1
|
Jafari VF, Mossayebi Z, Allison-Logan S, Shabani S, Qiao GG. The Power of Automation in Polymer Chemistry: Precision Synthesis of Multiblock Copolymers with Block Sequence Control. Chemistry 2023; 29:e202301767. [PMID: 37401148 DOI: 10.1002/chem.202301767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/05/2023]
Abstract
Machines can revolutionize the field of chemistry and material science, driving the development of new chemistries, increasing productivity, and facilitating reaction scale up. The incorporation of automated systems in the field of polymer chemistry has however proven challenging owing to the demanding reaction conditions, rendering the automation setup complex and costly. There is an imminent need for an automation platform which uses fast and simple polymerization protocols, while providing a high level of control on the structure of macromolecules via precision synthesis. This work combines an oxygen tolerant, room temperature polymerization method with a simple liquid handling robot to automatically prepare precise and high order multiblock copolymers with unprecedented livingness even after many chain extensions. The highest number of blocks synthesized in such a system is reported, demonstrating the capabilities of this automated platform for the rapid synthesis and complex polymer structure formation.
Collapse
Affiliation(s)
- Vianna F Jafari
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Zahra Mossayebi
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephanie Allison-Logan
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sadegh Shabani
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Greg G Qiao
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
2
|
Mansour H, Elsigeny SM, Elshami FI, Auf M, Shaban SY, van Eldik R. Microstructure, Physical and Biological Properties, and BSA Binding Investigation of Electrospun Nanofibers Made of Poly(AA-co-ACMO) Copolymer and Polyurethane. Molecules 2023; 28:molecules28093951. [PMID: 37175361 PMCID: PMC10180346 DOI: 10.3390/molecules28093951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
In this study, poly(AA-co-ACMO) and polyurethane-based nanofibers were prepared in a ratio of 1:1 (NF11) and 2:1 (NF21) as antimicrobial carriers for chronic wound management. Different techniques were used to characterize the nanofibers, and poly(AA-co-ACMO) was mostly found on the surface of PU. With an increase in poly(AA-co-ACMO) dose from 0 (PU) and 1:1 (NF11) to 2:1 (NF21) in the casting solution, the contact angle (CA) was reduced from 137 and 95 to 24, respectively, and hydrophilicity was significantly increased. As most medications inhibit biological processes by binding to a specific protein, in vitro protein binding was investigated mechanistically using a stopped-flow technique. Both NF11 and NF21 bind to BSA via two reversible steps: a fast second-order binding followed by a slow first-order one. The overall parameters for NF11 (Ka = 1.1 × 104 M-1, Kd = 89.0 × 10-6, ΔG0 = -23.1 kJ mol-1) and NF21 (Ka = 189.0 × 104 M-1, Kd = 5.3 × 10-6 M, ΔG0 = -27.5 kJ mol-1) were determined and showed that the affinity for BSA is approximately (NF11)/(NF21) = 1/180. This indicates that NF21 has much higher BSA affinity than NF11, although BSA interacts with NF11 much faster. NF21 with higher hydrophilicity showed effective antibacterial properties compared to NF11, in agreement with kinetic data. The study provided an approach to manage chronic wounds and treating protein-containing wastewater.
Collapse
Affiliation(s)
- Hanaa Mansour
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Samia M Elsigeny
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Fawzia I Elshami
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mohamed Auf
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Shaban Y Shaban
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Rudi van Eldik
- Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| |
Collapse
|
3
|
Solomun JI, Martin L, Mapfumo P, Moek E, Amro E, Becker F, Tuempel S, Hoeppener S, Rudolph KL, Traeger A. pH-sensitive packaging of cationic particles by an anionic block copolymer shell. J Nanobiotechnology 2022; 20:336. [PMID: 35842657 PMCID: PMC9287721 DOI: 10.1186/s12951-022-01528-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 06/28/2022] [Indexed: 03/26/2024] Open
Abstract
Cationic non-viral vectors show great potential to introduce genetic material into cells, due to their ability to transport large amounts of genetic material and their high synthetic versatility. However, designing materials that are effective without showing toxic effects or undergoing non-specific interactions when applied systemically remains a challenge. The introduction of shielding polymers such as polyethylene glycol (PEG) can enhance biocompatibility and circulation time, however, often impairs transfection efficiency. Herein, a multicomponent polymer system is introduced, based on cationic and hydrophobic particles (P(nBMA46-co-MMA47-co-DMAEMA90), (PBMD)) with high delivery performance and a pH-responsive block copolymer (poly((N-acryloylmorpholine)-b-(2-(carboxy)ethyl acrylamide)) (P(NAM72-b-CEAm74), PNC)) as shielding system, with PNAM as alternative to PEG. The pH-sensitive polymer design promotes biocompatibility and excellent stability at extracellular conditions (pH 7.4) and also allows endosomal escape and thus high transfection efficiency under acidic conditions. PNC shielded particles are below 200 nm in diameter and showed stable pDNA complexation. Further, interaction with human erythrocytes at extracellular conditions (pH 7.4) was prevented, while acidic conditions (pH 6) enabled membrane leakage. The particles demonstrate transfection in adherent (HEK293T) as well as difficult-to-transfect suspension cells (K-562), with comparable or superior efficiency compared to commercial linear poly(ethylenimine) (LPEI). Besides, the toxicity of PNC-shielded particles was significantly minimized, in particular in K-562 cells and erythrocytes. In addition, a pilot in vivo experiment on bone marrow blood cells of mice that were injected with PNC-shielded particles, revealed slightly enhanced cell transfection in comparison to naked pDNA. This study demonstrates the applicability of cationic hydrophobic polymers for transfection of adherent and suspension cells in culture as well as in vivo by co-formulation with pH-responsive shielding polymers, without substantially compromising transfection performance.
Collapse
Affiliation(s)
- Jana I Solomun
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Liam Martin
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Prosper Mapfumo
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Elisabeth Moek
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Elias Amro
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745, Jena, Germany
| | - Friedrich Becker
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745, Jena, Germany
| | - Stefan Tuempel
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745, Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - K Lenhard Rudolph
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745, Jena, Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany.
| |
Collapse
|
4
|
Synthesis, characterization and application of dual thermo- and solvent-responsive double-hydrophilic diblock copolymers of N-acryloylmorpholine and N-isopropylacrylamide. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Berki TR, Martinelli J, Tei L, Willcock H, Butler SJ. Polymerizable Gd(iii) building blocks for the synthesis of high relaxivity macromolecular MRI contrast agents. Chem Sci 2021; 12:3999-4013. [PMID: 34163670 PMCID: PMC8179470 DOI: 10.1039/d0sc04750c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/22/2021] [Indexed: 12/26/2022] Open
Abstract
A new synthetic strategy for the preparation of macromolecular MRI contrast agents (CAs) is reported. Four gadolinium(iii) complexes bearing either one or two polymerizable methacrylamide groups were synthesized, serving as monomers or crosslinkers for the preparation of water-soluble, polymeric CAs using Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization. Using this approach, macromolecular CAs were synthesized with different architectures, including linear, hyperbranched polymers and gels. The relaxivities of the polymeric CAs were determined by NMR relaxometry, revealing an up to 5-fold increase in relaxivity (60 MHz, 310 K) for the linear polymers compared with the clinically used CA, Gd-DOTA. Moreover, hyperbranched polymers obtained from Gd(iii) crosslinkers, displayed even higher relaxivities up to 22.8 mM-1 s-1, approximately 8 times higher than that of Gd-DOTA (60 MHz, 310 K). A detailed NMRD study revealed that the enhanced relaxivities of the hyperbranched polymers were obtained by limiting the local motion of the crosslinked Gd(iii) chelate. The versatility of RAFT polymerization of Gd(iii) monomers and crosslinkers opens the doors to more advanced polymeric CAs capable of multimodal, bioresponsive or targeting properties.
