1
|
Du X, Zhai J, Li X, Zhang Y, Li N, Xie X. Hydrogel-Based Optical Ion Sensors: Principles and Challenges for Point-of-Care Testing and Environmental Monitoring. ACS Sens 2021; 6:1990-2001. [PMID: 34044533 DOI: 10.1021/acssensors.1c00756] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydrogel is a unique family of biocompatible materials with growing applications in chemical and biological sensors. During the past few decades, various hydrogel-based optical ion sensors have been developed aiming at point-of-care testing and environmental monitoring. In this Perspective, we provide an overview of the research field including topics such as photonic crystals, DNAzyme cross-linked hydrogels, ionophore-based ion sensing hydrogels, and fluoroionophore-based optodes. As the different sensing principles are summarized, each strategy offers its advantages and limitations. In a nutshell, developing optical ion sensing hydrogels is still in the early stage with many opportunities lying ahead, especially with challenges in selectivity, assay time, detection limit, and usability.
Collapse
Affiliation(s)
- Xinfeng Du
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jingying Zhai
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaoang Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yupu Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Niping Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaojiang Xie
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
2
|
Tang W, Chen C. Hydrogel-Based Colloidal Photonic Crystal Devices for Glucose Sensing. Polymers (Basel) 2020; 12:E625. [PMID: 32182870 PMCID: PMC7182902 DOI: 10.3390/polym12030625] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022] Open
Abstract
Diabetes, a common epidemic disease, is increasingly hazardous to human health. Monitoring body glucose concentrations for the prevention and therapy of diabetes has become very important. Hydrogel-based responsive photonic crystal (PC) materials are noninvasive options for glucose detection. This article reviews glucose-sensing materials/devices composed of hydrogels and colloidal photonic crystals (CPCs), including the construction of 2D/3D CPCs and 2D/3D hydrogel-based CPCs (HCPCs). The development and mechanisms of glucose-responsive hydrogels and the achieved technologies of HCPC glucose sensors were also concluded. This review concludes by showing a perspective for the future design of CPC glucose biosensors with functional hydrogels.
Collapse
Affiliation(s)
- Wenwei Tang
- Modern Service Department, College of International Vocational Education, Shanghai Polytechnic University, Shanghai 201209, China;
| | - Cheng Chen
- School of Environmental and Materials Engineering, College of Engineering, Shanghai Polytechnic University, Shanghai 201209, China
- Research Center of Resource Recycling Science and Engineering, Shanghai Polytechnic University, Shanghai 201209, China
| |
Collapse
|
3
|
Qin J, Li X, Cao L, Du S, Wang W, Yao SQ. Competition-Based Universal Photonic Crystal Biosensors by Using Antibody–Antigen Interaction. J Am Chem Soc 2019; 142:417-423. [DOI: 10.1021/jacs.9b11116] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Junjie Qin
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P.R. China
| | - Xueqiang Li
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Lixin Cao
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P.R. China
| | - Shubo Du
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Wei Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P.R. China
- Aramco Research Center-Boston, Aramco Services Company, Cambridge, Massachusetts 02139, United States
| | - Shao Q. Yao
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
4
|
Jia X, Wang K, Wang J, Hu Y, Shen L, Zhu J. Full-color photonic hydrogels for pH and ionic strength sensing. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.08.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Wang H, Gu X, Hu R, Lam JWY, Zhang D, Tang BZ. Luminescent photonic crystals with multi-functionality and tunability. Chem Sci 2016; 7:5692-5698. [PMID: 30034708 PMCID: PMC6022079 DOI: 10.1039/c6sc01703g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/25/2016] [Indexed: 11/21/2022] Open
Abstract
We develop a general method to incorporate aggregation-induced emission luminogens into photonic crystals (PCs) and the resulting luminescent PCs display diverse structural colors in response to water stimulation.
The marriage of reflected light originating from photonic crystals (PCs) and emitted light would create miraculous phenomena. However, traditional luminophores cannot avoid the problem of aggregation-caused quenching. To solve this problem, we develop a general method to incorporate aggregation-induced emission luminogens (AIEgens) into PCs via physical absorption or chemical reaction. The resulting luminescent PCs display diverse structural colors in response to water stimulation, due to the swelling of the aqueous medium. Such a water-tunable photonic band gap red-shift has the ability to modulate the AIEgen emission, as well as narrowing its full width at half maximum (FWHM), which allows the luminescent PC to behave as a smart intramolecular filter that is capable of creating arbitrary light from only one material. In addition, the filter is believed to modulate the broad emission spectra of AIEgens arising from different conformations. Furthermore, the luminescent PC can respond to ethanol stimulation due to two factors: (a) swelling of the aqueous medium (external tuning); and (b) expansion of nanoparticles (internal tuning). By exploiting the synergy of the external-internal tuning, the emission wavelength and intensity can be finely changed. Both the water- and ethanol-tunable emission shift fit to a linear relationship, and thus the luminescent PC could be able to quantitatively detect humidity in the environment and alcohol in wine.
