1
|
Jadhav RW, Nadimetla DN, Gawade VK, Jones LA, Bhosale SV. Mimicking the Natural World with Nanoarchitectonics for Self-Assembled Superstructures. CHEM REC 2023; 23:e202200180. [PMID: 36149036 DOI: 10.1002/tcr.202200180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/05/2022] [Indexed: 01/21/2023]
Abstract
Scientists are often inspired by nature, where naturally occurring morphologies, such as those that resemble animals and plants, can be created in the lab. In this review, we have provided an overview on complex superstructures of animals, plants and some similar shapes from the natural world. We begin this review with a discussion about the formation of various animal-like shapes from small organic molecules and polymers, and then move onto plants and other selected shapes. Literature surveys reveal that most of the polymers studied tend to form micellar structures, with some exceptions. Nevertheless, small organic molecules tend to form not only micellar structures but also other animal shapes such as worms and caterpillars. These superstructures tend to have high surface areas and variable surface morphology, making them very useful material for applications in various field such as catalysis, solar cells, and biomedicine, amongst others.
Collapse
Affiliation(s)
- Ratan W Jadhav
- School of Chemical Sciences, Goa University, Goa, 403206, India
| | | | - Vilas K Gawade
- School of Chemical Sciences, Goa University, Goa, 403206, India
| | - Lathe A Jones
- School of Applied Sciences, RMIT University, Melbourne, Victoria, 3001, Australia
| | | |
Collapse
|
2
|
Liu Y, Zhao H. Homopolymer-Assisted Fusions of Polymer Brushes and Block Copolymer Vesicles. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yingze Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Prusty D, Nap RJ, Szleifer I, Olvera de la Cruz M. Charge regulation mechanism in end-tethered weak polyampholytes. SOFT MATTER 2020; 16:8832-8847. [PMID: 32901638 DOI: 10.1039/d0sm01323d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Weak polyampholytes, containing oppositely charged dissociable groups, are expected to be responsive to changes in ionic conditions. Here, we determine structural and thermodynamic properties, including the charged groups' degrees of dissociation, of end-tethered weak polyampholyte layers as a function of salt concentration, pH, and the solvent quality. For diblock weak polyampholytes grafted by their acidic blocks, we find that the acidic monomers increase their charge while the basic monomers decrease their charge with decreasing salt concentration for pH values less than the pKa value of both monomers and vice versa when the pH > pKa. This complex charge regulation occurs because the electrostatic attraction between oppositely charged blocks is stronger than the repulsion between monomers with the same charge in both good and poor solvents when the screening by salt ions is weak. This is evidenced by the retraction of the top block into the bottom layer. In the case of poor solvent conditions to the basic block (the top block), we find lateral segregation of basic monomers into micelles, forming a two-dimensional hexagonal pattern on the surface at intermediate and high pH values for monovalent salt concentrations from 0.01 to 0.1 M. When the solvent is poor to both blocks, we find lateral segregation of the grafted acidic block into lamellae with longitudinal undulations of low and high acidic monomer density. By exploiting weak block polyampholytes, our work expands the parameter space for creating responsive surfaces stable over a wide range of pH and salt concentration.