Collapse
Affiliation(s)
- Thomas R Berki
- Department of Chemistry, Loughborough University Leicestershire LE11 3TU UK
- Department of Materials, Loughborough University Leicestershire LE11 3TU UK
| | - Jonathan Martinelli
- Department of Science and Technological Innovation, Università del Piemonte Orientale I15121 Alessandria Italy
| | - Lorenzo Tei
- Department of Science and Technological Innovation, Università del Piemonte Orientale I15121 Alessandria Italy
| | - Helen Willcock
- Department of Materials, Loughborough University Leicestershire LE11 3TU UK
| | - Stephen J Butler
- Department of Chemistry, Loughborough University Leicestershire LE11 3TU UK
| |
Collapse
|
6
|
Lauterbach F, Abetz V. An eco-friendly pathway to thermosensitive micellar nanoobjects via photoRAFT PISA: the full guide to poly(N-acryloylpyrrolidin)-block-polystyrene diblock copolymers. SOFT MATTER 2020; 16:2321-2331. [PMID: 32052824 DOI: 10.1039/c9sm02483b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Spherical macromolecular assemblies, so-called latexes, consisting of polystyrene (PS) resemble a relevant class of synthetic polymers used for a plethora of applications ranging from coatings or lubricants to biomedical applications. Their synthesis is usually tailored to the respective application where emulsifiers, radical initiators, or other additives still play a major role in achieving the desired properties. Herein, we demonstrate an alternative based on the photoiniferter reversible addition-fragmentation chain transfer (RAFT) polymerization-induced self-assembly (PISA) of Poly(N-acryloylpyrrolidin)-block-polystyrene (PAPy-b-PS). This approach yields monodisperse nanospheres with tunable sizes based on an aqueous formulation with only two ingredients. These nanospheres are additionally thermosensitive, meaning that they change their hydrodynamic diameter linearly with the temperature in a broad range between 10 °C and 70 °C. Combined with the eco-friendly synthesis in pure water at 40 °C, the herein presented route constitutes an unprecedented pathway to thermosensitive diblock copolymer aggregates in short reaction times without any additives.
Collapse
Affiliation(s)
- Felix Lauterbach
- Institute of Physical Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany.
| | - Volker Abetz
- Institute of Physical Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany.
| |
Collapse
|
7
|
Gaballa H, Shang J, Meier S, Theato P. The glucose‐responsive behavior of a block copolymer featuring boronic acid and glycine. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29226] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Heba Gaballa
- Institute for Technical and Macromolecular ChemistryUniversity of Hamburg, Bundesstrasse 45 D‐20146 Hamburg Germany
| | - Jiaojiao Shang
- Institute for Technical and Macromolecular ChemistryUniversity of Hamburg, Bundesstrasse 45 D‐20146 Hamburg Germany
| | - Sabrina Meier
- Institute for Technical and Macromolecular ChemistryUniversity of Hamburg, Bundesstrasse 45 D‐20146 Hamburg Germany
| | - Patrick Theato
- Institute for Technical and Macromolecular ChemistryUniversity of Hamburg, Bundesstrasse 45 D‐20146 Hamburg Germany
- Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of Technology (KIT) Engesser Strasse. 18, D‐76131 Karlsruhe Germany
- Soft Matter Synthesis LaboratoryInstitute for Biological Interfaces III, Karlsruhe Institute of Technology (KIT), Herrmann‐von‐Helmholtz‐Platz 1 D‐76344 Eggenstein‐Leopoldshafen Germany
| |
Collapse
|
8
|
Wang X, Yang Y, Zhou Y, Wu P, Chen H, Trefonas P. Hydrogen bond mediated partially miscible poly(N-acryloyl piperidine)/poly(acrylic acid) blend with one glass transition temperature. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.07.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Surfactant-Free RAFT Emulsion Polymerization of Styrene Using Thermoresponsive macroRAFT Agents: Towards Smart Well-Defined Block Copolymers with High Molecular Weights. Polymers (Basel) 2017; 9:polym9120668. [PMID: 30965968 PMCID: PMC6418535 DOI: 10.3390/polym9120668] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 01/10/2023] Open
Abstract
The combination of reversible addition⁻fragmentation chain transfer (RAFT) and emulsion polymerization has recently attracted much attention as a synthetic tool for high-molecular-weight block copolymers and their micellar nano-objects. Up to recently, though, the use of thermoresponsive polymers as both macroRAFT agents and latex stabilizers was impossible in aqueous media due to their hydrophobicity at the usually high polymerization temperatures. In this work, we present a straightforward surfactant-free RAFT emulsion polymerization to obtain thermoresponsive styrenic block copolymers with molecular weights of around 100 kDa and their well-defined latexes. The stability of the aqueous latexes is achieved by adding 20 vol % of the cosolvent 1,4-dioxane (DOX), increasing the phase transition temperature (PTT) of the used thermoresponsive poly(N-acryloylpyrrolidine) (PAPy) macroRAFT agents above the polymerization temperature. Furthermore, this cosolvent approach is combined with the use of poly(N,N-dimethylacrylamide)-block-poly(N-acryloylpiperidine-co-N-acryloylpyrrolidine) (PDMA-b-P(APi-co-APy)) as the macroRAFT agent owning a short stabilizing PDMA end block and a widely adjustable PTT of the P(APi-co-APy) block in between 4 and 47 °C. The temperature-induced collapse of the latter under emulsion polymerization conditions leads to the formation of RAFT nanoreactors, which allows for a very fast chain growth of the polystyrene (PS) block. In dynamic light scattering (DLS), as well as cryo-transmission electron microscopy (cryoTEM), moreover, all created latexes indeed reveal a high (temperature) stability and a reversible collapse of the thermoresponsive coronal block upon heating. Hence, this paper pioneers a versatile way towards amphiphilic thermoresponsive high-molecular-weight block copolymers and their nano-objects with tailored corona switchability.
