1
|
Wong JHM, Sim B, Owh C, Ow V, Teo VTA, Ng EWL, Boo YJ, Lin Q, Lim JYC, Loh XJ, Goh R. Modular Synthetic Platform to Tailor Therapeutic-Specific Delivery in Injectable Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65741-65753. [PMID: 39561760 DOI: 10.1021/acsami.4c15889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Injectable thermoresponsive hydrogels (thermogels), valued for their conformability and minimal invasiveness, are increasingly used as in situ forming implants for drug delivery and as regenerative scaffolds. These gels exhibit sol-to-gel phase transitions at body temperature. As localized depots and scaffolds, these gels determine the chemical and mechanical environments and could dramatically influence the release kinetics of drugs or the fate of cells. Current synthetic approaches for thermogels, however, often limit the ability to fully exploit interactions between the thermogel matrix and the encapsulated agent. In this study, we introduce a modular synthetic platform for creating a library of functionalized polyurethane thermogels that enables customization of gelation properties and intermolecular interactions. These thermogels can exhibit a wide range of stiffness, offer complementary ionic interactions, and enhance hydrophobic interactions and hydrogen bonding. By leveraging these tunable interactions between the thermogelling scaffold, functional groups, and encapsulated agents, we achieved sustained and controlled release, from days to over 6 months, for both low and high molecular weight drug analogs. Release profiles varied from monophasic to biphasic and triphasic depending on the compatibility between the thermogel properties and the encapsulated agents. The design rules identified here support the development of drug-specific formulations, facilitating precise, sustained, and modulated release tailored to therapeutic needs. Beyond providing an adaptable strategy for customizable injectable drug depots, this synthetic strategy lays the groundwork for future iterations of multi stimuli-responsive thermogels with enhanced bioactivity, advancing the potential for customizable, biointeractive therapeutic systems.
Collapse
Affiliation(s)
- Joey Hui Min Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Belynn Sim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
| | - Cally Owh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Biomedical Engineering, National University of Singapore (NUS), 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Valerie Ow
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Biomedical Engineering, National University of Singapore (NUS), 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Vincent Ting An Teo
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
| | - Elson Wei Long Ng
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
| | - Yi Jian Boo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Qianyu Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Jason Y C Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive, Singapore 117576, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive, Singapore 117576, Singapore
| | - Rubayn Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| |
Collapse
|
2
|
Mahajan P, Bera MB. Application of free volume concept and manipulation of network structure parameters for optimum loading of gallic acid in the modified kutki (Panicum sumatrense) millet starch hydrogel matrix. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
3
|
Richbourg NR, Peppas NA. Solute diffusion and partitioning in multi-arm poly(ethylene glycol) hydrogels. J Mater Chem B 2023; 11:377-388. [PMID: 36511476 DOI: 10.1039/d2tb02004a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Controlling solute transport in hydrogels is critical for numerous chemical separation applications, tissue engineering, and drug delivery systems. In previous review work, we have pointed out that proposed theoretical models and associated experiments tend to oversimplify the influence of the hydrogel structure on solute transport by addressing only the effects of the polymer volume fraction and mesh size of the networks on solute transport. Here, we reexamine these models by experimenting with a library of multi-arm poly(ethylene glycol) (PEG) hydrogels with simultaneous variations in four independent structural parameters. Standardized, high-throughput fluorescence recovery after photobleaching (FRAP) experiments in hydrogels characterize size-dependent solute diffusion and partitioning in each hydrogel formulation. Solute diffusivity dependence on junction functionality shows an influence from network geometry that is not addressed by mesh size-based models, experimentally validating the use of the geometry-responsive mesh radius in solute diffusivity modeling. Furthermore, the Richbourg-Peppas swollen polymer network (SPN) model accurately predicts how three of the four structural parameters affect solute diffusivity in hydrogels. Comparison with the large pore effective medium (LPEM) model showed that the SPN model better predicts solute size and hydrogel structure effects on diffusivity. This study provides a framework for investigating solute transport in hydrogels that will continue to improve hydrogel design for tissue engineering and drug delivery.
