) (PEO) with extended chain crystals, the orientation of polymer crystals changes from the "chain perpendicular to" to the "chain parallel to" the AAO pore axis, when the diameter of AAO decreases to the contour length of the PEO, indicating the effect of thermodynamic stability. When the thermodynamic requirement is satisfied, the orientation is determined by kinetics including crystal growth direction, nucleation, and crystal growth rate. An orientation diagram has been established for the PEO/AAO system, considering the cooling condition and pore size.The interfacial polymer layer has different physical properties as compared to the bulk. In poly(l-lactic acid), the relationship between the segmental mobility of the interfacial layer and crystallization rate is established. For the investigation of polymorphic transition of poly(butane-1), the results indicate that a 12 nm interfacial layer hinders the transition of Form II to Form I. Block and random copolymers have also been infiltrated into AAO nanopores, and their crystallization behavior is analogously affected as pore size is reduced.
Collapse
Affiliation(s)
- Guoming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Lin YL, Tsai SY, He HC, Lee LR, Ho JH, Wang CL, Chen JT. Crystallization of Poly(methyl methacrylate) Stereocomplexes under Cylindrical Nanoconfinement. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu-Liang Lin
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Song-Yu Tsai
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Hung-Chieh He
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Lin-Ruei Lee
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Jhih-Hao Ho
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chien-Lung Wang
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
8
|
CHEN JX, ZHONG ZX, SU ZH, LI ZP, WENG ZF, LUO SY. Analysis of Defects in Biaxially Oriented Polypropylene Films by Micro-Fourier Transform Infrared and Raman Spectroscopies. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60055-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Shi G, Wang Z, Wang M, Liu G, Cavallo D, Müller AJ, Wang D. Crystallization, Orientation, and Solid–Solid Crystal Transition of Polybutene-1 Confined within Nanoporous Alumina. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01384] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Guangyu Shi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zefan Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dario Cavallo
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso, 31, 16146 Genova, Italy
| | - Alejandro J. Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Safari M, Leon Boigues L, Shi G, Maiz J, Liu G, Wang D, Mijangos C, Müller AJ. Effect of Nanoconfinement on the Isodimorphic Crystallization of Poly(butylene succinate-ran-caprolactone) Random Copolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01081] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maryam Safari
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Laia Leon Boigues
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, ICTP-CSIC, Juan de la Cierva 3, Madrid 28006, Spain
| | - Guangyu Shi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jon Maiz
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Guoming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Carmen Mijangos
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, ICTP-CSIC, Juan de la Cierva 3, Madrid 28006, Spain
- Departamento de Física de Materiales, University of the Basque Country UPV/EHU and Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)—Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Alejandro J. Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
11
|
Li N, Song L, Hohn N, Saxena N, Cao W, Jiang X, Müller-Buschbaum P. Nanoscale crystallization of a low band gap polymer in printed titania mesopores. NANOSCALE 2020; 12:4085-4093. [PMID: 32022062 DOI: 10.1039/c9nr08055d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The crystallization behavior of the low band gap polymer poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3'''-di(2-octyldodecyl)2,2';5',2'';5'',2'''-quaterthiophen-5,5'''-diyl)] (PffBT4T-2OD) induced in printed mesoporous titania films with different pore sizes is studied to optimize the crystal orientation for an application in hybrid solar cells. The correlation between the crystal structure of PffBT4T-2OD and the titania pore size is investigated with a combination of grazing incidence wide-angle X-ray scattering (GIWAXS) and grazing incidence small-angle X-ray scattering (GISAXS). For comparison, poly(3-hexylthiophene) (P3HT) is also backfilled into the same four types of printed titania mesoporous scaffolds. Both, lattice constants and crystal sizes of edge-on oriented P3HT crystals decrease with increasing the titania pore size. Similarly and irrespective of the crystal orientation, a denser stacking of PffBT4T-2OD chains is found for larger pore sizes of the titania matrix. For an edge-on orientation, also bigger PffBT4T-2OD crystals are favorably formed in smaller pores, whereas for a face-on orientation, PffBT4T-2OD crystals increase with increasing size of the titania pores. Thus, the best ratio of face-on to edge-on crystals for PffBT4T-2OD is obtained through infiltration into large titania pores.
Collapse
Affiliation(s)
- Nian Li
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching, Germany.
| | - Lin Song
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching, Germany. and Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Youyixilu 127, Xi'an 710072, Shaanxi, China
| | - Nuri Hohn
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching, Germany.
| | - Nitin Saxena
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching, Germany.
| | - Wei Cao
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching, Germany.
| | - Xinyu Jiang
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching, Germany.