Collapse
|
10
|
Eggers S, Eckert T, Abetz V. Double thermoresponsive block-random copolymers with adjustable phase transition temperatures: From block-like to gradient-like behavior. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28906] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Steffen Eggers
- Department of Physical Chemistry; University of Hamburg, Grindelallee 117; Hamburg 20146 Germany
| | - Tilman Eckert
- Department of Physical Chemistry; University of Hamburg, Grindelallee 117; Hamburg 20146 Germany
| | - Volker Abetz
- Department of Physical Chemistry; University of Hamburg, Grindelallee 117; Hamburg 20146 Germany
- Helmholtz-Zentrum Geesthacht, Institute of Polymer Research, Max-Planck-Straße 1; Geesthacht 21502 Germany
| |
Collapse
|
11
|
Cepraga C, Marotte S, Ben Daoud E, Favier A, Lanoë PH, Monnereau C, Baldeck P, Andraud C, Marvel J, Charreyre MT, Leverrier Y. Two-Photon Photosensitizer–Polymer Conjugates for Combined Cancer Cell Death Induction and Two-Photon Fluorescence Imaging: Structure/Photodynamic Therapy Efficiency Relationship. Biomacromolecules 2017; 18:4022-4033. [DOI: 10.1021/acs.biomac.7b01090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cristina Cepraga
- Univ Lyon, ENS de Lyon, CNRS, Laboratoire Joliot-Curie, F-69364 Lyon, France
- Univ Lyon, INSA-Lyon, Université Claude Bernard, CNRS, Laboratoire Ingénierie des Matériaux
Polymères, F-69621 Villeurbanne, France
- Univ Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Chimie,
Site Monod, 46 allée d’Italie, F-69364 Lyon, France
| | - Sophie Marotte
- Univ Lyon, ENS de Lyon, CNRS, Laboratoire Joliot-Curie, F-69364 Lyon, France
- Univ Lyon, INSERM, ENS de Lyon, CNRS, Université Claude Bernard, Centre International de Recherche en Infectiologie (CIRI), U1111, F-69007 Lyon, France
| | - Edna Ben Daoud
- Univ Lyon, ENS de Lyon, CNRS, Laboratoire Joliot-Curie, F-69364 Lyon, France
- Univ Lyon, INSERM, ENS de Lyon, CNRS, Université Claude Bernard, Centre International de Recherche en Infectiologie (CIRI), U1111, F-69007 Lyon, France
| | - Arnaud Favier
- Univ Lyon, ENS de Lyon, CNRS, Laboratoire Joliot-Curie, F-69364 Lyon, France
- Univ Lyon, INSA-Lyon, Université Claude Bernard, CNRS, Laboratoire Ingénierie des Matériaux
Polymères, F-69621 Villeurbanne, France
| | - Pierre-Henri Lanoë
- Univ Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Chimie,
Site Monod, 46 allée d’Italie, F-69364 Lyon, France
| | - Cyrille Monnereau
- Univ Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Chimie,
Site Monod, 46 allée d’Italie, F-69364 Lyon, France
| | - Patrice Baldeck
- Univ Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Chimie,
Site Monod, 46 allée d’Italie, F-69364 Lyon, France
| | - Chantal Andraud
- Univ Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Chimie,
Site Monod, 46 allée d’Italie, F-69364 Lyon, France
| | - Jacqueline Marvel
- Univ Lyon, INSERM, ENS de Lyon, CNRS, Université Claude Bernard, Centre International de Recherche en Infectiologie (CIRI), U1111, F-69007 Lyon, France
| | - Marie-Thérèse Charreyre
- Univ Lyon, ENS de Lyon, CNRS, Laboratoire Joliot-Curie, F-69364 Lyon, France
- Univ Lyon, INSA-Lyon, Université Claude Bernard, CNRS, Laboratoire Ingénierie des Matériaux
Polymères, F-69621 Villeurbanne, France
| | - Yann Leverrier
- Univ Lyon, INSERM, ENS de Lyon, CNRS, Université Claude Bernard, Centre International de Recherche en Infectiologie (CIRI), U1111, F-69007 Lyon, France
| |
Collapse
|
12
|
Savelyeva X, Métafiot A, Li L, Bennett I, Marić M. Stimuli-responsive 4-acryloylmorpholine/4-acryloylpiperidine copolymers via nitroxide mediated polymerization. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xeniya Savelyeva
- McGill University, Department of Chemical Engineering; McGill Institute of Advanced Materials (MIAM), Centre for Self-Assembled Chemical Structures (CSACS), Centre Recherche du Polymeres et Composites du Quebec (CREPEQ); 3610 University Street, Montréal Québec H3A 0C5 Canada
| | - Adrien Métafiot
- McGill University, Department of Chemical Engineering; McGill Institute of Advanced Materials (MIAM), Centre for Self-Assembled Chemical Structures (CSACS), Centre Recherche du Polymeres et Composites du Quebec (CREPEQ); 3610 University Street, Montréal Québec H3A 0C5 Canada
| | - Lucia Li
- McGill University, Department of Chemical Engineering; McGill Institute of Advanced Materials (MIAM), Centre for Self-Assembled Chemical Structures (CSACS), Centre Recherche du Polymeres et Composites du Quebec (CREPEQ); 3610 University Street, Montréal Québec H3A 0C5 Canada
| | - Ian Bennett
- McGill University, Department of Chemical Engineering; McGill Institute of Advanced Materials (MIAM), Centre for Self-Assembled Chemical Structures (CSACS), Centre Recherche du Polymeres et Composites du Quebec (CREPEQ); 3610 University Street, Montréal Québec H3A 0C5 Canada
| | - Milan Marić
- McGill University, Department of Chemical Engineering; McGill Institute of Advanced Materials (MIAM), Centre for Self-Assembled Chemical Structures (CSACS), Centre Recherche du Polymeres et Composites du Quebec (CREPEQ); 3610 University Street, Montréal Québec H3A 0C5 Canada
| |
Collapse
|
13
|
Abstract
This review summarizes pH-responsive monomers, polymers and their derivative nano- and micro-structures including micelles, cross-linked micelles, microgels and hydrogels.
Collapse
Affiliation(s)
- G. Kocak
- Department of Chemistry
- Faculty of Arts and Science
- Eskisehir Osmangazi University
- Eskisehir
- Turkey
| | - C. Tuncer
- Department of Chemistry
- Faculty of Arts and Science
- Eskisehir Osmangazi University
- Eskisehir
- Turkey
| | - V. Bütün
- Department of Chemistry
- Faculty of Arts and Science
- Eskisehir Osmangazi University
- Eskisehir
- Turkey
| |
Collapse
|
14
|
Lucht N, Eggers S, Abetz V. Cononsolvency in the ‘drunken’ state: the thermoresponsiveness of a new acrylamide copolymer in water–alcohol mixtures. Polym Chem 2017. [DOI: 10.1039/c6py01751g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This work presents the synthesis and thermoresponsiveness of a random acrylamide copolymer in alcohol–water mixtures and discusses cononsolvency phenomena.