Collapse
Affiliation(s)
- Hong Wang
- HKUST-Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan , Shenzhen 518057 , China . .,Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , Division of Biomedical Engineering , Division of Life Science and State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science & Technology , Clear Water Bay , Kowloon , Hong Kong , China
| | - Xinggui Gu
- HKUST-Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan , Shenzhen 518057 , China . .,Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , Division of Biomedical Engineering , Division of Life Science and State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science & Technology , Clear Water Bay , Kowloon , Hong Kong , China
| | - Rongrong Hu
- Guangdong Innovative Research Team , SCUT-HKUST Joint Research Laboratory , State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| | - Jacky W Y Lam
- HKUST-Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan , Shenzhen 518057 , China . .,Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , Division of Biomedical Engineering , Division of Life Science and State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science & Technology , Clear Water Bay , Kowloon , Hong Kong , China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Organic Solids , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , PR China
| | - Ben Zhong Tang
- HKUST-Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan , Shenzhen 518057 , China . .,Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , Division of Biomedical Engineering , Division of Life Science and State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science & Technology , Clear Water Bay , Kowloon , Hong Kong , China.,Guangdong Innovative Research Team , SCUT-HKUST Joint Research Laboratory , State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
6
|
MacConaghy KI, Chadly DM, Stoykovich MP, Kaar JL. Optically diffracting hydrogels for screening kinase activity in vitro and in cell lysate: impact of material and solution properties. Anal Chem 2015; 87:3467-75. [PMID: 25714913 DOI: 10.1021/acs.analchem.5b00442] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Optically diffracting films based on hydrogel-encapsulated crystalline colloidal arrays have considerable utility as sensors for detecting enzymaticphosphorylation and, thus, in screening small molecule modulators of kinases. In this work, we have investigated the impact of hydrogel properties, as well as the role of the ionic character of the surrounding environment, on the optical sensitivity of kinase responsive crystalline colloidal array-containing hydrogels. In agreement with a model of hydrogel swelling, the optical sensitivity of such materials increased as the shear modulus and the Flory-Huggins interaction parameter between polymer and solvent decreased. Additionally, elimination of extraneous charges in the polymer backbone by exploiting azide-alkyne click chemistry to functionalize the hydrogels with a peptide substrate for protein kinase A further enhanced the sensitivity of the optically diffracting films. Increasing peptide concentration and, in turn, immobilized charge within the hydrogel network was shown to increase the optical response over a range of ionic strength conditions. Ultimately, we showed that, by tuning the hydrogel and solution properties, as little as 0.1 U/μL protein kinase A could be detected in short reaction times (i.e., 2 h), which is comparable to conventional biochemical kinase assays. We further showed that this approach can be used to detect protein kinase A activity in lysate from HEK293 cells. The sensitivity of the resulting films, coupled with the advantages of photonic crystal based sensors (e.g., label free detection), makes this approach highly attractive for screening enzymatic phosphorylation.
Collapse
Affiliation(s)
- Kelsey I MacConaghy
- Department of Chemical and Biological Engineering, University of Colorado, Campus Box 596, Boulder, Colorado 80309, United States
| | - Duncan M Chadly
- Department of Chemical and Biological Engineering, University of Colorado, Campus Box 596, Boulder, Colorado 80309, United States
| | - Mark P Stoykovich
- Department of Chemical and Biological Engineering, University of Colorado, Campus Box 596, Boulder, Colorado 80309, United States
| | - Joel L Kaar
- Department of Chemical and Biological Engineering, University of Colorado, Campus Box 596, Boulder, Colorado 80309, United States
| |
Collapse
|
7
|
Yang Z, Shi D, Zhang X, Liu H, Chen M, Liu S. Co-deposition motif for constructing inverse opal photonic crystals with pH sensing. RSC Adv 2015. [DOI: 10.1039/c5ra08046k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An exfoliated polyacrylamide (PAM) inverse opal film has been fabricated based on a co-deposition motif.