Collapse
Affiliation(s)
- D Prusty
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| | - R J Nap
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA and Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, USA
| | - I Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA and Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, USA and Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - M Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA. and Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA and Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
4
|
Hou W, Liu Y, Zhao H. Surface Nanostructures Based on Assemblies of Polymer Brushes. Chempluschem 2020; 85:998-1007. [DOI: 10.1002/cplu.202000112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/20/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Wangmeng Hou
- Key Laboratory of Functional Polymer Materials Ministry of Education College of ChemistryNankai University Tianjin 300071 P. R. China
| | - Yingze Liu
- Key Laboratory of Functional Polymer Materials Ministry of Education College of ChemistryNankai University Tianjin 300071 P. R. China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials Ministry of Education College of ChemistryNankai University Tianjin 300071 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300071 P. R. China
| |
Collapse
|
5
|
Gumerov RA, Potemkin II. Swelling of Planar Polymer Brushes in Solvent Vapors. POLYMER SCIENCE SERIES C 2018. [DOI: 10.1134/s181123821802011x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Lazutin A, Vasilevskaya VV. Lamellae-Parking Garage Structure-Lamellae Transition in Densely Grafted Layers of Amphiphilic Homopolymers: Impact of Polymerization Degree. ACS OMEGA 2018; 3:12967-12974. [PMID: 31458020 PMCID: PMC6709779 DOI: 10.1021/acsomega.8b01643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/26/2018] [Indexed: 06/10/2023]
Abstract
By means of computer modeling, the self-organization of densely grafted macromolecules with amphiphilic monomer units as a function of macromolecular polymerization degree and solvent quality was studied and a diagram of state was constructed. The diagram contains fields of disordered distribution of monomer units and of prolonged aggregates, regions of lamellae with small and big domain spacing, and transition region. Within the transition region, the lamellae with different spacing coexist: the lamellae with big domain spacing are on the top of the grafting layer and the lamellae with small domain spacing are close to the grafting surface. The lamellae are connected with each other and form bicontinuous parking garage structure joining all side groups into a single cluster. The domain spacing of lamellae does not depend on the macromolecular length, but the width of the transition region decreases with the decrease of polymerization degree until total vanishing at relatively short macromolecules. The sharp switch between lamellae and bicontinuous structure opens the perspective for practical applications of densely grafted layers with amphiphilic monomer units.
Collapse
|
7
|
Qiu W, Wang Z, Yin Y, Jiang R, Li B, Wang Q. A lattice self-consistent field study of self-assembly of grafted ABA triblock copolymers in a selective solvent. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.02.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Lazutin AA, Vasilevskaya VV, Khokhlov AR. Self-assembly in densely grafted macromolecules with amphiphilic monomer units: diagram of states. SOFT MATTER 2017; 13:8525-8533. [PMID: 29091101 DOI: 10.1039/c7sm01560g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
By means of computer modelling, the self-organization of dense planar brushes of macromolecules with amphiphilic monomer units was addressed and their state diagram was constructed. The diagram of states includes the following regions: disordered position of monomer units with respect to each other, strands composed of a few polymer chains and lamellae with different domain spacing. The transformation of lamellae structures with different domain spacing occurred within the intermediate region and could proceed through the formation of so-called parking garage structures. The parking garage structure joins the lamellae with large (on the top of the brushes) and small (close to the grafted surface) domain spacing, which appears like a system of inclined locally parallel layers connected with each other by bridges. The parking garage structures were observed for incompatible A and B groups in selective solvents, which result in aggregation of the side B groups and dense packing of amphiphilic macromolecules in the restricted volume of the planar brushes.
Collapse
Affiliation(s)
- A A Lazutin
- A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Vavilova ul., 28, Moscow 119991, Russia.
| | - V V Vasilevskaya
- A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Vavilova ul., 28, Moscow 119991, Russia.
| | - A R Khokhlov
- A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Vavilova ul., 28, Moscow 119991, Russia. and Faculty of Physics, M. V. Lomonosov Moscow State University, Leninskie gory, Moscow 119991, Russia
| |
Collapse
|
9
|
Hannon AF, Bai W, Alexander-Katz A, Ross CA. Simulation methods for solvent vapor annealing of block copolymer thin films. SOFT MATTER 2015; 11:3794-3805. [PMID: 25850069 DOI: 10.1039/c5sm00324e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Recent progress in modelling the solvent vapor annealing of thin film block copolymers is examined in the context of a self-consistent field theory framework. Key control variables in determining the final microdomain morphologies include swelling ratio or swollen film solvent volume fraction, swollen film thickness, substrate and vapor atmosphere surface energies, effective volume fraction, and effective Flory-Huggins interaction parameter. The regime of solvent vapor annealing studied is where the block copolymer has a high enough Flory-Huggins parameter that ordered structures form during swelling and are then trapped in the system through quenching. Both implicit and explicit consideration of the solvent vapor is considered to distinguish the cases in which solvent vapor leads to a non-bulk morphology. Block-selective solvents are considered based on the experimental systems of polystyrene-b-polydimethylsiloxane annealed with toluene and heptane. The results of these simulations are compared with these experiments.