Collapse
Affiliation(s)
- Niklas Lucht
- University of Hamburg
- Department of Physical Chemistry
- 20146 Hamburg
- Germany
| | - Steffen Eggers
- University of Hamburg
- Department of Physical Chemistry
- 20146 Hamburg
- Germany
| | - Volker Abetz
- University of Hamburg
- Department of Physical Chemistry
- 20146 Hamburg
- Germany
- Helmholtz-Zentrum Geesthacht
| |
Collapse
|
15
|
Chaduc I, Reynaud E, Dumas L, Albertin L, D'Agosto F, Lansalot M. From well-defined poly( N -acryloylmorpholine)-stabilized nanospheres to uniform mannuronan- and guluronan-decorated nanoparticles by RAFT polymerization-induced self-assembly. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.08.072] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Xu R, Feng Q, He Y, Yan F, Chen L, Zhao Y. Dual functionalized poly(vinylidene fluoride) membrane with acryloylmorpholine and argatroban to improve antifouling and hemocompatibility. J Biomed Mater Res A 2016; 105:178-188. [DOI: 10.1002/jbm.a.35892] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/17/2016] [Accepted: 08/30/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Rui Xu
- State Key Laboratory of Separation Membranes and Membrane Processes; School of Material Science and Engineering, Tianjin Polytechnic University; Tianjin 300387 China
| | - Qianqian Feng
- State Key Laboratory of Separation Membranes and Membrane Processes; School of Material Science and Engineering, Tianjin Polytechnic University; Tianjin 300387 China
| | - Yang He
- State Key Laboratory of Separation Membranes and Membrane Processes; School of Material Science and Engineering, Tianjin Polytechnic University; Tianjin 300387 China
| | - Fanyong Yan
- State Key Laboratory of Separation Membranes and Membrane Processes; School of Environmental and Chemical Engineering, Tianjin Polytechnic University; Tianjin 300387 China
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes; School of Material Science and Engineering, Tianjin Polytechnic University; Tianjin 300387 China
- School of Material Science and Engineering; Tianjin University of Technology; Tianjin 300384 China
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes; School of Material Science and Engineering, Tianjin Polytechnic University; Tianjin 300387 China
| |
Collapse
|
17
|
Chamignon C, Duret D, Charreyre MT, Favier A. 1H DOSY NMR Determination of the Molecular Weight and the Solution Properties of Poly(N-acryloylmorpholine) in Various Solvents. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Cécile Chamignon
- Univ Lyon, INSA de Lyon, CNRS; Laboratoire Ingénierie des Matériaux Polymères; UMR5223; F-69621 Villeurbanne France
| | - Damien Duret
- Univ Lyon, INSA de Lyon, CNRS; Laboratoire Ingénierie des Matériaux Polymères; UMR5223; F-69621 Villeurbanne France
- Univ Lyon, École Normale Supérieure de Lyon; CNRS, Laboratoire Joliot-Curie; USR3010; F-69364 Lyon France
| | - Marie-Thérèse Charreyre
- Univ Lyon, INSA de Lyon, CNRS; Laboratoire Ingénierie des Matériaux Polymères; UMR5223; F-69621 Villeurbanne France
- Univ Lyon, École Normale Supérieure de Lyon; CNRS, Laboratoire Joliot-Curie; USR3010; F-69364 Lyon France
| | - Arnaud Favier
- Univ Lyon, INSA de Lyon, CNRS; Laboratoire Ingénierie des Matériaux Polymères; UMR5223; F-69621 Villeurbanne France
- Univ Lyon, École Normale Supérieure de Lyon; CNRS, Laboratoire Joliot-Curie; USR3010; F-69364 Lyon France
| |
Collapse
|
18
|
Savage AM, Ullrich E, Kost C, Turner SR. Salt‐ and pH‐Responsive Semirigid/Flexible Double‐Hydrophilic Block Copolymers. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Alice M. Savage
- Department of Chemistry and Macromolecules and Interfaces Institute Virginia Tech Blacksburg VA 24061 USA
| | - Elizabeth Ullrich
- Department of Chemistry and Macromolecules and Interfaces Institute Virginia Tech Blacksburg VA 24061 USA
| | - Caitlyn Kost
- Department of Chemistry and Macromolecules and Interfaces Institute Virginia Tech Blacksburg VA 24061 USA
| | - Sam Richard Turner
- Department of Chemistry and Macromolecules and Interfaces Institute Virginia Tech Blacksburg VA 24061 USA
| |
Collapse
|
19
|
Xie X, Li D, Tsai TH, Liu J, Braun PV, Cahill DG. Thermal Conductivity, Heat Capacity, and Elastic Constants of Water-Soluble Polymers and Polymer Blends. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02477] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xu Xie
- Department
of Materials Science and Engineering and Frederick Seitz Materials
Research Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Dongyao Li
- Department
of Materials Science and Engineering and Frederick Seitz Materials
Research Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- International
Institute for Carbon Neutral Energy Research, Kyushu University, Fukuoka 819-0395, Japan
| | - Tsung-Han Tsai
- Department
of Materials Science and Engineering and Frederick Seitz Materials
Research Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jun Liu
- Department
of Materials Science and Engineering and Frederick Seitz Materials
Research Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Paul V. Braun
- Department
of Materials Science and Engineering and Frederick Seitz Materials
Research Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - David G. Cahill
- Department
of Materials Science and Engineering and Frederick Seitz Materials
Research Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- International
Institute for Carbon Neutral Energy Research, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
20
|
Savelyeva X, Chondon D, Marić M. Vinyl phenylboronic acid controlling co-monomer for nitroxide mediated synthesis of thermoresponsive poly(2-Nmorpholinoethyl methacrylate). ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.28010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xeniya Savelyeva
- Department of Chemical Engineering; McGill University, McGill Institute of Advanced Materials (MIAM), Centre for Self-Assembled Chemical Structures (CSACS), Centre Recherche Du Polymeres Et Composites Du Quebec (CREPEQ); 3610 University Street Montréal Québec H3A 0C5 Canada
| | - David Chondon
- Department of Chemical Engineering; McGill University, McGill Institute of Advanced Materials (MIAM), Centre for Self-Assembled Chemical Structures (CSACS), Centre Recherche Du Polymeres Et Composites Du Quebec (CREPEQ); 3610 University Street Montréal Québec H3A 0C5 Canada
| | - Milan Marić
- Department of Chemical Engineering; McGill University, McGill Institute of Advanced Materials (MIAM), Centre for Self-Assembled Chemical Structures (CSACS), Centre Recherche Du Polymeres Et Composites Du Quebec (CREPEQ); 3610 University Street Montréal Québec H3A 0C5 Canada
| |
Collapse
|
21
|
Takahashi H, Okano T. Cell Sheet-Based Tissue Engineering for Organizing Anisotropic Tissue Constructs Produced Using Microfabricated Thermoresponsive Substrates. Adv Healthc Mater 2015; 4:2388-407. [PMID: 26033874 DOI: 10.1002/adhm.201500194] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/22/2015] [Indexed: 11/12/2022]
Abstract
In some native tissues, appropriate microstructures, including orientation of the cell/extracellular matrix, provide specific mechanical and biological functions. For example, skeletal muscle is made of oriented myofibers that is responsible for the mechanical function. Native artery and myocardial tissues are organized three-dimensionally by stacking sheet-like tissues of aligned cells. Therefore, to construct any kind of complex tissue, the microstructures of cells such as myotubes, smooth muscle cells, and cardiomyocytes also need to be organized three-dimensionally just as in the native tissues of the body. Cell sheet-based tissue engineering allows the production of scaffold-free engineered tissues through a layer-by-layer construction technique. Recently, using microfabricated thermoresponsive substrates, aligned cells are being harvested as single continuous cell sheets. The cell sheets act as anisotropic tissue units to build three-dimensional tissue constructs with the appropriate anisotropy. This cell sheet-based technology is straightforward and has the potential to engineer a wide variety of complex tissues. In addition, due to the scaffold-free cell-dense environment, the physical and biological cell-cell interactions of these cell sheet constructs exhibit unique cell behaviors. These advantages will provide important clues to enable the production of well-organized tissues that closely mimic the structure and function of native tissues, required for the future of tissue engineering.
