1
|
Milatz R, Duvigneau J, Vancso GJ. Clicked into Place: Biomimetic Copolymer Adhesive for Covalent Conjugation of Functionalities. ACS OMEGA 2024; 9:38153-38159. [PMID: 39281956 PMCID: PMC11391531 DOI: 10.1021/acsomega.4c03428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/18/2024]
Abstract
Polydopamines (PDA) are a popular class of materials and promising candidates as adhesives for new fastening techniques. PDA layers can be formed on a wide range of substrates in various environments. Here, we present a novel method for functionalizing PDA-based copolymer films by using click chemistry. These copolymers adhere strongly to various surfaces and simultaneously have active groups that allow the attachment of functional groups. We discuss the coupling of two types of chitosan and a rhodamine B dye molecule to the alkyne groups of the copolymers by employing click reactions. Azidopropyl methacrylate (AzMA), methyl methacrylate (MMA), and dopamine methacrylamide (DOMA) are copolymerized and codeposited with (3-aminopropyl)triethoxysilane on silicon wafers, polyethylene (PE), and polytetrafluoroethylene (PTFE). AzMA provides the surfaces with azides for use in click reactions, MMA functions to control the polymer as a nonfunctional diluent, whereas DOMA provides adhesion, as well as cross-linking groups. After codeposition, the dyes are grafted to the copolymer to illustrate the ability of the films to link functional groups covalently. Fourier transform infrared spectroscopy confirms the successful click reaction in solution, and atomic force microscopy shows the surface morphologies following grafting. Fluorescence microscopy provides evidence of successful grafting. As an example of a possible application, layers exhibiting antifouling properties are prepared. Chitosan grafted to PE is tested for antifouling performance. These functionalized layers show nonspecific inhibition of protein adsorption. We find that chitosan can lower the adsorption of fluorescein-labeled bovine serum albumin (BSA) protein by more than 90% for the best performing fluorescein-labeled BSA protein and by more than 90% for the best-performing layer. These results demonstrate the viability of our PDA-based copolymers for surface functionalization through click chemistry grafting at challenging adhesion to surfaces.
Collapse
Affiliation(s)
- Roland Milatz
- Department of Materials Science and Technology of Polymers, University of Twente, Enschede 7522 NB, The Netherlands
- DPI, P.O. Box 902, Eindhoven 5600 AX, The Netherlands
| | - Joost Duvigneau
- Department of Materials Science and Technology of Polymers, University of Twente, Enschede 7522 NB, The Netherlands
| | - Gyula Julius Vancso
- Department of Materials Science and Technology of Polymers, University of Twente, Enschede 7522 NB, The Netherlands
| |
Collapse
|
2
|
Osuofa J, Husson SM. Preparation of Protein A Membranes Using Propargyl Methacrylate-Based Copolymers and Copper-Catalyzed Alkyne-Azide Click Chemistry. Polymers (Basel) 2024; 16:239. [PMID: 38257038 PMCID: PMC10819539 DOI: 10.3390/polym16020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
The development of convective technologies for antibody purification is of interest to the bioprocessing industries. This study developed a Protein A membrane using a combination of graft polymerization and copper(I)-catalyzed alkyne-azide click chemistry. Regenerated cellulose supports were functionalized via surface-initiated copolymerization of propargyl methacrylate (PgMA) and poly(ethylene glycol) methyl ether methacrylate (PEGMEMA300), followed by a reaction with azide-functionalized Protein A ligand. The polymer-modified membranes were characterized using attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), gravimetric analysis, and permeability measurements. Copolymer composition was determined using the Mayo-Lewis equation. Membranes clicked with azide-conjugated Protein A were evaluated by measuring static and dynamic binding (DBC10) capacities for human immunoglobulin G (hIgG). Copolymer composition and degree of grafting were found to affect maximum static binding capacities, with values ranging from 5 to 16 mg/mL. DBC10 values did not vary with flow rate, as expected of membrane adsorbers.
