1
|
Cirelli M, Hao J, Bor TC, Duvigneau J, Benson N, Akkerman R, Hempenius MA, Vancso GJ. Printing "Smart" Inks of Redox-Responsive Organometallic Polymers on Microelectrode Arrays for Molecular Sensing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37060-37068. [PMID: 31525020 PMCID: PMC6790938 DOI: 10.1021/acsami.9b11927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Printing arrays of responsive spots for multiplexed sensing with electrochemical readout requires new molecules and precise, high-throughput deposition of active compounds on microelectrodes with spatial control. We have designed and developed new redox-responsive polymers, featuring a poly(ferrocenylsilane) (PFS) backbone and side groups with disulfide units, which allow an efficient and stable bonding to Au substrates, using sulfur-gold coupling chemistry in a "grafting-to" approach. The polymer molecules can be employed for area selective molecular sensing following their deposition by high-precision inkjet printing. The new PFS derivatives, which serve as "molecular inks", were characterized by 1H NMR, 13C NMR, and FTIR spectroscopies and by gel permeation chromatography. The viscosity and surface tension of the inks were assessed by rheology and pendant drop contact angle measurements, respectively. Commercial microelectrode arrays were modified with the new PFS ink by using inkjet printing in the "drop-on-demand" mode. FTIR spectroscopy, AFM, and EDX-SEM confirmed a successful, spatially localized PFS modification of the individual electrodes within the sensing cells of the microelectrode arrays. The potential application of these devices to act as an electrochemical sensor array was demonstrated with a model analyte, ascorbic acid, by using cyclic voltammetry and amperometric measurements.
Collapse
Affiliation(s)
- Marco Cirelli
- Materials
Science and Technology of Polymers, MESA+ Institute for
Nanotechnology, and Production Technology, Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jinmeng Hao
- Materials
Science and Technology of Polymers, MESA+ Institute for
Nanotechnology, and Production Technology, Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Teunis C. Bor
- Materials
Science and Technology of Polymers, MESA+ Institute for
Nanotechnology, and Production Technology, Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Joost Duvigneau
- Materials
Science and Technology of Polymers, MESA+ Institute for
Nanotechnology, and Production Technology, Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Niels Benson
- Institute
of Technology for Nanostructures, Faculty of Engineering, University of Duisburg-Essen (UDE), Bismarckstr. 81, D-47057 Duisburg, Germany
| | - Remko Akkerman
- Materials
Science and Technology of Polymers, MESA+ Institute for
Nanotechnology, and Production Technology, Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Mark A. Hempenius
- Materials
Science and Technology of Polymers, MESA+ Institute for
Nanotechnology, and Production Technology, Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - G. Julius Vancso
- Materials
Science and Technology of Polymers, MESA+ Institute for
Nanotechnology, and Production Technology, Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
2
|
|
3
|
Kumar-Krishnan S, Guadalupe-Ferreira García M, Prokhorov E, Estevez-González M, Pérez R, Esparza R, Meyyappan M. Synthesis of gold nanoparticles supported on functionalized nanosilica using deep eutectic solvent for an electrochemical enzymatic glucose biosensor. J Mater Chem B 2017; 5:7072-7081. [PMID: 32263898 DOI: 10.1039/c7tb01346a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Engineering of nanoparticle (NP) surfaces offers an effective approach for the development of enzymatic biosensors or microbial fuel cells with a greatly enhanced direct electron transport process. However, lack of control over the surface functionalization process and the operational instability of the immobilized enzymes are serious issues. Herein, we demonstrate a facile and green deep eutectic solvent (DES)-mediated synthetic strategy for efficient amine-surface functionalization of silicon dioxide and to integrate small gold nanoparticles (AuNPs) for a glucose biosensor. Owing to the higher viscosity of the DES, it provides uniform surface functionalization and further coupling of the AuNPs on the SiO2 support with improved stability and dispersion. The amine groups of the functionalized Au-SiO2NPs were covalently linked to the FAD-center of glucose oxidase (GOx) through glutaraldehyde as a bifunctional cross-linker, which promotes formation of "electrical wiring" with the immobilized enzymes. The Au-SiO2NP/GOx/GC electrode exhibits direct electron transfer (DET) for sensing of glucose with a sensitivity of 9.69 μA mM-1, a wide linear range from 0.2 to 7 mM and excellent stability. The present green DES-mediated synthetic approach expands the possibilities to support different metal NPs on SiO2 as a potential platform for biosensor applications.