Collapse
Affiliation(s)
- Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University; 8-1 Kawada-cho, Shinjuku-ku; Tokyo 162-8666 Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University; 8-1 Kawada-cho, Shinjuku-ku; Tokyo 162-8666 Japan
| |
Collapse
|
22
|
Raffa P, Wever DAZ, Picchioni F, Broekhuis AA. Polymeric Surfactants: Synthesis, Properties, and Links to Applications. Chem Rev 2015; 115:8504-63. [PMID: 26182291 DOI: 10.1021/cr500129h] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Patrizio Raffa
- Department of Chemical Engineering-Product Technology, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Dutch Polymer Institute DPI , P.O. Box 902, 5600 AX Eindhoven, The Netherlands
| | - Diego Armando Zakarias Wever
- Department of Chemical Engineering-Product Technology, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Dutch Polymer Institute DPI , P.O. Box 902, 5600 AX Eindhoven, The Netherlands
| | - Francesco Picchioni
- Department of Chemical Engineering-Product Technology, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Antonius A Broekhuis
- Department of Chemical Engineering-Product Technology, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
23
|
Hofman AH, Alberda van Ekenstein GOR, Woortman AJJ, ten Brinke G, Loos K. Poly(4-vinylpyridine)-block-poly(N-acryloylpiperidine) diblock copolymers: synthesis, self-assembly and interaction. Polym Chem 2015. [DOI: 10.1039/c5py00952a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Evaluation of the Flory-Huggins interaction parameter confirmed the self-assembly of a series of RAFT-synthesized poly(4-vinylpyridine)-block-poly(N-acryloylpiperidine) diblock copolymers.
Collapse
Affiliation(s)
- Anton H. Hofman
- Department of Polymer Chemistry
- Zernike Institute for Advanced Materials
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | | | - Albert J. J. Woortman
- Department of Polymer Chemistry
- Zernike Institute for Advanced Materials
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Gerrit ten Brinke
- Department of Polymer Chemistry
- Zernike Institute for Advanced Materials
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Katja Loos
- Department of Polymer Chemistry
- Zernike Institute for Advanced Materials
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| |
Collapse
|
24
|
Hofman AH, Reza M, Ruokolainen J, ten Brinke G, Loos K. Hierarchical Self-Assembly of Symmetric Supramolecular Double-Comb Diblock Copolymers: a Comb Density Study. Macromolecules 2014. [DOI: 10.1021/ma501257x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Anton H. Hofman
- Department
of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Mehedi Reza
- Department
of Applied Physics, Aalto University, P.O. Box 11100, FI-00076 Aalto, Finland
| | - Janne Ruokolainen
- Department
of Applied Physics, Aalto University, P.O. Box 11100, FI-00076 Aalto, Finland
| | - Gerrit ten Brinke
- Department
of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Katja Loos
- Department
of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
25
|
Synthesis and characterization of double hydrophilic block copolymers containing semi-rigid and flexible segments. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27296] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Shen X, Liu J, Feng X, Zhao Y, Chen L. Preliminary investigation on hemocompatibility of poly(vinylidene fluoride) membrane grafted with acryloylmorpholine via ATRP. J Biomed Mater Res A 2014; 103:683-92. [DOI: 10.1002/jbm.a.35213] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 04/12/2014] [Accepted: 04/24/2014] [Indexed: 01/02/2023]
Affiliation(s)
- Xiang Shen
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering; Tianjin Polytechnic University; Tianjin China
| | - Jie Liu
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering; Tianjin Polytechnic University; Tianjin China
| | - Xia Feng
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering; Tianjin Polytechnic University; Tianjin China
| | - Yiping Zhao
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering; Tianjin Polytechnic University; Tianjin China
| | - Li Chen
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering; Tianjin Polytechnic University; Tianjin China
| |
Collapse
|
27
|
Binauld S, Delafresnaye L, Charleux B, D’Agosto F, Lansalot M. Emulsion Polymerization of Vinyl Acetate in the Presence of Different Hydrophilic Polymers Obtained by RAFT/MADIX. Macromolecules 2014. [DOI: 10.1021/ma402549x] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Sandra Binauld
- Université de Lyon, Université de Lyon 1, CPE Lyon, CNRS, UMR 5265, C2P2 (Chemistry, Catalysis, Polymers & Processes), Team LCPP Bat 308F, 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| | - Laura Delafresnaye
- Université de Lyon, Université de Lyon 1, CPE Lyon, CNRS, UMR 5265, C2P2 (Chemistry, Catalysis, Polymers & Processes), Team LCPP Bat 308F, 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| | - Bernadette Charleux
- Université de Lyon, Université de Lyon 1, CPE Lyon, CNRS, UMR 5265, C2P2 (Chemistry, Catalysis, Polymers & Processes), Team LCPP Bat 308F, 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| | - Franck D’Agosto
- Université de Lyon, Université de Lyon 1, CPE Lyon, CNRS, UMR 5265, C2P2 (Chemistry, Catalysis, Polymers & Processes), Team LCPP Bat 308F, 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| | - Muriel Lansalot
- Université de Lyon, Université de Lyon 1, CPE Lyon, CNRS, UMR 5265, C2P2 (Chemistry, Catalysis, Polymers & Processes), Team LCPP Bat 308F, 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| |
Collapse
|
28
|
Anastasaki A, Haddleton AJ, Zhang Q, Simula A, Droesbeke M, Wilson P, Haddleton DM. Aqueous Copper-Mediated Living Radical Polymerisation ofN-Acryloylmorpholine, SET-LRP in Water. Macromol Rapid Commun 2014; 35:965-70. [DOI: 10.1002/marc.201400024] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 02/07/2014] [Indexed: 01/19/2023]
Affiliation(s)
| | | | - Qiang Zhang
- Department of Chemistry; University of Warwick; CV4 7AL Coventry UK
| | - Alexandre Simula
- Department of Chemistry; University of Warwick; CV4 7AL Coventry UK
| | | | - Paul Wilson
- Department of Chemistry; University of Warwick; CV4 7AL Coventry UK
| | | |
Collapse
|
29
|
Abstract
Clinical application of anticancer drugs is limited by problems such as low water solubility, lack of tissue-specificity and toxicity. Formulation development represents an important approach to these problems. Among the many delivery systems studied, polymeric micelles have gained considerable attention owing to ease in preparation, small sizes (10-100 nm), and ability to solubilize water-insoluble anticancer drugs and accumulate specifically at the tumors. This article provides a brief review of several promising micellar systems and their applications in tumor therapy. The emphasis is placed on the discussion of the authors' recent work on several nanomicellar systems that have both a delivery function and antitumor activity, named dual-function drug carriers.