Collapse
Affiliation(s)
- Nathan R Richbourg
- Department of Biomedical Engineering, University of Texas, Austin, TX, 78712, USA.
| | - Nicholas A Peppas
- Department of Biomedical Engineering, University of Texas, Austin, TX, 78712, USA. .,McKetta Department of Chemical Engineering, University of Texas, Austin, TX, 78712, USA.,Division of Molecular Therapeutics and Drug Delivery, College of Pharmacy, University of Texas, Austin, TX, 78712, USA.,Departments of Surgery and Pediatrics, Dell Medical School, University of Texas, Austin, TX, 78712, USA
| |
Collapse
|
4
|
Hawthorne D, Pannala A, Sandeman S, Lloyd A. Sustained and targeted delivery of hydrophilic drug compounds: A review of existing and novel technologies from bench to bedside. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Responsive Hyaluronic Acid–Ethylacrylamide Microgels Fabricated Using Microfluidics Technique. Gels 2022; 8:gels8090588. [PMID: 36135299 PMCID: PMC9498840 DOI: 10.3390/gels8090588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Volume changes of responsive microgels can probe interactions between polyelectrolytes and species of opposite charges such as peptides and proteins. We have investigated a microfluidics method to synthesize highly responsive, covalently crosslinked, hyaluronic acid microgels for such purposes. Sodium hyaluronate (HA), pre-modified with ethylacrylamide functionalities, was crosslinked in aqueous droplets created with a microfluidic technique. We varied the microgel properties by changing the degree of modification and concentration of HA in the reaction mixture. The degree of modification was determined by 1H NMR. Light microscopy was used to investigate the responsiveness of the microgels to osmotic stress in aqueous saline solutions by simultaneously monitoring individual microgel species in hydrodynamic traps. The permeability of the microgels to FITC-dextrans of molecular weights between 4 and 250 kDa was investigated using confocal laser scanning microscopy. The results show that the microgels were spherical with diameters between 100 and 500 µm and the responsivity tunable by changing the degree of modification and the HA concentration. Microgels were fully permeable to all investigated FITC-dextran probes. The partitioning to the microgel from an aqueous solution decreased with the increasing molecular weight of the probe, which is in qualitative agreement with theories of homogeneous gel networks.
Collapse
|
6
|
Zheng Y, Dou J, Wang Y, Zhu L, Yao G, Kim YH, Radke CJ, Wu JY. Sustained Release of a Polymeric Wetting Agent from a Silicone-Hydrogel Contact Lens Material. ACS OMEGA 2022; 7:29223-29230. [PMID: 36033690 PMCID: PMC9404521 DOI: 10.1021/acsomega.2c03310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Uptake and release kinetics are investigated of a dilute aqueous polymeric-surfactant wetting agent, (ethylene oxide)45-(butylene oxide)10 copolymer, also referred to as poly(oxyethylene)-co-poly(oxybutylene), impregnated into a newly designed silicone-hydrogel lens material. Transient scanning concentration profiles of the fluorescently tagged polymeric surfactant follow Fick's second law with a diffusion coefficient near 10-11 cm2/s, a value 3-4 orders smaller than that of the free surfactant in bulk water. The Nernst partition coefficient of the tagged polymeric wetting agent, determined by fluorescence microscopy and by methanol extraction, is near 350, a very large value. Back-extraction of the polymeric-surfactant wetting agent releases only ∼20% of the loaded amount after soaking the fully loaded lens for over 7 days. The remaining ∼80% is irreversibly bound in the lens matrix. Reverse-phase liquid chromatography of the lens-loaded and lens-extracted surfactant demonstrates that the released wetting agent is more hydrophilic with a higher polarity. Aqueous poly(oxyethylene)-co-poly(oxybutylene) is hypothesized to attach strongly to the lens matrix, most likely to the lens silicone domains. Strong binding leads to slow transient diffusion, to large uptake, and to significant irreversible retention. These characteristics indicate the suitability of using a poly(oxyethylene)-co-poly(oxybutylene) nonionic polymeric surfactant to maintain enhanced lens wettability over time. Methodology and findings from this study provide useful insights for designing sustained-release contact-lens wetting agents and materials.