| | - Peter Müller-Buschbaum
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching, Germany. and Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, D-85748 Garching, Germany
| |
Collapse
|
12
|
Mohammadi RS, Zolali AM, Tabatabaei SH, Ajji A. Nanoconfinement Induced Direct Formation of Form I and III Crystals inside in Situ Formed Poly(butene-1) Nanofibrils. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b01684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Raziyeh S. Mohammadi
- 3SPack NSERC-Industry Chair, CREPEC, Department of Chemical Engineering, Polytechnique Montreal, C.P. 6079, Succ. Centre-ville, Montreal, Québec H3C 3A7, Canada
| | - Ali M. Zolali
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | | | - Abdellah Ajji
- 3SPack NSERC-Industry Chair, CREPEC, Department of Chemical Engineering, Polytechnique Montreal, C.P. 6079, Succ. Centre-ville, Montreal, Québec H3C 3A7, Canada
| |
Collapse
|
13
|
Zhang Z, Ding J, Ocko BM, Lhermitte J, Strzalka J, Choi CH, Fisher FT, Yager KG, Black CT. Nanoconfinement and Salt Synergistically Suppress Crystallization in Polyethylene Oxide. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b01725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zheng Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Junjun Ding
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Benjamin M. Ocko
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Julien Lhermitte
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Joseph Strzalka
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Chang-Hwan Choi
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Frank T. Fisher
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Kevin G. Yager
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Charles T. Black
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
14
|
Safari M, Maiz J, Shi G, Juanes D, Liu G, Wang D, Mijangos C, Alegría Á, Müller AJ. How Confinement Affects the Nucleation, Crystallization, and Dielectric Relaxation of Poly(butylene succinate) and Poly(butylene adipate) Infiltrated within Nanoporous Alumina Templates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15168-15179. [PMID: 31621336 DOI: 10.1021/acs.langmuir.9b02215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This work describes the successful melt infiltration of poly(butylene succinate) (PBS) and poly(butylene adipate) (PBA) within 70 nm diameter anodic aluminum oxide (AAO) templates. The infiltrated samples were characterized by SEM, Raman, and FTIR spectroscopy. The crystallization behaviors and crystalline structures of both polymers, bulk and confined, were analyzed by differential scanning calorimetry (DSC) and grazing incidence wide angle X-ray scattering (GIWAXS). DSC revealed that a change in the nucleation process occurred from heterogeneous nucleation for bulk samples to homogeneous nucleation for infiltrated PBA and to surface-induced nucleation for infiltrated PBS. GIWAXS results indicate that PBS nanofibers crystallize in the α-phase, as well as their bulk samples. However, PBA nanofibers crystallize just in the β-phase, whereas PBA bulk samples crystallize in a mixture of α- and β-phases. The crystal orientation within the pores was determined, and differences between PBS and PBA were also found. Finally, broadband dielectric spectroscopy was applied to study the segmental dynamics for bulk and infiltrated samples. The glass temperature was found to significantly decrease in the PBS case upon infiltration, while that of PBA remained unchanged. These differences were correlated with the higher affinity of PBS to the AAO walls than PBA, in accordance with their nucleation behavior (surface-induced versus homogeneous nucleation, respectively).
Collapse
Affiliation(s)
- Maryam Safari
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry , University of the Basque Country UPV/EHU , Paseo Manuel de Lardizábal, 3 , 20018 Donostia-San Sebastián , Spain
| | - Jon Maiz
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry , University of the Basque Country UPV/EHU , Paseo Manuel de Lardizábal, 3 , 20018 Donostia-San Sebastián , Spain
| | - Guangyu Shi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, the Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Diana Juanes
- Instituto de Ciencia y Tecnología de Polímeros , Consejo Superior de Investigaciones Científicas, ICTP-CSIC , Juan de la Cierva 3 , Madrid 28006 , Spain
| | - Guoming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, the Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, the Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Carmen Mijangos
- Instituto de Ciencia y Tecnología de Polímeros , Consejo Superior de Investigaciones Científicas, ICTP-CSIC , Juan de la Cierva 3 , Madrid 28006 , Spain
- Departamento de Física de Materiales , University of the Basque Country UPV/EHU and Centro de Física de Materiales (CFM) (CSIC-UPV/EHU) - Materials Physics Center (MPC) , Paseo Manuel de Lardizabal 5 , 20018 San Sebastián , Spain
| | - Ángel Alegría
- Departamento de Física de Materiales , University of the Basque Country UPV/EHU and Centro de Física de Materiales (CFM) (CSIC-UPV/EHU) - Materials Physics Center (MPC) , Paseo Manuel de Lardizabal 5 , 20018 San Sebastián , Spain
| | - Alejandro J Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry , University of the Basque Country UPV/EHU , Paseo Manuel de Lardizábal, 3 , 20018 Donostia-San Sebastián , Spain
- IKERBASQUE, Basque Foundation for Science , 48013 Bilbao , Spain
| |
Collapse
|
15
|
Su C, Shi G, Li X, Zhang X, Müller AJ, Wang D, Liu G. Uniaxial and Mixed Orientations of Poly(ethylene oxide) in Nanoporous Alumina Studied by X-ray Pole Figure Analysis. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01801] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Cui Su
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of
Chinese Academy of Sciences, Beijing 100049, China
| | - Guangyu Shi
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of
Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolu Li
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Xiuqin Zhang
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Alejandro J. Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque
Foundation for Science, Bilbao, Spain
| | - Dujin Wang
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of
Chinese Academy of Sciences, Beijing 100049, China
| | - Guoming Liu
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
16
|
Dai X, Li H, Ren Z, Russell TP, Yan S, Sun X. Confinement Effects on the Crystallization of Poly(3-hydroxybutyrate). Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01083] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Xiying Dai
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huihui Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Thomas P. Russell
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoli Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
17
|
Liu CL, Chen HL. Crystal orientation of PEO confined within the nanorod templated by AAO nanochannels. SOFT MATTER 2018; 14:5461-5468. [PMID: 29911721 DOI: 10.1039/c8sm00795k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The orientation of poly(ethylene oxide) (PEO) crystallites developed in the nanochannels of anodic aluminum oxide (AAO) membrane has been investigated. PEO was filled homogeneously into the nanochannels in the melt state, and the crystallization confined within the PEO nanorod thus formed was allowed to take place subsequently at different temperatures. The effects of PEO molecular weight (MPEO), crystallization temperature (Tc) and AAO channel diameter (DAAO) on the crystal orientation attained in the nanorod were revealed by 2-D wide angle X-ray scattering (WAXS) patterns. In the nanochannels with DAAO = 23 nm, the crystallites formed from PEO with the lowest MPEO (= 3400 g mol-1) were found to adopt a predominantly perpendicular orientation with the crystalline stems aligning normal to the channel axis irrespective of Tc (ranging from -40 to 20 °C). Increasing MPEO or decreasing Tc tended to induce the development of the tilt orientation characterized by the tilt of the (120) plane by 45° from the channel axis. In the case of the highest MPEO (= 95 000 g mol-1) studied, both perpendicular and tilt orientations coexisted irrespective of Tc. Coexistent orientation was always observed in the channels with a larger diameter (DAAO = 89 nm) irrespective of MPEO and Tc. Compared with the previous results of the crystal orientation attained in nanotubes templated by the preferential wetting of the channel walls by PEO, the window of the perpendicular crystal orientation in the nanorod was much narrower due to its weaker confinement effect imposed on the crystal growth than that set by the nanotube.