Collapse
|
30
|
Leaver DJ, Hughes AB, Dawson RM, Postma A, Malic N, Polyzos A. Synthesis of RAFT polymers as bivalent inhibitors of cholera toxin. RSC Adv 2014. [DOI: 10.1039/c3ra47500j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report a new strategy to develop low molecular weight (18–28 kDa) poly(N-acryloylmorpholine) (PNAM) polymers as bivalent inhibitors of cholera toxin (CT) using Reversible Addition–Fragmentation chain Transfer (RAFT) technology.
Collapse
Affiliation(s)
- David J. Leaver
- Department of Chemistry
- La Trobe University
- Melbourne, Australia
- CSIRO Materials Science and Engineering
- Clayton South, Australia
| | | | - Raymond M. Dawson
- DSTO Melbourne
- Defence Science and Technology Organisation
- Melbourne, Australia
| | - Almar Postma
- CSIRO Materials Science and Engineering
- Clayton South, Australia
| | - Nino Malic
- CSIRO Materials Science and Engineering
- Clayton South, Australia
| | | |
Collapse
|
31
|
Liu J, Shen X, Zhao Y, Chen L. Acryloylmorpholine-Grafted PVDF Membrane with Improved Protein Fouling Resistance. Ind Eng Chem Res 2013. [DOI: 10.1021/ie403456n] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jie Liu
- State Key Laboratory
of Hollow
Fiber Membrane Materials and Processes, School of Materials Science
and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Xiang Shen
- State Key Laboratory
of Hollow
Fiber Membrane Materials and Processes, School of Materials Science
and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Yiping Zhao
- State Key Laboratory
of Hollow
Fiber Membrane Materials and Processes, School of Materials Science
and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Li Chen
- State Key Laboratory
of Hollow
Fiber Membrane Materials and Processes, School of Materials Science
and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| |
Collapse
|
32
|
Takahashi H, Okano T. Intelligent Surfaces for Cell and Tissue Delivery. SMART MATERIALS FOR DRUG DELIVERY 2013. [DOI: 10.1039/9781849734318-00290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cell transplantation remains a powerful approach for promising numerous biomedical applications to promote tissue regeneration. Therefore, smart delivery systems of therapeutic cells, as well as therapeutic oligonucleotides and proteins, are required. Although cells have been conventionally delivered by direct injection to target sites, a number of clinical studies showed a limitation due to poor cell retention and survival at the sites, resulting in insufficient effect on tissue/organ repair. Therefore, at present, numerous delivery strategies have been developed, and a variety of polymeric materials play important roles. For example, encapsulation in semi-permeable membrane made from biocompatible polymers (e.g. alginate-poly(l-lysine)-alginate) allows xenograft islets to be delivered in vivo without immune suppression. With progress in tissue engineering, scaffold-based cell/tissue delivery reached the mainstream for regenerating damaged tissues. Various kinds of scaffolds have been fabricated from natural and synthetic polymers, such as collagen or poly(l-lactic-co-glycolic acid), and allowed to provide appropriate nutritional conditions and spatial organization for cell growth. Whereas these scaffolds produce reliable architectures to design cell/tissue delivery, scaffold-free cell/tissue delivery also has opened up a new class technology in the field of regenerative medicine. Thermo-responsive poly(N-isopropylacrylamide)-grafted surfaces allow one to fabricate tissue-like cell monolayers, “cell sheets”, and deliver the cell-dense tissue with associated extra-cellular matrix (ECM) to damaged sites without scaffold implantation. The chapter focuses on unique cell/tissue delivery techniques using the intelligent surfaces. This technology has already been applied to human clinical studies for tissue regeneration, and microfabricated thermo-responsive surfaces are further developing for delivering more complex tissue.