Collapse
Affiliation(s)
| | - Scott M. Husson
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA;
| |
Collapse
|
3
|
Dhingra S, Gaur V, Bhattacharya J, Saha S. Photoinduced micropatterning on biodegradable aliphatic polyester surfaces for anchoring dual brushes and its application in bacteria and cell patterning. J Mater Chem B 2022; 11:83-98. [PMID: 36226487 DOI: 10.1039/d2tb01477g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In view of intrinsic challenges encountered in surface patterning on actual biomaterials such as the ones based on biodegradable polymers, we have demonstrated an innovative strategy to create micro-patterns on the surface of tartaric acid based aliphatic polyester P (poly(hexamethylene 2,3-O-isoprpylidentartarate)) without significant loss of its molecular weight. Around 10 wt% PAG (photoacid generator, 2-(4-methoxystyryl)-4,6-bis(trichloromethyl)-1,3,5-triazine) was purposefully encapsulated in a polyester matrix comprising of P and PLA (polylactide) at a ratio of 5 : 95. With the help of a photomask, selective areas of the matrix were exposed to UV radiation at 395 nm for 25 min to trigger the acid release from PAG entrapped unmasked areas for generating hydroxyl functionality that was later converted to an ATRP (atom transfer radical polymerization) initiating moiety on the irradiated domain of P. In subsequent steps, spatio-selective surface modification by surface initiated ATRP was carried out to generate an alternate pattern of polyPEGMA (poly(ethylene glycol)methyl ether methacrylate) and polyDMAPS (poly(3-dimethyl-(methacryloyloxyethyl)ammonium propane sulfonate)) brushes on the matrix. The patterned surface modified with dual brushes was found to be antifouling in nature (rejection of >97% of proteins). Strikingly, an alternate pattern of live bacterial cells (E. coli and S. aureus) was evident and a relatively high population of bacteria was found on the polyPEGMA brush modified domain. However, a complete reverse pattern was visible in the case of L929 mouse fibroblast cells, i.e., cells were found to predominantly adhere to and proliferate on the zwitterionic brush modified surface. An attempt was made to discuss a plausible mechanism of selective cell adhesion on the zwitterionic brush domain. This novel strategy employed on the biodegradable polymer surface provides an easy and straightforward way to micro-pattern various cells, bacteria, etc. on biodegradable substrates which hold great potential to function as biochips, diagnostics, bacteria/cell microarrays, etc.
Collapse
Affiliation(s)
- Shaifali Dhingra
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, India.
| | - Vidit Gaur
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, India
| | | | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, India.
| |
Collapse
|
4
|
Dutta S, Shreyash N, Satapathy BK, Saha S. Advances in design of polymer brush functionalized inorganic nanomaterials and their applications in biomedical arena. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1861. [PMID: 36284373 DOI: 10.1002/wnan.1861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/23/2022] [Accepted: 09/12/2022] [Indexed: 02/01/2023]
Abstract
Grafting of polymer brush (assembly of polymer chains tethered to the substrate by one end) is emerging as one of the most viable approach to alter the surface of inorganic nanomaterials. Inorganic nanomaterials despite their intrinsic functional superiority, their applications remain restricted due to their incompatibility with organic or biological moieties vis-à-vis agglomeration issues. To overcome such a shortcoming, polymer brush modified surfaces of inorganic nanomaterials have lately proved to be of immense potential. For example, polymer brush-modified inorganic nanomaterials can act as efficient substrates/platforms in biomedical applications, ranging from drug-delivery to protein-array due to their integrated advantages such as amphiphilicity, stimuli responsiveness, enhanced biocompatibility, and so on. In this review, the current state of the art related to polymer brush-modified inorganic nanomaterials focusing, not only, on their synthetic strategies and applications in biomedical field but also the architectural influence of polymer brushes on the responsiveness properties of modified nanomaterials have comprehensively been discussed and its associated future perspective is also presented. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Soumyadip Dutta
- Department of Materials Science and Engineering Indian Institute of Technology Delhi Delhi India
| | - Nehil Shreyash
- Rajiv Gandhi Institute of Petroleum Technology Jais Uttar Pradesh India
| | - Bhabani Kumar Satapathy
- Department of Materials Science and Engineering Indian Institute of Technology Delhi Delhi India
| | - Sampa Saha
- Department of Materials Science and Engineering Indian Institute of Technology Delhi Delhi India
| |
Collapse
|
5
|