Collapse
Affiliation(s)
- Chien-Liang Liu
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | | |
Collapse
|
18
|
Molecular self-assembly of one-dimensional polymer nanostructures in nanopores of anodic alumina oxide templates. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2017.10.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Zou SF, Wang RY, Fan B, Xu JT, Fan ZQ. Effect of interface and confinement size on the crystallization behavior of PLLA confined in coaxial electrospun fibers. J Appl Polym Sci 2017. [DOI: 10.1002/app.45980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shu-Fen Zou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering; Zhejiang University; Hangzhou 310027 China
| | - Rui-Yang Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering; Zhejiang University; Hangzhou 310027 China
| | - Bin Fan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering; Zhejiang University; Hangzhou 310027 China
| | - Jun-Ting Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering; Zhejiang University; Hangzhou 310027 China
| | - Zhi-Qiang Fan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
20
|
Yau MY, Gunkel I, Hartmann-Azanza B, Akram W, Wang Y, Thurn-Albrecht T, Steinhart M. Semicrystalline Block Copolymers in Rigid Confining Nanopores. Macromolecules 2017; 50:8637-8646. [PMID: 30174341 PMCID: PMC6114844 DOI: 10.1021/acs.macromol.7b01567] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/18/2017] [Indexed: 02/04/2023]
Abstract
We have investigated PLLA crystallization in lamellae-forming PS-b-PLLA confined to straight cylindrical nanopores under weak confinement (nanopore diameter D/equilibrium PS-b-PLLA period L0 ≥ 4.8). Molten PS-b-PLLA predominantly forms concentric lamellae along the nanopores, but intertwined helices occur even for D/L0 ≈ 7.3. Quenching PS-b-PLLA melts below TG(PS) results in PLLA cold crystallization strictly confined by the vitrified PS domains. Above TG(PS), PLLA crystallization is templated by the PS-b-PLLA melt domain structure in the nanopore centers, while adsorption on the nanopore walls stabilizes the outermost cylindrical PS-b-PLLA shell. In between, the nanoscopic PS-b-PLLA melt domain structure apparently ripens to reduce frustrations transmitted from the outermost immobilized PS-b-PLLA layer. The onset of PLLA crystallization catalyzes the ripening while transient ripening states are arrested by advancing PLLA crystallization. Certain helical structure motifs persist PLLA crystallization even if PS is soft. The direction of fastest PLLA crystal growth is preferentially aligned with the nanopore axes to the same degree as for PLLA homopolymer, independent of whether PS is vitreous or soft.
Collapse
Affiliation(s)
- Man Yan
Eric Yau
- Institut
für Chemie neuer Materialien, Universität
Osnabrück, Barbarastr.7, 49076 Osnabrück, Germany
| | - Ilja Gunkel
- Institut
für Physik, Martin-Luther-Universität
Halle-Wittenberg, D-06099 Halle, Germany
| | - Brigitte Hartmann-Azanza
- Institut
für Chemie neuer Materialien, Universität
Osnabrück, Barbarastr.7, 49076 Osnabrück, Germany
| | - Wajiha Akram
- Institut
für Chemie neuer Materialien, Universität
Osnabrück, Barbarastr.7, 49076 Osnabrück, Germany
| | - Yong Wang
- State
Key Lab of Materials-Oriented Chemical Engineering; College of Chemical
Engineering, Nanjing Tech University, Xin Mofan Road 5, Nanjing 210009, Jiangsu, China
| | - Thomas Thurn-Albrecht
- Institut
für Physik, Martin-Luther-Universität
Halle-Wittenberg, D-06099 Halle, Germany
| | - Martin Steinhart
- Institut
für Chemie neuer Materialien, Universität
Osnabrück, Barbarastr.7, 49076 Osnabrück, Germany
| |
Collapse
|
21
|
Müller K, Bugnicourt E, Latorre M, Jorda M, Echegoyen Sanz Y, Lagaron JM, Miesbauer O, Bianchin A, Hankin S, Bölz U, Pérez G, Jesdinszki M, Lindner M, Scheuerer Z, Castelló S, Schmid M. Review on the Processing and Properties of Polymer Nanocomposites and Nanocoatings and Their Applications in the Packaging, Automotive and Solar Energy Fields. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E74. [PMID: 28362331 PMCID: PMC5408166 DOI: 10.3390/nano7040074] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 01/21/2023]
Abstract
For the last decades, nanocomposites materials have been widely studied in the scientific literature as they provide substantial properties enhancements, even at low nanoparticles content. Their performance depends on a number of parameters but the nanoparticles dispersion and distribution state remains the key challenge in order to obtain the full nanocomposites' potential in terms of, e.g., flame retardance, mechanical, barrier and thermal properties, etc., that would allow extending their use in the industry. While the amount of existing research and indeed review papers regarding the formulation of nanocomposites is already significant, after listing the most common applications, this review focuses more in-depth on the properties and materials of relevance in three target sectors: packaging, solar energy and automotive. In terms of advances in the processing of nanocomposites, this review discusses various enhancement technologies such as the use of ultrasounds for in-process nanoparticles dispersion. In the case of nanocoatings, it describes the different conventionally used processes as well as nanoparticles deposition by electro-hydrodynamic processing. All in all, this review gives the basics both in terms of composition and of processing aspects to reach optimal properties for using nanocomposites in the selected applications. As an outlook, up-to-date nanosafety issues are discussed.