Collapse
Affiliation(s)
- A F Hannon
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| | | | | | | |
Collapse
|
10
|
Deng S, Zhang L, Zhou X, Fan C, Lin Q, Lin J. Exploring Microstructures and Interphase Properties of Surface- Grafted Diblock Copolymers in a Homopolymer Melt by Self-Consistent Field Theory Simulations. J MACROMOL SCI B 2015. [DOI: 10.1080/00222348.2015.1010439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Chen C, Tang P, Qiu F. Binary hairy nanoparticles: Recent progress in theory and simulations. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/polb.23528] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Cangyi Chen
- Department of Macromolecular Science; State Key Laboratory of Molecular Engineering of Polymers, Fudan University; Shanghai 200433 China
| | - Ping Tang
- Department of Macromolecular Science; State Key Laboratory of Molecular Engineering of Polymers, Fudan University; Shanghai 200433 China
| | - Feng Qiu
- Department of Macromolecular Science; State Key Laboratory of Molecular Engineering of Polymers, Fudan University; Shanghai 200433 China
| |
Collapse
|
12
|
Ji-hua X, Run J, Yu-hua Y, Zheng W, Bao-hui L. SIMULATED ANNEALING STUDY OF THE SELF-ASSEMBLY OF END-ANCHORED ASYMMETRIC ABA TRIBLOCK COPOLYMERS IN SELECTIVE SOLVENTS. ACTA POLYM SIN 2013. [DOI: 10.3724/sp.j.1105.2013.13028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Abstract
We use molecular dynamics simulations method to investigate the behavior characteristics of AB diblock copolymers that are adsorbed on a planar surface. Adsorption density has been distinguished, depending on the adsorption manner of A-block on the (100) surface and formation of brushes. It is examined in detail that conformational behavior of the brushes affects the adsorption density. In addition, we make a comparison of linear brush with length ratio of the A-block to the chain, in the cases of the fixed length of chain and the fixed length of A-block, respectively. The result shows that the adsorption density is strongly affected by the length ratio of the A-block to the chain. And our findings can be used as a guide for fabrication and preparation of actual synthetic polymer brushes on a solid surface by the approach of physical adsorption.
Collapse
|
14
|
Xu J, Yin Y, Wang Z, Jiang R, Li B, Shi AC. Self-assembled morphologies of ABA triblock copolymer brushes in selective solvents. J Chem Phys 2013; 138:114905. [PMID: 23534660 DOI: 10.1063/1.4795578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A simulated annealing method is used to investigate the self-assembled morphologies of symmetric ABA triblock copolymer brushes, formed by one end of the A-blocks tethered onto a planar surface, immersed in a solvent selective for the middle B-blocks. The morphological dependences of the brushes on polymer grafting density and block lengths are investigated systematically. Phase diagrams for systems with different grafting densities are constructed. The simulation results show that the grafted amphiphilic triblock copolymers can self-assemble to form a variety of complicated morphologies which can be classified in terms of the number of A-rich layers in the morphology. In particular, the formation of the structures with one A-rich layer or called "folded" brush structures is consistent with the speculation from the experimental studies of ABA triblock copolymer brushes. More detailed structures depend on the grafting density and the lengths of the blocks. Furthermore, at a high grafting density, the effects of the lengths of blocks and the interaction energies between different species in the system on the conformation of chains are investigated to illustrate the formation mechanisms of self-assembled morphologies of the amphiphilic triblock copolymer brushes.
Collapse
Affiliation(s)
- Jihua Xu
- School of Physics, Nankai University, Tianjin 300071, China
| | | | | | | | | | | |
Collapse
|