Degirmenci A, Yeter Bas G, Sanyal R, Sanyal A. “Clickable” Polymer Brush Interfaces: Tailoring Monovalent to Multivalent Ligand Display for Protein Immobilization and Sensing. Bioconjug Chem 2022; 33:1672-1684. [PMID: 36128725 PMCID: PMC9501913 DOI: 10.1021/acs.bioconjchem.2c00298] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Facile and effective functionalization of the interface
of polymer-coated
surfaces allows one to dictate the interaction of the underlying material
with the chemical and biological analytes in its environment. Herein,
we outline a modular approach that would enable installing a variety
of “clickable” handles onto the surface of polymer brushes,
enabling facile conjugation of various ligands to obtain functional
interfaces. To this end, hydrophilic anti-biofouling poly(ethylene
glycol)-based polymer brushes are fabricated on glass-like silicon
oxide surfaces using reversible addition–fragmentation chain
transfer (RAFT) polymerization. The dithioester group at the chain-end
of the polymer brushes enabled the installation of azide, maleimide,
and terminal alkene functional groups, using a post-polymerization
radical exchange reaction with appropriately functionalized azo-containing
molecules. Thus, modified polymer brushes underwent facile conjugation
of alkyne or thiol-containing dyes and ligands using alkyne–azide
cycloaddition, Michael addition, and radical thiol–ene conjugation,
respectively. Moreover, we demonstrate that the radical exchange approach
also enables the installation of multivalent motifs using dendritic
azo-containing molecules. Terminal alkene groups containing dendrons
amenable to functionalization with thiol-containing molecules using
the radical thiol–ene reaction were installed at the interface
and subsequently functionalized with mannose ligands to enable sensing
of the Concanavalin A lectin.
Collapse
Affiliation(s)
- Aysun Degirmenci
- Department of Chemistry, Bogazici University, Istanbul 34342, Turkey
| | - Gizem Yeter Bas
- Department of Chemistry, Bogazici University, Istanbul 34342, Turkey
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Istanbul 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Istanbul 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| |
Collapse
|
6
|
Dhingra S, Gaur V, Saini V, Rana K, Bhattacharya J, Loho T, Ray S, Bajaj A, Saha S. Cytocompatible, soft and thick brush-modified scaffolds with prolonged antibacterial effect to mitigate wound infections. Biomater Sci 2022; 10:3856-3877. [PMID: 35678619 DOI: 10.1039/d2bm00245k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Biomedical device or implant-associated infections caused by pathogenic bacteria are a major clinical issue, and their prevention and/or treatment remains a challenging task. Infection-resistant antimicrobial coatings with impressive cytocompatibility offer a step towards addressing this problem. Herein, we report a new strategy for constructing highly antibacterial as well as cytocompatible mixed polymer brushes onto the surface of 3D printed scaffold made of biodegradable tartaric acid-based aliphatic polyester blends. The mixed brushes were nothing but a combination of poly(3-dimethyl-(methacryloyloxyethyl) ammonium propane sulfonate) (polyDMAPS) and poly((oligo ethylene glycol) methyl ether methacrylate) (polyPEGMA) with varying chain length (n) of the ethylene glycol unit (n = 1, 6, 11, and 21). Both homo and copolymeric brushes of polyDMAPS with polyPEGMA exhibited antibacterial efficacy against both Gram positive and Gram negative pathogens such as E. coli (Escherichia coli) and S. aureus (Staphylococcus aureus) because of the combined action of bacteriostatic effects originating from strongly hydrated layers present in zwitterionic (polyDMAPS) and hydrophilic (polyPEGMA) copolymer brushes. Interestingly, a mixed polymer brush comprising polyDMAPS and polyPEGMA (ethylene glycol chain unit of 21) at 50/50 ratio provided zero bacterial growth and almost 100% cytocompatibility (tested using L929 mouse fibroblast cells), making the brush-modified biodegradable substrate an excellent choice for an infection-resistant and cytocompatible surface. An attempt was made to understand their extraordinary performance with the help of contact angle, surface charge analysis and nanoindentation study, which revealed the formation of a hydrophilic, almost neutral, very soft surface (99.99% reduction in hardness and modulus) after modification with the mixed brushes. This may completely suppress bacterial adhesion. Animal studies demonstrated that these brush-modified scaffolds are biocompatible and can mitigate wound infections. Overall, this study shows that the fascinating combination of an infection-resistant and cytocompatible surface can be generated on biodegradable polymeric surfaces by modulating the surface hardness, flexibility and hydrophilicity by selecting appropriate functionality of the copolymeric brushes grafted onto them, making them ideal non-leaching, anti-infective, hemocompatible and cytocompatible coatings for biodegradable implants.