Collapse
Affiliation(s)
- Ying Zheng
- Alcon
Research LLC, 11460 Johns
Creek Parkway, Duluth, Georgia 30097, United States
| | - Jinbo Dou
- Alcon
Research LLC, 11460 Johns
Creek Parkway, Duluth, Georgia 30097, United States
| | - Yan Wang
- Alcon
Research LLC, 11460 Johns
Creek Parkway, Duluth, Georgia 30097, United States
| | - Lu Zhu
- Alcon
Research LLC, 11460 Johns
Creek Parkway, Duluth, Georgia 30097, United States
| | - George Yao
- Alcon
Research LLC, 11460 Johns
Creek Parkway, Duluth, Georgia 30097, United States
- Alcon
Research LLC, 6201 South
Freeway, Fort Worth, Texas 76134, United States
| | - Young Hyun Kim
- Alcon
Research LLC, 11460 Johns
Creek Parkway, Duluth, Georgia 30097, United States
- Chemical
and Biomolecular Engineering Department, University of California, Berkeley, California 94720, United States
- Herbert
Wertheim School of Optometry & Vision Science, University of California, Berkeley, California 94720, United States
| | - Clayton J. Radke
- Chemical
and Biomolecular Engineering Department, University of California, Berkeley, California 94720, United States
- Herbert
Wertheim School of Optometry & Vision Science, University of California, Berkeley, California 94720, United States
| | - James Yuliang Wu
- Alcon
Research LLC, 11460 Johns
Creek Parkway, Duluth, Georgia 30097, United States
- Alcon
Research LLC, 6201 South
Freeway, Fort Worth, Texas 76134, United States
| |
Collapse
|
7
|
Moncure PJ, Simon ZC, Millstone JE, Laaser JE. Relationship between Gel Mesh and Particle Size in Determining Nanoparticle Diffusion in Hydrogel Nanocomposites. J Phys Chem B 2022; 126:4132-4142. [PMID: 35609342 DOI: 10.1021/acs.jpcb.2c00771] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The diffusion of poly(ethylene glycol) methyl ether thiol (PEGSH)-functionalized gold nanoparticles (NPs) was measured in polyacrylamide gels with various cross-linking densities. The molecular weight of the PEGSH ligand and particle core size were both varied to yield particles with hydrodynamic diameters ranging from 7 to 21 nm. The gel mesh size was varied from approximately 36 to 60 nm by controlling the cross-linking density of the gel. Because high-molecular-weight ligands are expected to yield more compressible particles, we expected the diffusion constants of the NPs to depend on their hard/soft ratios (where the hard component of the particle consists of the particle core and the soft component of the particle consists of the ligand shell). However, our measurements revealed that NP diffusion coefficients resulted primarily from changes in the overall hydrodynamic diameter and not the ratio of particle core size to ligand size. Across all particles and gels, we found that the diffusion coefficient was well predicted by the confinement ratio calculated from the diameter of the particle and an estimate of the gel mesh size obtained from the elastic blob model and was well described using a hopping model for nanoparticle diffusion. These results suggest that the elastic blob model provides a reasonable estimate of the mesh size that particles "see" as they diffuse through the gel. This work brings new insights into the factors that dictate how NPs move through polymer gels and will inform the development of hydrogel nanocomposites for applications such as drug delivery in heterogeneous, viscoelastic biological materials.