Collapse
Affiliation(s)
- Siva Kumar-Krishnan
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro, Qro., 76230, Mexico.
| | | | | | | | | | | | | |
Collapse
|
4
|
Krishnan SK, Prokhorov E, Bahena D, Esparza R, Meyyappan M. Chitosan-Covered Pd@Pt Core-Shell Nanocubes for Direct Electron Transfer in Electrochemical Enzymatic Glucose Biosensor. ACS OMEGA 2017; 2:1896-1904. [PMID: 30023649 PMCID: PMC6044646 DOI: 10.1021/acsomega.7b00060] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/26/2017] [Indexed: 05/02/2023]
Abstract
Development of biosensors with high sensitivity, high spatial resolution, and low cost has received significant attention for their applications in medical diagnosis, diabetes management, and environment-monitoring. However, achieving a direct electrical contact between redox enzymes and electrode surfaces and enhancing the operational stability still remain as challenges. Inorganic metal nanocrystals (NCs) with precisely controlled shape and surface structure engineered with an appropriate organic coating can help overcome the challenges associated with their stability and aggregation for practical biosensor applications. Herein, we describe a facile, room-temperature, seed-mediated solution-phase route to synthesize monodisperse Pd@Pt core-shell nanocubes with subnanometer-thick platinum (Pt) shells. The enzyme electrode consisting of Pd@Pt core-shell NCs was first covered with a chitosan (CS) polymer and then glucose oxidase (GOx) immobilized by a covalent linkage to the CS. This polymer permits covalent immobilization through active amino (-NH) side groups to improve the stability and preserve the biocatalytic functions while the Pd@Pt NCs facilitate enhanced direct electron transfer (DET) in the biosensor. The resultant biosensor promotes DET and exhibits excellent performance for the detection of glucose, with a sensitivity of 6.82 μA cm-2 mM-1 and a wide linear range of 1-6 mM. Our results demonstrate that sensitive electrochemical glucose detection based on Pd@Pt core-shell NCs provides remarkable opportunities for designing low-cost and sensitive biosensors.
Collapse
Affiliation(s)
- Siva Kumar Krishnan
- Centro
de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro, Querétaro 76230, Mexico
| | - Evgen Prokhorov
- Centro
de Investigación y Estudios Avanzados, Unidad Querétaro, Santiago de Querétaro, Querétaro 76230, Mexico
| | - Daniel Bahena
- Advanced
Laboratory of Electron Nanoscopy, Cinvestav, Av. Instituto Politecnico Nacional,
2508, Col. San Pedro Zacatenco, Delegacion Gustavo A. Madero, Mexico D.F. CP 07360, Mexico
| | - Rodrigo Esparza
- Centro
de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro, Querétaro 76230, Mexico
| | - M. Meyyappan
- Center
for Nanotechnology, NASA Ames Research Center, Moffett Field, Mountain View, California 94035, United States
| |
Collapse
|
5
|
Ghimire G, Coceancigh H, Yi Y, Ito T. Electrochemical Characterization and Catalytic Application of Gold-Supported Ferrocene-Containing Diblock Copolymer Thin Films in Ethanol Solution. ACS APPLIED MATERIALS & INTERFACES 2017; 9:2906-2913. [PMID: 28019098 DOI: 10.1021/acsami.6b11181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper reports the electrochemical behavior and catalytic property of electrode-supported thin films of polystyrene-block-poly(2-(acryloyloxy)ethyl ferrocenecarboxylate) (PS-b-PAEFc) in an ethanol (EtOH) solution. The electrochemical properties of PS-b-PAEFc films with different PAEFc volume fractions (fPAEFc = 0.47, 0.30, and 0.17) in 0.1 M ethanolic sodium hexafluorophosphate (NaPF6) were compared with those in an acetonitrile (MeCN) solution of 0.1 M tetrabutylammonium