Collapse
Affiliation(s)
- Shaifali Dhingra
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, India.
| | - Vidit Gaur
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, India
| | - Varsha Saini
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre For Biotechnology, India
| | - Kajal Rana
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre For Biotechnology, India
| | | | - Thomas Loho
- Department of Chemical and Materials Engineering, The University of Auckland, New Zealand Institute for Minerals to Materials Research, India
| | - Sudip Ray
- Department of Chemical and Materials Engineering, The University of Auckland, New Zealand Institute for Minerals to Materials Research, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre For Biotechnology, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, India.
| |
Collapse
|
7
|
Ifra, Thattaru Thodikayil A, Saha S. Compositionally Anisotropic Colloidal Surfactant Decorated with Dual Metallic Nanoparticles as a Pickering Emulsion Stabilizer and Their Application in Catalysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23436-23451. [PMID: 35536242 DOI: 10.1021/acsami.2c03255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We aim to introduce compositionally anisotropic Janus particles, hemispheres of which was modified by hydrophilic poly(2-dimethyl amino ethyl methacrylate) [poly(DMAEMA)] brushes to display amphiphilic surfactant-type characteristics. Acquired by the electrohydrodynamic co-jetting technique, these colloidal surfactants were employed to stabilize octanol/water-based Pickering emulsion, which shows prolonged stability for more than 4 months. To explore their potential as the interfacial catalyst, iron(0) nanoparticles were incorporated in one hemisphere during electrojetting, whereas gold nanoparticles (GNPs) were patched onto the surface of the other hemisphere, which was previously modified by the poly(DMAEMA) brush. Ultimately, simultaneous rapid reduction (100% conversion in 1 min) of p-nitrophenol or methyl orange (MO) by GNPs in the aqueous phase and dechlorination of trichloroethylene (a hazardous chlorinated solvent waste) present in the octanol phase were accomplished at the organic-water interface stabilized by the Janus particles decorated by dual metallic nanoparticles. In addition, facile recovery and recyclability of the catalyst were also achieved. The novel colloidal surfactant demonstrated in this study may open up a new avenue to accomplish catalysis of several organic reactions occurring at the water-oil interface.
Collapse
Affiliation(s)
- Ifra
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | | | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
8
|
Dhingra S, Sharma S, Saha S. Infection Resistant Surface Coatings by Polymer Brushes: Strategies to Construct and Applications. ACS APPLIED BIO MATERIALS 2022; 5:1364-1390. [DOI: 10.1021/acsabm.1c01006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Shaifali Dhingra
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shivangi Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
9
|
Verma M, Rana A, Vidyasagar KEC, Kalyansundaram D, Saha S. Protein Patterning on Microtextured Polymeric Nano-brush Templates Obtained By Nanosecond Fibre Laser. Macromol Biosci 2022; 22:e2100454. [PMID: 35102705 DOI: 10.1002/mabi.202100454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/28/2022] [Indexed: 11/11/2022]
Abstract
Micropatterned polymer brushes have attracted attention in several biomedical areas, i.e., tissue engineering, protein microarray, biosensors etc., for precise arrangement of biomolecules. Herein, we report a facile and scalable approach to create microtextured polymer brushes with the ability to generate different type of protein patterns. Nanosecond fibre laser was exploited to generate micropatterns on polyPEGMA (poly(ethylene glycol) methacrylate) brush modified Ti alloy substrate. Surface initiated atom transfer radical polymerisation was employed to grow PolyPEGMA brush (11-87 nm thick) on Ti alloy surface immobilized with initiator having an initiator density (σ*) of 1.5 initiators/nm2 . Polymer brushes were then selectively laser ablated and their presence on non-textured area was confirmed by atomic force microscopy, fluorescence microscopy and X-ray photoelectron spectroscopy. Spatial orientation of biomolecules was first achieved by non-specific protein adsorption on areas ablated by the laser, via physisorption. Further, patterned brushes of polyPEGMA were modified to activated ester that gave rise to protein conjugation specifically on non-laser ablated brush areas. Moreover, the laser ablated brush modified patterned template was also successfully utilized for generating alternate patterns of bacteria. This promising technique can be further extended to create interesting patterns of several biomolecules which are of great interest to biomedical research community. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Meenakshi Verma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Delhi, India
| | - Abhishek Rana
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, Delhi, India
| | - K E Ch Vidyasagar
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Delhi, India
| | - Dinesh Kalyansundaram
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Delhi, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Delhi, India
| |
Collapse
|