Collapse
Affiliation(s)
- Kerstin Müller
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Strasse 35, 85354 Freising, Germany.
| | - Elodie Bugnicourt
- IRIS, Parc Mediterrani de la Tecnologia, Avda. Carl Friedrich Gauss 11, 08860 Castelldefels, Barcelona, Spain.
| | - Marcos Latorre
- ITENE Instituto Tecnológico del Embalaje, Transporte y Logística, Albert Einstein, 1, 46980 Paterna, Spain.
| | - Maria Jorda
- ITENE Instituto Tecnológico del Embalaje, Transporte y Logística, Albert Einstein, 1, 46980 Paterna, Spain.
| | - Yolanda Echegoyen Sanz
- Institute of Agrochemistry and Food Technology (IATA)-CSIC, Avda. Agustín Escardino, 7, 46980 Paterna, Spain.
- Science Education Department, Facultat de Magisteri, Universitat de València, 46022 València, Spain.
| | - José M Lagaron
- Institute of Agrochemistry and Food Technology (IATA)-CSIC, Avda. Agustín Escardino, 7, 46980 Paterna, Spain.
| | - Oliver Miesbauer
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Strasse 35, 85354 Freising, Germany.
| | - Alvise Bianchin
- MBN Nanomaterialia, via Bortolan 42, 31040 Vascon di Carbonera, Italy.
| | - Steve Hankin
- Institute of Occupational Medicine, Research Avenue North, Riccarton, Edinburgh, EH14 4AP, UK.
| | - Uwe Bölz
- HPX Polymers GmbH, Ziegeleistraße 1, 82327 Tutzing, Germany.
| | - Germán Pérez
- Eurecat, Av. Universitat Autònoma 23, 08290 Cerdanyola del Vallès, Barcelona, Spain.
| | - Marius Jesdinszki
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Strasse 35, 85354 Freising, Germany.
| | - Martina Lindner
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Strasse 35, 85354 Freising, Germany.
| | - Zuzana Scheuerer
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Strasse 35, 85354 Freising, Germany.
| | - Sara Castelló
- Bioinicia, Calle Algepser, 65-Nave 3 | Polígono Industrial Táctica | 46980 Paterna (Valencia), Spain.
| | - Markus Schmid
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Strasse 35, 85354 Freising, Germany.
- Chair for Food Packaging Technology, Technische Universität München, Weihenstephaner Steig 22, 85354 Freising, Germany.
| |
Collapse
|
22
|
Crystal orientation of poly(ε-caprolactone) chains confined in lamellar nanodomains: Effects of chain-ends tethering to nanodomain interfaces. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.01.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Li L, Liu J, Qin L, Zhang C, Sha Y, Jiang J, Wang X, Chen W, Xue G, Zhou D. Crystallization kinetics of syndiotactic polypropylene confined in nanoporous alumina. POLYMER 2017. [DOI: 10.1016/j.polymer.2016.12.081] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Liu CL, Chen HL. Variable Crystal Orientation of Poly(ethylene oxide) Confined within the Tubular Space Templated by Anodic Aluminum Oxide Nanochannels. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02347] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Chien-Liang Liu
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - Hsin-Lung Chen
- Department
of Chemical Engineering and Frontier Center of Fundamental and Applied
Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
25
|
|
26
|
|
27
|
Dai X, Niu J, Ren Z, Sun X, Yan S. Effects of Nanoporous Anodic Alumina Oxide on the Crystallization and Melting Behavior of Poly(vinylidene fluoride). J Phys Chem B 2016; 120:843-50. [DOI: 10.1021/acs.jpcb.5b11178] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiying Dai
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiali Niu
- Beijing National Laboratory for Molecular Sciences, Department of Polymer Science and Engineering & The Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhongjie Ren
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoli Sun
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shouke Yan
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
28
|
Mi C, Zhou J, Ren Z, Li H, Sun X, Yan S. The phase transition behavior of poly(butylene adipate) in the nanoporous anodic alumina oxide. Polym Chem 2016. [DOI: 10.1039/c5py01532d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PBA nanotubes with different diameters have been prepared.