Collapse
Affiliation(s)
- Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science Tokyo Women's Medical University (TWIns), 8-1 Kawada-cho, Shinjuku-ku Tokyo 162-8666, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science Tokyo Women's Medical University (TWIns), 8-1 Kawada-cho, Shinjuku-ku Tokyo 162-8666, Japan
| |
Collapse
|
33
|
Hosta-Rigau L, Jensen BEB, Fjeldsø KS, Postma A, Li G, Goldie KN, Albericio F, Zelikin AN, Städler B. Surface-adhered composite poly(vinyl alcohol) physical hydrogels: polymersome-aided delivery of therapeutic small molecules. Adv Healthc Mater 2012. [PMID: 23184834 DOI: 10.1002/adhm.201200092] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
34
|
Albertin L, Wolnik A, Ghadban A, Dubreuil F. Aqueous RAFT Polymerization of N
-Acryloylmorpholine, Synthesis of an ABA Triblock Glycopolymer and Study of its Self-Association Behavior. MACROMOL CHEM PHYS 2012. [DOI: 10.1002/macp.201200256] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Graft polymerization of acrylamide monomers from polysilsesquioxane containing xanthate groups. Polym J 2012. [DOI: 10.1038/pj.2012.91] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Matsuzaka N, Takahashi H, Nakayama M, Kikuchi A, Okano T. Effect of the Hydrophobic Basal Layer of Thermoresponsive Block Co-Polymer Brushes on Thermally-Induced Cell Sheet Harvest. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:1301-14. [DOI: 10.1163/092050611x580454] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Naoki Matsuzaka
- a Department of Materials Science and Technology , Graduate School of Industrial Science and Technology, Tokyo University of Science , 2641 Yamazaki, Noda , Chiba , 278-8510 , Japan
- b Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University , 8-1 Kawadacho, Shinjuku , Tokyo , 162-8666 , Japan
| | - Hironobu Takahashi
- b Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University , 8-1 Kawadacho, Shinjuku , Tokyo , 162-8666 , Japan
| | - Masamichi Nakayama
- b Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University , 8-1 Kawadacho, Shinjuku , Tokyo , 162-8666 , Japan
| | - Akihiko Kikuchi
- a Department of Materials Science and Technology , Graduate School of Industrial Science and Technology, Tokyo University of Science , 2641 Yamazaki, Noda , Chiba , 278-8510 , Japan
| | - Teruo Okano
- b Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University , 8-1 Kawadacho, Shinjuku , Tokyo , 162-8666 , Japan
| |
Collapse
|
37
|
Gregory A, Stenzel MH. Complex polymer architectures via RAFT polymerization: From fundamental process to extending the scope using click chemistry and nature's building blocks. Prog Polym Sci 2012. [DOI: 10.1016/j.progpolymsci.2011.08.004] [Citation(s) in RCA: 377] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
38
|
Takahashi H, Nakayama M, Shimizu T, Yamato M, Okano T. Anisotropic cell sheets for constructing three-dimensional tissue with well-organized cell orientation. Biomaterials 2011; 32:8830-8. [PMID: 21864898 DOI: 10.1016/j.biomaterials.2011.08.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 08/04/2011] [Indexed: 11/30/2022]
Abstract
Normal human dermal fibroblasts were aligned on micropatterned thermoresponsive surfaces simply by one-pot cell seeding. After they proliferated with maintaining their orientation, anisotropic cell sheets were harvested by reducing temperature to 20 °C. Surprisingly, the cell sheets showed different shrinking rates between vertical and parallel sides of the cell alignment (aspect ratio: approx. 3: 1), because actin fibers in the cell sheets were oriented with the same direction. The control of cell alignment provided not only a physical anisotropy but also biological impacts to the cell sheet. Vascular endothelial growth factor (VEGF) secreted by aligned fibroblasts was increased significantly, whereas transforming growth factor-β1 (TGF-β1) expression was the same level in anisotropic cell sheets as cell sheets having random cell orientations. Furthermore, although the amount of deposited type Ⅰ collagen was different non-significantly onto between cell sheets with and without controlled cell alignment, collagen deposited onto fibroblasts sheets with cell alignment also showed anisotropy, verified by a fluorescence imaging analysis. The physical and biological anisotropies of cell sheets were potentially useful to construct biomimetic tissues that were organized by aligned cells and/or extracellular matrix (ECM) including collagen in cell sheet-based regenerative medicine. Furthermore, due to the unique thermoresponsive property, the anisotropic cell sheets were successfully manipulated using a gelatin-coated plunger and were layered with maintaining their cell alignment. The combined use of the anisotropic cell sheet and cell sheet manipulation technique promises to create complex tissue that requires the three-dimensional control of their anisotropies, as one of the next-generation cell sheet technologies.
Collapse
Affiliation(s)
- Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University (TWIns), Tokyo, Japan
| | | | | | | | | |
Collapse
|
39
|
Effect of block compositions of amphiphilic block copolymers on the physicochemical properties of polymeric micelles. POLYMER 2011. [DOI: 10.1016/j.polymer.2011.06.026] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Takahashi H, Nakayama M, Itoga K, Yamato M, Okano T. Micropatterned Thermoresponsive Polymer Brush Surfaces for Fabricating Cell Sheets with Well-Controlled Orientational Structures. Biomacromolecules 2011; 12:1414-8. [DOI: 10.1021/bm2000956] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University (TWIns), 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Masamichi Nakayama
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University (TWIns), 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Kazuyoshi Itoga
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University (TWIns), 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University (TWIns), 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University (TWIns), 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
41
|
Cui Q, Wu F, Wang E. Novel amphiphilic diblock copolymers bearing acid-labile oxazolidine moieties: Synthesis, self-assembly and responsive behavior in aqueous solution. POLYMER 2011. [DOI: 10.1016/j.polymer.2011.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Takahashi H, Nakayama M, Yamato M, Okano T. Controlled Chain Length and Graft Density of Thermoresponsive Polymer Brushes for Optimizing Cell Sheet Harvest. Biomacromolecules 2010; 11:1991-9. [DOI: 10.1021/bm100342e] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University (TWIns), 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Masamichi Nakayama
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University (TWIns), 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University (TWIns), 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University (TWIns), 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
43
|
Koo SPS, Stamenović MM, Prasath RA, Inglis AJ, Du Prez FE, Barner‐Kowollik C, Van Camp W, Junker T. Limitations of radical thiol‐ene reactions for polymer–polymer conjugation. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/pola.23933] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sandy P. S. Koo
- Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, Karlsruhe 76128, Germany
| | - Milan M. Stamenović
- Department of Organic Chemistry, Polymer Chemistry Research Group, Ghent University, Krijgslaan 281 (S4‐bis), Ghent 9000, Belgium
| | - R. Arun Prasath
- Department of Organic Chemistry, Polymer Chemistry Research Group, Ghent University, Krijgslaan 281 (S4‐bis), Ghent 9000, Belgium
| | - Andrew J. Inglis
- Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, Karlsruhe 76128, Germany
| | - Filip E. Du Prez
- Department of Organic Chemistry, Polymer Chemistry Research Group, Ghent University, Krijgslaan 281 (S4‐bis), Ghent 9000, Belgium
| | - Christopher Barner‐Kowollik
- Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, Karlsruhe 76128, Germany
| | - Wim Van Camp
- Department of Organic Chemistry, Polymer Chemistry Research Group, Ghent University, Krijgslaan 281 (S4‐bis), Ghent 9000, Belgium
| | - Tanja Junker
- Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, Karlsruhe 76128, Germany
| |
Collapse
|
44
|
Aseyev V, Tenhu H, Winnik FM. Non-ionic Thermoresponsive Polymers in Water. ADVANCES IN POLYMER SCIENCE 2010. [DOI: 10.1007/12_2010_57] [Citation(s) in RCA: 374] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
45
|
Jo YS, van der Vlies AJ, Gantz J, Thacher TN, Antonijevic S, Cavadini S, Demurtas D, Stergiopulos N, Hubbell JA. Micelles for Delivery of Nitric Oxide. J Am Chem Soc 2009; 131:14413-8. [DOI: 10.1021/ja905123t] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yun Suk Jo
- Institute of Bioengineering (IBI) and Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH 1015, Switzerland, Department of Chemistry, University of California, Berkeley and Division of Materials Science, Lawrence Berkeley National Laboratory, Berkeley California 94720, and Laboratoire d’Analyse Ultrastructurale, Bâtiment de Biologie, University of Lausanne, Lausanne CH 1015, Switzerland
| | - André J. van der Vlies
- Institute of Bioengineering (IBI) and Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH 1015, Switzerland, Department of Chemistry, University of California, Berkeley and Division of Materials Science, Lawrence Berkeley National Laboratory, Berkeley California 94720, and Laboratoire d’Analyse Ultrastructurale, Bâtiment de Biologie, University of Lausanne, Lausanne CH 1015, Switzerland
| | - Jay Gantz
- Institute of Bioengineering (IBI) and Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH 1015, Switzerland, Department of Chemistry, University of California, Berkeley and Division of Materials Science, Lawrence Berkeley National Laboratory, Berkeley California 94720, and Laboratoire d’Analyse Ultrastructurale, Bâtiment de Biologie, University of Lausanne, Lausanne CH 1015, Switzerland
| | - Tyler N. Thacher
- Institute of Bioengineering (IBI) and Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH 1015, Switzerland, Department of Chemistry, University of California, Berkeley and Division of Materials Science, Lawrence Berkeley National Laboratory, Berkeley California 94720, and Laboratoire d’Analyse Ultrastructurale, Bâtiment de Biologie, University of Lausanne, Lausanne CH 1015, Switzerland
| | - Sasa Antonijevic
- Institute of Bioengineering (IBI) and Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH 1015, Switzerland, Department of Chemistry, University of California, Berkeley and Division of Materials Science, Lawrence Berkeley National Laboratory, Berkeley California 94720, and Laboratoire d’Analyse Ultrastructurale, Bâtiment de Biologie, University of Lausanne, Lausanne CH 1015, Switzerland
| | - Simone Cavadini
- Institute of Bioengineering (IBI) and Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH 1015, Switzerland, Department of Chemistry, University of California, Berkeley and Division of Materials Science, Lawrence Berkeley National Laboratory, Berkeley California 94720, and Laboratoire d’Analyse Ultrastructurale, Bâtiment de Biologie, University of Lausanne, Lausanne CH 1015, Switzerland
| | - Davide Demurtas
- Institute of Bioengineering (IBI) and Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH 1015, Switzerland, Department of Chemistry, University of California, Berkeley and Division of Materials Science, Lawrence Berkeley National Laboratory, Berkeley California 94720, and Laboratoire d’Analyse Ultrastructurale, Bâtiment de Biologie, University of Lausanne, Lausanne CH 1015, Switzerland
| | - Nikolaos Stergiopulos
- Institute of Bioengineering (IBI) and Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH 1015, Switzerland, Department of Chemistry, University of California, Berkeley and Division of Materials Science, Lawrence Berkeley National Laboratory, Berkeley California 94720, and Laboratoire d’Analyse Ultrastructurale, Bâtiment de Biologie, University of Lausanne, Lausanne CH 1015, Switzerland
| | - Jeffrey A. Hubbell
- Institute of Bioengineering (IBI) and Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH 1015, Switzerland, Department of Chemistry, University of California, Berkeley and Division of Materials Science, Lawrence Berkeley National Laboratory, Berkeley California 94720, and Laboratoire d’Analyse Ultrastructurale, Bâtiment de Biologie, University of Lausanne, Lausanne CH 1015, Switzerland
| |
Collapse
|
46
|
Boyer C, Bulmus V, Davis TP, Ladmiral V, Liu J, Perrier S. Bioapplications of RAFT Polymerization. Chem Rev 2009; 109:5402-36. [DOI: 10.1021/cr9001403] [Citation(s) in RCA: 829] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Sciences & Engineering, UNSW, Sydney, NSW 2052, Australia, Centre for Advanced Macromolecular Design (CAMD), School of Biotechnology & Biomolecular Sciences, UNSW, Sydney, NSW 2052, Australia, and Key Centre for Polymers & Colloids, School of Chemistry, Building F11, Eastern Avenue, The University of Sydney, NSW 2006, Australia
| | - Volga Bulmus
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Sciences & Engineering, UNSW, Sydney, NSW 2052, Australia, Centre for Advanced Macromolecular Design (CAMD), School of Biotechnology & Biomolecular Sciences, UNSW, Sydney, NSW 2052, Australia, and Key Centre for Polymers & Colloids, School of Chemistry, Building F11, Eastern Avenue, The University of Sydney, NSW 2006, Australia
| | - Thomas P. Davis
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Sciences & Engineering, UNSW, Sydney, NSW 2052, Australia, Centre for Advanced Macromolecular Design (CAMD), School of Biotechnology & Biomolecular Sciences, UNSW, Sydney, NSW 2052, Australia, and Key Centre for Polymers & Colloids, School of Chemistry, Building F11, Eastern Avenue, The University of Sydney, NSW 2006, Australia
| | - Vincent Ladmiral
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Sciences & Engineering, UNSW, Sydney, NSW 2052, Australia, Centre for Advanced Macromolecular Design (CAMD), School of Biotechnology & Biomolecular Sciences, UNSW, Sydney, NSW 2052, Australia, and Key Centre for Polymers & Colloids, School of Chemistry, Building F11, Eastern Avenue, The University of Sydney, NSW 2006, Australia
| | - Jingquan Liu
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Sciences & Engineering, UNSW, Sydney, NSW 2052, Australia, Centre for Advanced Macromolecular Design (CAMD), School of Biotechnology & Biomolecular Sciences, UNSW, Sydney, NSW 2052, Australia, and Key Centre for Polymers & Colloids, School of Chemistry, Building F11, Eastern Avenue, The University of Sydney, NSW 2006, Australia
| | - Sébastien Perrier
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Sciences & Engineering, UNSW, Sydney, NSW 2052, Australia, Centre for Advanced Macromolecular Design (CAMD), School of Biotechnology & Biomolecular Sciences, UNSW, Sydney, NSW 2052, Australia, and Key Centre for Polymers & Colloids, School of Chemistry, Building F11, Eastern Avenue, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
47
|
Extracellular matrix binding mixed micelles for drug delivery applications. J Control Release 2009; 137:146-51. [PMID: 19332089 DOI: 10.1016/j.jconrel.2009.03.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 03/20/2009] [Accepted: 03/22/2009] [Indexed: 11/20/2022]
Abstract
We present the formation of collagen-binding mixed micelles and their potential suitability to deliver therapeutic drugs to the vessel wall. We modified poly(ethylene oxide)-bl-poly(propylene oxide)-bl-poly(ethylene oxide) (Pluronic F-127) to display sulfate groups on the terminus of the PEO block to act as a heparin mimics and bind to collagen in the extracellular matrix. This functionalized macroamphiphile was incorporated into a mixed micelle with poly(propylene sulfide)-bl-poly(ethylene oxide), a macroamphiphile that demonstrates improved micellar stability relative to Pluronic F-127 micelles. The mixed micelles were examined using analytical ultracentrifugation, dynamic light scattering, transmission electron microscopy, and measures of the critical micellar concentration using surface tensiometry. Encapsulation and in vitro release of Sirolimus, an immunosuppressant drug of interest in coronary artery treatment, was considered as an example. Mixed micelles with the sulfate functionality demonstrated enhanced binding to collagen I coated surfaces, suggestive of the potential for binding to the extracellular milieu.
Collapse
|