10
|
Dhingra S, Joshi A, Singh N, Saha S. Infection resistant polymer brush coating on the surface of biodegradable polyester. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111465. [DOI: 10.1016/j.msec.2020.111465] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/06/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
|
11
|
Antibacterial response of polylactide surfaces modified with hydrophilic polymer brushes. IRANIAN POLYMER JOURNAL 2019. [DOI: 10.1007/s13726-019-00717-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Carsí M, Sanchis MJ, Vallejos S, García FC, García JM. Molecular Dynamics of Functional Azide-Containing Acrylic Films. Polymers (Basel) 2018; 10:E859. [PMID: 30960784 PMCID: PMC6403574 DOI: 10.3390/polym10080859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/18/2018] [Accepted: 07/31/2018] [Indexed: 01/08/2023] Open
Abstract
A report on the syntheses, thermal, mechanical and dielectric characterizations of two novel polymeric acrylic materials with azide groups in their pendant structures is presented. Having the same general structure, these polymers differ in length of oxyethylene units in the pendant chain [-CONH-CH₂CH₂-(O-CH₂CH₂)nN₃], where n is 1 (poly(N-(2-(2-azidoethoxy)ethyl)methacrylamide), PAzMa1) or 2 (poly(N-2-(2-(2-azidoethoxy)ethoxy)ethyl)methacrylamide), PAzMa2), leading with changes in their dynamics. As the thermal decomposition of the azide group is observed above 100 °C, dielectric analysis was carried out in the temperature range of -120 °C to 100 °C. Dielectric spectra of both polymers exhibit in the glassy state two relaxations labelled in increasing order of temperature as γ- and β-processes, respectively. At high temperatures and low frequencies, the spectra are dominated by ohmic conductivity and interfacial polarization effects. Both, dipolar and conductive processes were characterized by using different models. Comparison of the dielectric activity obtained for PAzMa1 and PAzMa2 with those reported for crosslinked poly(2-ethoxyethylmethacrylate) (CEOEMA) was performed. The analysis of the length of oxyethylene pendant chain and the effect of the methacrylate or methacrylamide nature on the dynamic mobility was analysed.
Collapse
Affiliation(s)
- Marta Carsí
- Instituto de Automática e Informática Industrial, Departamento de Termodinámica Aplicada, Universitat Politècnica de Valencia, 46022 Valencia, Spain.
| | - Maria J Sanchis
- Instituto Tecnológico de la Energía, Departamento de Termodinámica Aplicada, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain.
| | - Saul Vallejos
- Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Félix C García
- Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| | | |
Collapse
|
13
|
Yaakov N, Chaikin Y, Wexselblatt E, Tor Y, Vaskevich A, Rubinstein I. Application of Surface Click Reactions to Localized Surface Plasmon Resonance (LSPR) Biosensing. Chemistry 2017; 23:10148-10155. [DOI: 10.1002/chem.201701511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Noga Yaakov
- Department of Materials and Interfaces Weizmann Institute of Science Rehovot 7610001 Israel
| | - Yulia Chaikin
- Department of Materials and Interfaces Weizmann Institute of Science Rehovot 7610001 Israel
| | - Ezequiel Wexselblatt
- Department of Chemistry and Biochemistry University of California San Diego, La Jolla California 92093 USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry University of California San Diego, La Jolla California 92093 USA
| | - Alexander Vaskevich
- Department of Materials and Interfaces Weizmann Institute of Science Rehovot 7610001 Israel
| | - Israel Rubinstein
- Department of Materials and Interfaces Weizmann Institute of Science Rehovot 7610001 Israel
| |
Collapse
|
14
|
Yuksekdag YN, Gevrek TN, Sanyal A. Diels-Alder "Clickable" Polymer Brushes: A Versatile Catalyst-Free Conjugation Platform. ACS Macro Lett 2017; 6:415-420. [PMID: 35610862 DOI: 10.1021/acsmacrolett.7b00041] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Polymeric brushes provide an attractive functional interface for a variety of applications in materials and biomedical sciences. Facile access to functionalized brushes can be realized through effective postpolymerization functionalization of reactive brushes. Over the past decade, efficient chemical transformations based on various "click" reactions have been employed for functionalization of polymeric brushes. This paper reports the first example of utilization of the Diels-Alder cycloaddition reaction based functionalization strategy that allows efficient conjugation of maleimide-containing molecules onto furan-containing polymer brushes under mild and reagent-free conditions. Polymers incorporating furan groups as side chains are "grafted from" silicon oxide surfaces and investigated toward their functionalization. Brushes are fabricated using atom transfer radical polymerization with varying amounts of furfuryl methacrylate to enable control over extent of functionalization, along with a poly(ethylene glycol) chain containing methacrylate as a comonomer to impart hydrophilic and antibiofouling characteristics. Functionalization of these reactive brushes were investigated through the immobilization of a model compound N-ethylmaleimide, a fluorescent dye BODIPY-maleimide, and a maleimide-containing biotin based ligand to direct the immobilization of streptavidin-coated quantum dots.