Collapse
Affiliation(s)
- Zhaokun Yang
- The Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Dongjian Shi
- The Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Xiaodong Zhang
- The Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Huanhuan Liu
- The Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Mingqing Chen
- The Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Shirong Liu
- The Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| |
Collapse
|
8
|
Hong X, Peng Y, Bai J, Ning B, Liu Y, Zhou Z, Gao Z. A novel opal closest-packing photonic crystal for naked-eye glucose detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:1308-1313. [PMID: 24829962 DOI: 10.1002/smll.201302788] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A novel opal closest-packing (OCP) photonic crystal (PC) is successfully prepared for naked-eye glucose detection. This PC is fabricated via a vertical convective self-assembly method with a new type of monodisperse microsphere polymerized by co-monomers, namely, methyl methacrylate (MMA), N-isopropylacrylamide (NIPA), and 3-acrylamidophenylboronic acid (AAPBA). The OCP PC has high stability and periodically-ordered structure, showing the desired structural color. The proposed PC material displays a red shift and reduced reflection intensity when detecting glucose molecules. The red-shift wavelength reaches 75 nm, which clearly changes the structural color from brilliant blue to emerald green. This visually distinguishable color change facilitates the detection of the glucose concentrations from 3 to 20 mm, which demonstrates the potential of the opal PC material for naked-eye detection. Thus, the novel PMMA–NIPA–AAPBA OCP PC is a simply prepared and sensitive material, which shows promising use in the diagnosis of diabetes mellitus and in real-time monitoring of diabetes. Different types of appropriated recognition groups are expected to be introduced into the 3D OCP PC to form new functional materials or chemical sensors, which will extensively broaden the PC material application.
Collapse
|
9
|
Lee JH, Koh CY, Singer JP, Jeon SJ, Maldovan M, Stein O, Thomas EL. 25th anniversary article: ordered polymer structures for the engineering of photons and phonons. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:532-69. [PMID: 24338738 PMCID: PMC4227607 DOI: 10.1002/adma.201303456] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Indexed: 05/21/2023]
Abstract
The engineering of optical and acoustic material functionalities via construction of ordered local and global architectures on various length scales commensurate with and well below the characteristic length scales of photons and phonons in the material is an indispensable and powerful means to develop novel materials. In the current mature status of photonics, polymers hold a pivotal role in various application areas such as light-emission, sensing, energy, and displays, with exclusive advantages despite their relatively low dielectric constants. Moreover, in the nascent field of phononics, polymers are expected to be a superior material platform due to the ability for readily fabricated complex polymer structures possessing a wide range of mechanical behaviors, complete phononic bandgaps, and resonant architectures. In this review, polymer-centric photonic and phononic crystals and metamaterials are highlighted, and basic concepts, fabrication techniques, selected functional polymers, applications, and emerging ideas are introduced.
Collapse
Affiliation(s)
- Jae-Hwang Lee
- Department of Materials Science and Nanoengineering Rice UniversityHouston, TX, 77005, USA E-mail: ;
| | | | - Jonathan P Singer
- Department of Materials Science and Engineering, MITCambridge, MA, 02139, USA
| | - Seog-Jin Jeon
- Department of Materials Science and Nanoengineering Rice UniversityHouston, TX, 77005, USA E-mail: ;
| | - Martin Maldovan
- Department of Materials Science and Engineering, MITCambridge, MA, 02139, USA
| | - Ori Stein
- Department of Materials Science and Nanoengineering Rice UniversityHouston, TX, 77005, USA E-mail: ;
| | - Edwin L Thomas
- Department of Materials Science and Nanoengineering Rice UniversityHouston, TX, 77005, USA E-mail: ;
| |
Collapse
|
10
|
Lee H, Ryu J, Kim D, Joo Y, Lee SU, Sohn D. Preparation of an imogolite/poly(acrylic acid) hybrid gel. J Colloid Interface Sci 2013; 406:165-71. [DOI: 10.1016/j.jcis.2013.05.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/04/2013] [Accepted: 05/16/2013] [Indexed: 11/28/2022]
|
11
|
Wang H, Zhang KQ. Photonic crystal structures with tunable structure color as colorimetric sensors. SENSORS 2013; 13:4192-213. [PMID: 23539027 PMCID: PMC3673079 DOI: 10.3390/s130404192] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/12/2013] [Accepted: 03/12/2013] [Indexed: 11/16/2022]
Abstract
Colorimetric sensing, which transduces environmental changes into visible color changes, provides a simple yet powerful detection mechanism that is well-suited to the development of low-cost and low-power sensors. A new approach in colorimetric sensing exploits the structural color of photonic crystals (PCs) to create environmentally-influenced color-changeable materials. PCs are composed of periodic dielectrics or metallo-dielectric nanostructures that affect the propagation of electromagnetic waves (EM) by defining the allowed and forbidden photonic bands. Simultaneously, an amazing variety of naturally occurring biological systems exhibit iridescent color due to the presence of PC structures throughout multi-dimensional space. In particular, some kinds of the structural colors in living organisms can be reversibly changed in reaction to external stimuli. Based on the lessons learned from natural photonic structures, some specific examples of PCs-based colorimetric sensors are presented in detail to demonstrate their unprecedented potential in practical applications, such as the detections of temperature, pH, ionic species, solvents, vapor, humidity, pressure and biomolecules. The combination of the nanofabrication technique, useful design methodologies inspired by biological systems and colorimetric sensing will lead to substantial developments in low-cost, miniaturized and widely deployable optical sensors.
Collapse
Affiliation(s)
- Hui Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | | |
Collapse
|