Collapse
Affiliation(s)
- Ce Mi
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Jiandong Zhou
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Huihui Li
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Xiaoli Sun
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
29
|
Nakagawa S, Ishizone T, Nojima S, Kamimura K, Yamaguchi K, Nakahama S. Effects of Chain-Ends Tethering on the Crystallization Behavior of Poly(ε-caprolactone) Confined in Lamellar Nanodomains. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01744] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Shintaro Nakagawa
- Department
of Organic and Polymeric Materials, Graduate School of Science and
Engineering, Tokyo Institute of Technology, 2-12-1-H-125 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Takashi Ishizone
- Department
of Organic and Polymeric Materials, Graduate School of Science and
Engineering, Tokyo Institute of Technology, 2-12-1-H-125 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Shuichi Nojima
- Department
of Organic and Polymeric Materials, Graduate School of Science and
Engineering, Tokyo Institute of Technology, 2-12-1-H-125 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Kohei Kamimura
- Department
of Chemistry, Faculty of Science, Kanagawa University, 2941 Tsuchiya, Hiratsuka-shi, Kanagawa 259-1293, Japan
| | - Kazuo Yamaguchi
- Department
of Chemistry, Faculty of Science, Kanagawa University, 2941 Tsuchiya, Hiratsuka-shi, Kanagawa 259-1293, Japan
- Research
Institute for Photofunctionalized Materials, Kanagawa University, 2941 Tsuchiya, Hiratsuka-shi, Kanagawa 259-1293, Japan
| | - Seiichi Nakahama
- Research
Institute for Photofunctionalized Materials, Kanagawa University, 2941 Tsuchiya, Hiratsuka-shi, Kanagawa 259-1293, Japan
| |
Collapse
|
30
|
Volynskii AL, Yarysheva AY, Rukhlya EG, Yarysheva LM, Bakeev NF. Effect of spatial restrictions at the nanometer scale on structuring in glassy and crystalline polymers. POLYMER SCIENCE SERIES A 2015. [DOI: 10.1134/s0965545x15050168] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
|
32
|
Liew WH, Mirshekarloo MS, Chen S, Yao K, Tay FEH. Nanoconfinement induced crystal orientation and large piezoelectric coefficient in vertically aligned P(VDF-TrFE) nanotube array. Sci Rep 2015; 5:9790. [PMID: 25966301 PMCID: PMC4434347 DOI: 10.1038/srep09790] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/10/2015] [Indexed: 11/13/2022] Open
Abstract
Vertically aligned piezoelectric P(VDF-TrFE) nanotube array comprising nanotubes embedded in anodized alumina membrane matrix without entanglement has been fabricated. It is found that the crystallographic polar axes of the P(VDF-TrFE) nanotubes are oriented along the nanotubes long axes. Such a desired crystal orientation is due to the kinetic selection mechanism for lamellae growth confined in the nanopores. The preferred crystal orientation in nanotubes leads to huge piezoelectric coefficients of the P(VDF-TrFE). The piezoelectric strain and voltage coefficients of P(VDF-TrFE) nanotube array are observed to be 1.97 and 3.40 times of those for conventional spin coated film. Such a significant performance enhancement is attributed to the well-controlled polarization orientation, the elimination of the substrate constraint, and the low dielectric constant of the nanotube array. The P(VDF-TrFE) nanotube array exhibiting the unique structure and outstanding piezoelectric performance is promising for wide applications, including various electrical devices and electromechanical sensors and transducers.
Collapse
Affiliation(s)
- Weng Heng Liew
- Institute of Materials Research and Engineering (IMRE), A* STAR (Agency for Science, Technology and Research) 3 Research Link, 117602 (Singapore)
- Department of Mechanical Engineering National University of Singapore Kent Ridge, 119260 (Singapore)
| | - Meysam Sharifzadeh Mirshekarloo
- Institute of Materials Research and Engineering (IMRE), A* STAR (Agency for Science, Technology and Research) 3 Research Link, 117602 (Singapore)
| | - Shuting Chen
- Institute of Materials Research and Engineering (IMRE), A* STAR (Agency for Science, Technology and Research) 3 Research Link, 117602 (Singapore)
| | - Kui Yao
- Institute of Materials Research and Engineering (IMRE), A* STAR (Agency for Science, Technology and Research) 3 Research Link, 117602 (Singapore)
| | - Francis Eng Hock Tay
- Department of Mechanical Engineering National University of Singapore Kent Ridge, 119260 (Singapore)
| |
Collapse
|
33
|
Tao D, Higaki Y, Ma W, Wu H, Shinohara T, Yano T, Takahara A. Chain orientation in poly(glycolic acid)/halloysite nanotube hybrid electrospun fibers. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.01.048] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
34
|
Chang CW, Chi MH, Chu CW, Ko HW, Tu YH, Tsai CC, Chen JT. Microwave-annealing-induced nanowetting: a rapid and facile method for fabrication of one-dimensional polymer nanomaterials. RSC Adv 2015. [DOI: 10.1039/c5ra03037d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
One-dimensional polymer nanomaterials are prepared by a microwave-annealing-induced nanowetting (MAIN) method using anodic aluminum oxide templates.