Collapse
Affiliation(s)
- Yasemin Nursel Yuksekdag
- Department of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Tugce Nihal Gevrek
- Department of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Amitav Sanyal
- Department of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul 34342, Turkey
| |
Collapse
|
15
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 610] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Clickable Polymeric Coating for Glycan Microarrays. Methods Mol Biol 2016. [PMID: 27873200 DOI: 10.1007/978-1-4939-6584-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The interaction of carbohydrates with a variety of biological targets, including antibodies, proteins, viruses, and cells are of utmost importance in many aspects of biology. Glycan microarrays are increasingly used to determine the binding specificity of glycan-binding proteins. In this study, a novel microarray support is reported for the fabrication of glycan arrays that combines the higher sensitivity of a layered Si-SiO2 surface with a novel polymeric coating easily modifiable by subsequent click reaction. The alkyne-containing copolymer, adsorbed from an aqueous solution, produces a coating by a single step procedure and serves as a soft, tridimensional support for the oriented immobilization of carbohydrates via azide/alkyne Cu (I) catalyzed "click" reaction. The advantages of a functional 3D polymer coating making use of a click chemistry immobilization are combined with the high fluorescence sensitivity and superior signal-to-noise ratio of a Si-SiO2 substrate. The proposed approach enables the attachment of complex sugars on a silicon oxide surface by a method that does not require skilled personnel and chemistry laboratories.
Collapse
|
17
|
Liu P, Song J. Well-controlled ATRP of 2-(2-(2-Azidoethyoxy)ethoxy)ethyl Methacrylate for High-density Click Functionalization of Polymers and Metallic Substrates. JOURNAL OF POLYMER SCIENCE. PART A, POLYMER CHEMISTRY 2016; 54:1268-1277. [PMID: 27616816 PMCID: PMC5016033 DOI: 10.1002/pola.27969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The combination of atom transfer radical polymerization (ATRP) and click chemistry has created unprecedented opportunities for controlled syntheses of functional polymers. ATRP of azido-bearing methacrylate monomers (e.g. 2-(2-(2-azidoethyoxy)ethoxy)ethyl methacrylate, AzTEGMA), however, proceeded with poor control at commonly adopted temperature of 50 °C, resulting in significant side reactions. By lowering reaction temperature and monomer concentrations, well-defined pAzTEGMA with significantly reduced polydispersity were prepared within a reasonable timeframe. Upon subsequent functionalization of the side chains of pAzTEGMA via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry, functional polymers with number-average molecular weights (Mn) up to 22 kDa with narrow polydispersity (PDI < 1.30) were obtained. Applying the optimized polymerization condition, we also grafted pAzTEGMA brushes from Ti6Al4 substrates by surface-initiated ATRP (SI-ATRP), and effectively functionalized the azide-terminated side chains with hydrophobic and hydrophilic alkynes by CuAAC. The well-controlled ATRP of azido-bearing methacrylates and subsequent facile high-density functionalization of the side chains of the polymethacrylates via CuAAC offers a useful tool for engineering functional polymers or surfaces for diverse applications.