hexafluorophosphate. Pristine PS-b-PAEFc films did not afford significant faradaic currents in the EtOH solution because EtOH is a nonsolvent for both PS and PAEFc. However, the films could be rendered redox-active in the EtOH solution by applying potentials in the MeCN solution to induce the redox-associated incorporation of the supporting electrolytes into the films. Atomic force microscopy images verified the stability of PAEFc microdomains upon electrochemical measurements in these solutions. Cyclic voltammograms measured in the EtOH solution for PS-b-PAEFc with the larger fPAEFc were diffusion-controlled regardless of ellipsometric film thickness (23-152 nm) at relatively slow scan rates, in contrast to those in the MeCN solution that were controlled by surface-confined redox species. The electron propagation efficiency in the EtOH solution was significantly lower than that in the MeCN solution because of the poorer swelling of the films, which limited the migration of counterions and the collisional motions of the ferrocene moieties. PS-b-PAEFc films were applied as electrochemically responsive heterogeneous catalysts based on the ferrocenium moieties for Michael addition reaction between methyl vinyl ketone and ethyl 2-oxocyclopentanecarboxylate (E2OC) in 0.1 M NaPF6/EtOH. The catalytic activities of thin films were similar regardless of fPAEFc, suggesting that the catalytic reaction took place for the reactants that could penetrate through the film and reach PAEFc microdomains communicable with the underlying electrode. Interestingly, the permeability of PS-b-PAEFc films provided a means to control the reaction selectivity, as suggested by negligible reaction of E2OC with trans-4-phenyl-3-buten-2-one.
Collapse
Affiliation(s)
- Govinda Ghimire
- Department of Chemistry, Kansas State University , 213 CBC Building, Manhattan, Kansas 66506-0401, United States
| | - Herman Coceancigh
- Department of Chemistry, Kansas State University , 213 CBC Building, Manhattan, Kansas 66506-0401, United States
| | - Yi Yi
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Takashi Ito
- Department of Chemistry, Kansas State University , 213 CBC Building, Manhattan, Kansas 66506-0401, United States
| |
Collapse
|
6
|
Kumar-Krishnan S, Chakaravarthy S, Hernandez-Rangel A, Prokhorov E, Luna-Bárcenas G, Esparza R, Meyyappan M. Chitosan supported silver nanowires as a platform for direct electrochemistry and highly sensitive electrochemical glucose biosensing. RSC Adv 2016. [DOI: 10.1039/c5ra24259b] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chitosan supported silver nanowire (CS/AgNWs) based enzyme electrodes for highly sensitive glucose sensing.
Collapse
Affiliation(s)
- Siva Kumar-Krishnan
- Cinvestav Queretaro
- Querétaro QRO
- México
- Centro de Física Aplicada y Tecnología Avanzada
- Universidad Nacional Autónoma de México
| | - S. Chakaravarthy
- Programa de Doctorado en Nanociencias y Nanotecnología, CINVESTAV-IPN
- México
| | | | | | | | - Rodrigo Esparza
- Centro de Física Aplicada y Tecnología Avanzada
- Universidad Nacional Autónoma de México
- Santiago de Querétaro
- México
| | | |
Collapse
|
7
|
Kumar-Krishnan S, Hernandez-Rangel A, Pal U, Ceballos-Sanchez O, Flores-Ruiz FJ, Prokhorov E, Arias de Fuentes O, Esparza R, Meyyappan M. Surface functionalized halloysite nanotubes decorated with silver nanoparticles for enzyme immobilization and biosensing. J Mater Chem B 2016; 4:2553-2560. [DOI: 10.1039/c6tb00051g] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Illustrating the selective modification of the HNTs for the incorporation of AgNPs and site-specific covalent immobilization of the GOx enzymes.