Collapse
Affiliation(s)
- Chun-Wei Chang
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu
- Taiwan 30050
| | - Mu-Huan Chi
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu
- Taiwan 30050
| | - Chien-Wei Chu
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu
- Taiwan 30050
| | - Hao-Wen Ko
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu
- Taiwan 30050
| | - Yi-Hsuan Tu
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu
- Taiwan 30050
| | - Chia-Chan Tsai
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu
- Taiwan 30050
| | - Jiun-Tai Chen
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu
- Taiwan 30050
| |
Collapse
|
35
|
Volynskii AL, Yarysheva AY, Rukhlya EG, Yarysheva LM, Bakeev NF. Specific features of structure and properties of solutions, melts and solid states of polymers in confined nanometric volumes. RUSSIAN CHEMICAL REVIEWS 2014. [DOI: 10.1070/rcr4428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Cao Y, Wu H, Higaki Y, Jinnai H, Takahara A. Molecular self-assembly of nylon-12 nanorods cylindrically confined to nanoporous alumina. IUCRJ 2014; 1:439-45. [PMID: 25485124 PMCID: PMC4224462 DOI: 10.1107/s2052252514020132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/16/2014] [Indexed: 06/04/2023]
Abstract
Molecular self-assembly of nylon-12 rods in self-organized nanoporous alumina cylinders with two different diameters (65 and 300 nm) is studied with transmission electron microscopy (TEM) and wide-angle X-ray diffraction (WAXD) in symmetrical reflection mode. In a rod with a 300 nm diameter, the tendency of the hydrogen-bonding direction of a γ-form crystal parallel to the long axis of the rod is not clear because of weak two-dimensional confinement. In a rod with a diameter of 65 nm, the tendency of the hydrogen-bonding direction of a γ-form crystal parallel to the long axis of the rod is more distinct because of strong two-dimensional confinement. For the first time, selected-area electron diffraction (SAED) is applied in a transmission electron microscope to a polymer nanorod in order to determine the hydrogen-bond sheet and lamellar orientations. Results of TEM-SAED and WAXD showed that the crystals within the rod possess the γ-form of nylon-12 and that the b axis (stem axis) of the γ-form crystals is perpendicular to the long axis of the rod. These results revealed that only lamellae with 〈h0l〉 directions are able to grow inside the nanopores and the growth of lamellae with 〈hkl〉 (k ≠ 0) directions is stopped owing to impingements against the cylinder walls. The dominant crystal growth direction of the 65 nm rod in stronger two-dimensional confinement is in between the [-201] and [001] directions due to the development of a hydrogen-bonded sheet restricted along the long axis of the rod.
Collapse
Affiliation(s)
- Yan Cao
- Japan Science and Technology Agency, ERATO, Takahara Soft Interfaces Project, Fukuoka 819-0395, Japan
| | - Hui Wu
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Yuji Higaki
- Japan Science and Technology Agency, ERATO, Takahara Soft Interfaces Project, Fukuoka 819-0395, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Hiroshi Jinnai
- Japan Science and Technology Agency, ERATO, Takahara Soft Interfaces Project, Fukuoka 819-0395, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Atsushi Takahara
- Japan Science and Technology Agency, ERATO, Takahara Soft Interfaces Project, Fukuoka 819-0395, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
37
|
Reid DK, Ehlinger BA, Shao L, Lutkenhaus JL. Crystallization and orientation of isotactic poly(propylene) in cylindrical nanopores. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/polb.23577] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dariya K. Reid
- Artie McFerrin Department of Chemical Engineering; Texas A&M University; College Station Texas 77843
| | - Bridget A. Ehlinger
- Artie McFerrin Department of Chemical Engineering; Texas A&M University; College Station Texas 77843
| | - Lin Shao
- Department of Chemical and Environmental Engineering; Yale University; New Haven Connecticut 06511
| | - Jodie L. Lutkenhaus
- Artie McFerrin Department of Chemical Engineering; Texas A&M University; College Station Texas 77843
| |
Collapse
|
38
|
Huang LB, Xu ZX, Chen X, Tian W, Han ST, Zhou Y, Xu JJ, Yang XB, Roy VAL. Poly(3-hexylthiophene) nanotubes with tunable aspect ratios and charge transport properties. ACS APPLIED MATERIALS & INTERFACES 2014; 6:11874-11881. [PMID: 25014608 DOI: 10.1021/am5006207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Regioregular poly(3-hexylthiophene) (RR-P3HT) nanotubes (200 nm in diameter) with tunable aspect ratios from 25 to 300 were prepared using a polymer melt wetting technique. Aspect-ratio tunability was achieved by controlling the wetting behavior of RR-P3HT melts in a template. The crystallinity and chain orientation of RR-P3HT were studied by grazing incidence X-ray diffraction, wide-angle X-ray diffraction, and polarized photoluminescence spectroscopy. Results suggest that RR-P3HT chains in the lamellar structure prefer to be perpendicular to the axis of the RR-P3HT nanotubes, forming a face-on conformation in the RR-P3HT nanotubes that leads to increased carrier mobility of RR-P3HT. Field-effect transistors were fabricated based on a single RR-P3HT nanotube and showed a carrier mobility of 0.14 ± 0.02 cm(2)/V·s.