Collapse
Affiliation(s)
| | - Jie Song
- Department of Orthopedics & Physical Rehabilitation, Department of Cell & Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
18
|
Pretzel D, Sandmann B, Hartlieb M, Vitz J, Hölzer S, Fritz N, Moszner N, Schubert US. Biological evaluation of 1,2,3-triazole-based polymers for potential applications as hard tissue material. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27676] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- David Pretzel
- Laboratory for Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Benedict Sandmann
- Laboratory for Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Matthias Hartlieb
- Laboratory for Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Jürgen Vitz
- Laboratory for Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Stefan Hölzer
- Laboratory for Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Nicole Fritz
- Laboratory for Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Norbert Moszner
- Ivoclar Vivadent AG; Bendererstrasse 2 FL-9494 Schaan Liechtenstein
| | - Ulrich S. Schubert
- Laboratory for Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| |
Collapse
|
19
|
Krishnamoorthy M, Hakobyan S, Ramstedt M, Gautrot JE. Surface-initiated polymer brushes in the biomedical field: applications in membrane science, biosensing, cell culture, regenerative medicine and antibacterial coatings. Chem Rev 2014; 114:10976-1026. [PMID: 25353708 DOI: 10.1021/cr500252u] [Citation(s) in RCA: 393] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mahentha Krishnamoorthy
- Institute of Bioengineering and ‡School of Engineering and Materials Science, Queen Mary University of London , Mile End Road, London E1 4NS, United Kingdom
| | | | | | | |
Collapse
|
20
|
Gevrek TN, Bilgic T, Klok HA, Sanyal A. Maleimide-Functionalized Thiol Reactive Copolymer Brushes: Fabrication and Post-Polymerization Modification. Macromolecules 2014. [DOI: 10.1021/ma5015098] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Tugce Nihal Gevrek
- Department
of Chemistry, Bogazici University, Bebek, 34342, Istanbul, Turkey
| | - Tugba Bilgic
- Institut
des Matériaux and Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, Ecole Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut
des Matériaux and Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, Ecole Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Amitav Sanyal
- Department
of Chemistry, Bogazici University, Bebek, 34342, Istanbul, Turkey
| |
Collapse
|
21
|
Doyle RP, Chen X, Macrae M, Srungavarapu A, Smith LJ, Gopinadhan M, Osuji CO, Granados-Focil S. Poly(ethylenimine)-Based Polymer Blends as Single-Ion Lithium Conductors. Macromolecules 2014. [DOI: 10.1021/ma402325a] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Robert P. Doyle
- Gustaf
H. Carlson School of Chemistry and Biochemistry, Clark University, 950
Main Street, Worcester, Massachusetts 01610, United States
| | - Xiaorui Chen
- Gustaf
H. Carlson School of Chemistry and Biochemistry, Clark University, 950
Main Street, Worcester, Massachusetts 01610, United States
| | - Max Macrae
- Gustaf
H. Carlson School of Chemistry and Biochemistry, Clark University, 950
Main Street, Worcester, Massachusetts 01610, United States
| | - Abhijit Srungavarapu
- Gustaf
H. Carlson School of Chemistry and Biochemistry, Clark University, 950
Main Street, Worcester, Massachusetts 01610, United States
| | - Luis J. Smith
- Gustaf
H. Carlson School of Chemistry and Biochemistry, Clark University, 950
Main Street, Worcester, Massachusetts 01610, United States
| | - Manesh Gopinadhan
- Department
of Chemical and Environmental Engineering, Yale University, 9 Hillhouse
Avenue, New Haven, Connecticut 06520, United States
| | - Chinedum O. Osuji
- Department
of Chemical and Environmental Engineering, Yale University, 9 Hillhouse
Avenue, New Haven, Connecticut 06520, United States
| | - Sergio Granados-Focil
- Gustaf
H. Carlson School of Chemistry and Biochemistry, Clark University, 950
Main Street, Worcester, Massachusetts 01610, United States
| |
Collapse
|
22
|
Thomas A, Niederer K, Wurm F, Frey H. Combining oxyanionic polymerization and click-chemistry: a general strategy for the synthesis of polyether polyol macromonomers. Polym Chem 2014. [DOI: 10.1039/c3py01078c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|