Collapse
Affiliation(s)
- Siva Kumar-Krishnan
- Centro de Física Aplicada y Tecnología Avanzada
- Universidad Nacional Autónoma de México
- Santiago de Querétaro
- Mexico
| | | | - Umapada Pal
- Instituto de Física
- Benemérita Universidad Autónoma de Puebla
- Puebla 72570
- Mexico
| | - O. Ceballos-Sanchez
- Cátedras Conacyt at Facultad de Ingeniería Civil
- Departamento de Ecomateriales y Energía
- Universidad Autónoma de Nuevo León (UANL)
- Ciudad Universitaria
- San Nicolás de los Garza
| | | | | | - O. Arias de Fuentes
- Cinvestav-Querétaro
- Querétaro
- Mexico
- Instituto de Ciencia y Tecnología de Materiales
- Universidad de La Habana
| | - Rodrigo Esparza
- Centro de Física Aplicada y Tecnología Avanzada
- Universidad Nacional Autónoma de México
- Santiago de Querétaro
- Mexico
| | | |
Collapse
|
8
|
Hailes RLN, Oliver AM, Gwyther J, Whittell GR, Manners I. Polyferrocenylsilanes: synthesis, properties, and applications. Chem Soc Rev 2016; 45:5358-407. [DOI: 10.1039/c6cs00155f] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This comprehensive review covers polyferrocenylsilanes (PFSs), a well-established, readily accessible class of main chain organosilicon metallopolymer. The focus is on the recent advances involving PFS homopolymers and block copolymers and the article covers the synthesis, properties, and applications of these fascinating materials.
Collapse
Affiliation(s)
| | | | | | | | - Ian Manners
- School of Chemistry
- University of Bristol
- Bristol
- UK
| |
Collapse
|
9
|
Ghimire G, Yi Y, Derylo MA, Baker LA, Ito T. Electron Propagation within Redox-Active Microdomains in Thin Films of Ferrocene-Containing Diblock Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:12307-12314. [PMID: 26485062 DOI: 10.1021/acs.langmuir.5b02996] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This paper reports the electrochemical behavior of redox-active microdomains in thin films of ferrocene-containing diblock copolymers, polystyrene-block-poly(2-(acryloyloxy)ethyl ferrocenecarboxylate) (PS-b-PAEFc). PS-b-PAEFc with different PAEFc volume fractions (PS154-b-PAEFc51, PS154-b-PAEFc26, and PS154-b-PAEFc12, where the subscripts represent the polymerization degree of each block; f(PAEFc) = 0.47, 0.30, and 0.17, respectively) was synthesized by sequential atom transfer radical polymerization. PS-b-PAEFc films of controlled thicknesses (20-160 nm) were prepared on gold substrates via spin-coating and characterized by ellipsometry. Microdomains were observed via atomic force microscopy on the surfaces of PS154-b-PAEFc51 and PS154-b-PAEFc26 thin films but not on the surfaces of PS154-b-PAEFc12 thin films. Electrochemical behavior of films was assessed by cyclic voltammetry and chronocoulometry in acetonitrile solution. The redox potential of ferrocene moieties was similar (ca. + 0.29 V vs Fc(+)/Fc) regardless of fPAEFc and film thickness. For PS154-b-PAEFc51 and PS154-b-PAEFc26, thicker films afforded larger faradaic peak currents and exhibited diffusion-controlled voltammograms at faster sweep rates. PS154-b-PAEFc26 produced voltammograms less influenced by solvent-induced swelling than PS154-b-PAEFc51, reflecting the improved morphological stability of PAEFc microdomains by redox-inert PS frameworks. In contrast, PS154-b-PAEFc12 films yielded similar faradaic peak currents regardless of film thickness and exhibited voltammograms indicative of surface-confined species. These observations suggest that PS154-b-PAEFc51 and PS154-b-PAEFc26 films contain continuous PAEFc microdomains extending from the electrode to the surface, in contrast to the PS154-b-PAEFc12 films which contain isolated PAEFc microdomains buried within the PS matrix. Electron propagation took place only through PAEFc microdomains that could electrically communicate with the underlying electrode. Apparent diffusion coefficients within PAEFc microdomains were similar (≈ 2 × 10(-11) cm(2)/s) for PS154-b-PAEFc51 and PS154-b-PAEFc26. The relatively low efficiency in electron propagation was attributable to ineffective electron self-exchange reaction within the PAEFc microdomains and/or limited counterion migration through the acetonitrile-swollen microdomains. These results provide guidance in design of redox-active metalloblock copolymers for various applications, which include electrocatalysis, electrochemical mediation in enzyme sensors, and redox-controlled molecular deposition.