Collapse
Affiliation(s)
- Long-Biao Huang
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong , Hong Kong, Hong Kong SAR
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Nakagawa S, Tanaka T, Ishizone T, Nojima S, Kamimura K, Yamaguchi K, Nakahama S. Crystallization behavior of poly(ε-caprolactone) chains confined in lamellar nanodomains. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.06.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Michell RM, Blaszczyk-Lezak I, Mijangos C, Müller AJ. Confined crystallization of polymers within anodic aluminum oxide templates. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/polb.23553] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rose Mary Michell
- Grupo de Polímeros USB, Departamento de Ciencia de los Materiales; Universidad Simón Bolívar; Apartado 89000 Caracas 1080-A Venezuela
| | - Iwona Blaszczyk-Lezak
- Instituto de Ciencia y Tecnología de Polímeros, CSIC; Juan de la Cierva, 3 28006 Madrid Spain
| | - Carmen Mijangos
- Instituto de Ciencia y Tecnología de Polímeros, CSIC; Juan de la Cierva, 3 28006 Madrid Spain
- Institute for Polymer Materials (POLYMAT) and Polymer Science and Technology Department; Faculty of Chemistry; University of the Basque Country (UPV/EHU); Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science; E-48011 Bilbao Spain
| | - Alejandro J. Müller
- Grupo de Polímeros USB, Departamento de Ciencia de los Materiales; Universidad Simón Bolívar; Apartado 89000 Caracas 1080-A Venezuela
- Institute for Polymer Materials (POLYMAT) and Polymer Science and Technology Department; Faculty of Chemistry; University of the Basque Country (UPV/EHU); Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science; E-48011 Bilbao Spain
| |
Collapse
|
41
|
|
42
|
Michell RM, Blaszczyk-Lezak I, Mijangos C, Müller AJ. Confinement Induced First Order Crystallization Kinetics for the Poly(ethylene oxide) Block within A PEO-b
-PB Diblock Copolymer Infiltrated within Alumina Nano-Porous Template. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/masy.201450313] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rose Mary Michell
- Grupo de Polímeros USB, Departamento de Ciencia de los Materiales; Universidad Simón Bolívar; Apartado 89000 Caracas 1080-A Venezuela
| | - Iwona Blaszczyk-Lezak
- Instituto de Ciencia y Tecnología de Polímeros; CSIC; Juan de la Cierva, 3 28006 Madrid Spain
| | - Carmen Mijangos
- Instituto de Ciencia y Tecnología de Polímeros; CSIC; Juan de la Cierva, 3 28006 Madrid Spain
| | - Alejandro J. Müller
- Grupo de Polímeros USB, Departamento de Ciencia de los Materiales; Universidad Simón Bolívar; Apartado 89000 Caracas 1080-A Venezuela
| |
Collapse
|
43
|
Wu H, Yang J, Cao S, Huang L, Chen L. Ordered Organic Nanostructures Fabricated from Anodic Alumina Oxide Templates for Organic Bulk-Heterojunction Photovoltaics. MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201300766] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hui Wu
- College of Material Engineering; Fujian Agriculture and Forestry University; Fuzhou Fujian 350002 China
| | - Junliang Yang
- Institute of Super-microstructure and Ultrafast Process in Advanced Materials; School of Physics and Electronics; Central South University; Changsha Hunan 410083 China
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process; School of Physics and Electronics; Central South University; Changsha Hunan 410083 China
| | - Shilin Cao
- College of Material Engineering; Fujian Agriculture and Forestry University; Fuzhou Fujian 350002 China
| | - Liulian Huang
- College of Material Engineering; Fujian Agriculture and Forestry University; Fuzhou Fujian 350002 China
| | - Lihui Chen
- College of Material Engineering; Fujian Agriculture and Forestry University; Fuzhou Fujian 350002 China
| |
Collapse
|
44
|
Michell RM, Blaszczyk-Lezak I, Mijangos C, Müller AJ. Confinement effects on polymer crystallization: From droplets to alumina nanopores. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.05.029] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Wu H, Cao Y, Ishige R, Higaki Y, Hoshino T, Ohta N, Takahara A. Confinement-Induced Crystal Growth in One-Dimensional Isotactic Polystyrene Nanorod Arrays. ACS Macro Lett 2013; 2:414-418. [PMID: 35581848 DOI: 10.1021/mz400136d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This work demonstrates the anomalous crystal growth of isotactic polystyrene (iPS) in nanorod arrays with different rod sizes. At the bottom of the nanorods, the crystals in bulk film grow into nanorods along either the [110] or [100] direction parallel to the rod axis. On the top side of the nanorods, the polymer exhibits different orientations corresponding to weak or strong confinement. In the weaker confinement (bigger nanorods of 300 nm diameter), the crystals grow with the [100] direction along the nanorod, which is similar to the crystals developed in the radial of spherulite. In the stronger confinement (smaller nanorods of 65 nm diameter), the splaying of crystals in the rod is significantly suppressed, and the preferred growth direction of iPS crystals is kept in either the [110] or [100] direction. The precise control of polymer crystal orientation and crystallinity at a local scale opens important perspectives for the design of one-dimensional nanomaterials whose performance depends on the anisotropic crystal properties.
Collapse
Affiliation(s)
- Hui Wu
- Japan Science and
Technology
Agency, ERATO, Takahara Soft Interfaces Project, Fukuoka 819-0395, Japan
| | - Yan Cao
- Japan Science and
Technology
Agency, ERATO, Takahara Soft Interfaces Project, Fukuoka 819-0395, Japan
| | - Ryohei Ishige
- Institute for Materials Chemistry
and Engineering, Kyushu University, Fukuoka
819-0395, Japan
| | - Yuji Higaki
- Institute for Materials Chemistry
and Engineering, Kyushu University, Fukuoka
819-0395, Japan
- International Institute
for Carbon-Neutral
Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Taiki Hoshino
- Japan Science and
Technology
Agency, ERATO, Takahara Soft Interfaces Project, Fukuoka 819-0395, Japan
| | - Noboru Ohta
- Japan Synchrotron Radiation Research Institute/SPring-8, Hyogo 679-5198,
Japan
| | - Atsushi Takahara
- Japan Science and
Technology
Agency, ERATO, Takahara Soft Interfaces Project, Fukuoka 819-0395, Japan
- Institute for Materials Chemistry
and Engineering, Kyushu University, Fukuoka
819-0395, Japan
- International Institute
for Carbon-Neutral
Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
46
|
Shingne N, Geuss M, Hartmann-Azanza B, Steinhart M, Thurn-Albrecht T. Formation, morphology and internal structure of one-dimensional nanostructures of the ferroelectric polymer P(VDF-TrFE). POLYMER 2013. [DOI: 10.1016/j.polymer.2013.03.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Guan Y, Liu G, Gao P, Li L, Ding G, Wang D. Manipulating Crystal Orientation of Poly(ethylene oxide) by Nanopores. ACS Macro Lett 2013; 2:181-184. [PMID: 35581878 DOI: 10.1021/mz300592v] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The confined crystallization behavior of a low molecular weight monodisperse polyethylene oxide (PEO) in anodic alumina oxide (AAO) templates was investigated. Homogeneous nucleation of polymer in AAO templates was confirmed. Within AAO with diameter larger than the contour length of PEO chains, the "kinetics selective growth" crystallization mechanism was confirmed based on the observation that the chain axis preferentially aligned perpendicular to the pore axis. However, when AAO diameter further decreases to a value smaller than the contour length of PEO, unique orientation with chain axis aligned parallel to the pore axis was observed for the first time. The results were discussed based on the competition between thermodynamics and kinetics during the crystallization process.