Collapse
Affiliation(s)
- Govinda Ghimire
- Department of Chemistry, Kansas State University , 213 CBC Building, Manhattan, Kansas 66506-0401, United States
| | - Yi Yi
- Department of Chemistry, Indiana University , 800 E Kirkwood Ave., Bloomington, Indiana 47405, United States
| | - Maksymilian A Derylo
- Department of Chemistry, Indiana University , 800 E Kirkwood Ave., Bloomington, Indiana 47405, United States
| | - Lane A Baker
- Department of Chemistry, Indiana University , 800 E Kirkwood Ave., Bloomington, Indiana 47405, United States
| | - Takashi Ito
- Department of Chemistry, Kansas State University , 213 CBC Building, Manhattan, Kansas 66506-0401, United States
| |
Collapse
|
10
|
Zhou H, Lu Y, Qiu H, Guerin G, Manners I, Winnik MA. Photocleavage of the Corona Chains of Rigid-Rod Block Copolymer Micelles. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00238] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Hang Zhou
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Yijie Lu
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Huibin Qiu
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Gerald Guerin
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ian Manners
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Mitchell A. Winnik
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
11
|
Musgrave RA, Russell AD, Whittell GR, Haddow MF, Manners I. Tuning the Polymerization Behavior of Silicon-Bridged [1]Ferrocenophanes Using Bulky Substituents. Organometallics 2015. [DOI: 10.1021/om5012598] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | | | - Mairi F. Haddow
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Ian Manners
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| |
Collapse
|
12
|
Feng X, Zhang K, Hempenius MA, Vancso GJ. Organometallic polymers for electrode decoration in sensing applications. RSC Adv 2015. [DOI: 10.1039/c5ra21256a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Macromolecules containing metals combine the processing advantages of polymers with the functionality offered by the metal centers. The developments in the area of electrochemical chemo/biosensors based on organometallic polymers are reviewed.
Collapse
Affiliation(s)
- Xueling Feng
- Materials Science and Technology of Polymers
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| | - Kaihuan Zhang
- Materials Science and Technology of Polymers
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| | - Mark A. Hempenius
- Materials Science and Technology of Polymers
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| | - G. Julius Vancso
- Materials Science and Technology of Polymers
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| |
Collapse
|
13
|
Ito T. Block Copolymer-Derived Monolithic Polymer Films and Membranes Comprising Self-Organized Cylindrical Nanopores for Chemical Sensing and Separations. Chem Asian J 2014; 9:2708-18. [DOI: 10.1002/asia.201402136] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Indexed: 12/13/2022]
|
14
|
Zhou J, Whittell GR, Manners I. Metalloblock Copolymers: New Functional Nanomaterials. Macromolecules 2014. [DOI: 10.1021/ma500106x] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jiawen Zhou
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - George R. Whittell
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Ian Manners
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
15
|
Du VA, Manners I. Poly(ferrocenylmethylsilane): An Unsymmetrically Substituted, Atactic, but Semicrystalline Polymetallocene. Macromolecules 2013. [DOI: 10.1021/ma400866u] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Van An Du
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol
BS8 1TS, U.K
| | - Ian Manners
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol
BS8 1TS, U.K
| |
Collapse
|
16
|
Nunns A, Ross CA, Manners I. Synthesis and Bulk Self-Assembly of ABC Star Terpolymers with a Polyferrocenylsilane Metalloblock. Macromolecules 2013. [DOI: 10.1021/ma302602u] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Adam Nunns
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Caroline A. Ross
- Department of Materials Science
and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ian Manners
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| |
Collapse
|