Collapse
Affiliation(s)
- Yu Guan
- Beijing National Laboratory
for Molecular Sciences, CAS Key Laboratory of Engineering Plastics,
Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guoming Liu
- Beijing National Laboratory
for Molecular Sciences, CAS Key Laboratory of Engineering Plastics,
Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Peiyuan Gao
- Beijing National Laboratory
for Molecular Sciences, State Key Laboratory of Polymer Physics and
Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Li Li
- Shanghai Synchrotron Radiation
Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Guqiao Ding
- State Key Laboratory of Functional
Materials for Informatics, Shanghai Institute of Microsystem and Information
Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Dujin Wang
- Beijing National Laboratory
for Molecular Sciences, CAS Key Laboratory of Engineering Plastics,
Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
48
|
Jiang Q, Hu C, Ward MD. Stereochemical Control of Polymorph Transitions in Nanoscale Reactors. J Am Chem Soc 2013; 135:2144-7. [DOI: 10.1021/ja312511v] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qi Jiang
- Molecular
Design Institute, Department of Chemistry, New York University, 100 Washington Square East, New
York, New York 10003-6688, United States
| | - Chunhua Hu
- Molecular
Design Institute, Department of Chemistry, New York University, 100 Washington Square East, New
York, New York 10003-6688, United States
| | - Michael D. Ward
- Molecular
Design Institute, Department of Chemistry, New York University, 100 Washington Square East, New
York, New York 10003-6688, United States
| |
Collapse
|
49
|
Maiz J, Schäfer H, Trichy Rengarajan G, Hartmann-Azanza B, Eickmeier H, Haase M, Mijangos C, Steinhart M. How Gold Nanoparticles Influence Crystallization of Polyethylene in Rigid Cylindrical Nanopores. Macromolecules 2013. [DOI: 10.1021/ma3023876] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jon Maiz
- Instituto de Ciencia y Tecnología
de Polímeros, CSIC, c/Juan de la
Cierva 3, 28006 Madrid, Spain
- Institut für Chemie neuer
Materialien, Universität Osnabrück, Barbarastr. 7, D-46069 Osnabrück, Germany
| | - Helmut Schäfer
- Institut für Chemie neuer
Materialien, Universität Osnabrück, Barbarastr. 7, D-46069 Osnabrück, Germany
| | | | - Brigitte Hartmann-Azanza
- Institut für Chemie neuer
Materialien, Universität Osnabrück, Barbarastr. 7, D-46069 Osnabrück, Germany
| | - Henning Eickmeier
- Institut für Chemie neuer
Materialien, Universität Osnabrück, Barbarastr. 7, D-46069 Osnabrück, Germany
| | - Markus Haase
- Institut für Chemie neuer
Materialien, Universität Osnabrück, Barbarastr. 7, D-46069 Osnabrück, Germany
| | - Carmen Mijangos
- Instituto de Ciencia y Tecnología
de Polímeros, CSIC, c/Juan de la
Cierva 3, 28006 Madrid, Spain
| | - Martin Steinhart
- Institut für Chemie neuer
Materialien, Universität Osnabrück, Barbarastr. 7, D-46069 Osnabrück, Germany
| |
Collapse
|
50
|
Han G, Liu Y, Lu X, Luo J. A flexible nanobrush pad for the chemical mechanical planarization of Cu/ultra-low-к materials. NANOSCALE RESEARCH LETTERS 2012; 7:603. [PMID: 23110959 PMCID: PMC3499454 DOI: 10.1186/1556-276x-7-603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/10/2012] [Indexed: 06/01/2023]
Abstract
A new idea of polishing pad called flexible nanobrush pad (FNP) has been proposed for the low down pressure chemical mechanical planarization (CMP) process of Cu/ultra-low-к materials. The FNP was designed with a surface layer of flexible brush-like nanofibers which can 'actively' carry nanoscale abrasives in slurry independent of the down pressure. Better planarization performances including high material removal rate, good planarization, good polishing uniformity, and low defectivity are expected in the CMP process under the low down pressure with such kind of pad. The FNP can be made by template-assisted replication or template-based synthesis methods, which will be driven by the development of the preparation technologies for ordered nanostructure arrays. The present work would potentially provide a new solution for the Cu/ultra-low-к CMP process.
Collapse
Affiliation(s)
- Guiquan Han
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Yuhong Liu
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Xinchun Lu
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Jianbin Luo
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| |
Collapse
|