Collapse
Affiliation(s)
- Paige J Moncure
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zoe C Simon
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jill E Millstone
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jennifer E Laaser
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
8
|
Quantifying How Drug-Polymer Interaction and Volume Phase Transition Modulate the Drug Release Kinetics from Core-Shell Microgels. Int J Pharm 2022; 622:121838. [PMID: 35597392 DOI: 10.1016/j.ijpharm.2022.121838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/23/2022] [Accepted: 05/14/2022] [Indexed: 12/30/2022]
Abstract
This paper presents a simple experimental-informed theory describing the drug release process from a temperature-responsive core-shell microgel. In stark contrast to the commonly employed power-law models, we couple electric, hydrophobic, and steric factors to characterize the impact of drug-polymer pair interaction on the release kinetics. To this end, we also propose a characteristic time, depicting the drug release process as an interplay between kinetics and thermodynamics. In some instances, the negative correlation between the diffusivity and the (thermodynamics) drug-polymer interaction renders the drug release time non-trivial. In conclusion, our theory establishes a mechanistic understanding of the drug release process, exploring the effect of (hydrophobic adhesion) attractive and (steric exclusion) repulsive pair interactions between the drugs and the microgel in the presence of temperature-induced volume phase transition.
Collapse
|
9
|
Rajendran B, Chen X, Li Z, Zhan Z, Goh KB. How molecular interactions tune the characteristic time of nanocomposite colloidal sensors. J Colloid Interface Sci 2022; 616:668-678. [PMID: 35245793 DOI: 10.1016/j.jcis.2022.02.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/19/2022]
Abstract
HYPOTHESIS Mass transport critically controls the performance of colloidal metal-polymer sensors. We hypothesize that molecular-level pair interactions, such as electric, steric, and specific binding effects, govern the mass transport and, in return, the characteristic time of these sensors. THEORY Here we present a simple theory guided by experimental data to examine the sensing performance of two usually encountered archetypal metal-polymer sensors, namely (1) core-shell and (2) yolk-shell architectures. For this purpose, we use the static reactive density functional theory framework, determining how (i) charge, (ii) size, and (iii) non-covalent binding factors modulate the characteristic time. FINDINGS We show how an interplay between diffusivity and partitioning governs the sensing time of the sensors, where an anti-correlation cancellation between them renders the time non-trivial. Our study demonstrates that the convoluted substrate-hydrogel shell interaction controls the characteristic time of these colloidal sensors, especially when the sensors are in a collapsed state. Notably, the substrates with a high dipole moment tend to equilibrate greatly, but undesirably, at the shell-solution interface. With this, we encourage the formation of a metastable sorption state.
Collapse
Affiliation(s)
- Barathan Rajendran
- School of Engineering, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Xiao Chen
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Republic of Singapore
| | - Zhong Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Republic of Singapore; Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Zhixin Zhan
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
| | - K B Goh
- School of Engineering, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
10
|
Richbourg NR, Peppas NA. High-Throughput FRAP Analysis of Solute Diffusion in Hydrogels. Macromolecules 2021; 54:10477-10486. [DOI: 10.1021/acs.macromol.1c01752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nathan R. Richbourg
- Department of Biomedical Engineering, University of Texas, Austin, Texas 78712, United States
| | - Nicholas A. Peppas
- Department of Biomedical Engineering, University of Texas, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, University of Texas, Austin, Texas 78712, United States
- Division of Molecular Therapeutics and Drug Delivery, College of Pharmacy, University of Texas, Austin, Texas 78712, United States
- Departments of Surgery and Pediatrics, Dell Medical School, University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Richbourg NR, Ravikumar A, Peppas NA. Solute Transport Dependence on 3D Geometry of Hydrogel Networks. MACROMOL CHEM PHYS 2021; 222:2100138. [PMID: 34456531 PMCID: PMC8389770 DOI: 10.1002/macp.202100138] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Indexed: 11/11/2022]
Abstract
Hydrogels are used in drug delivery applications, chromatography, and tissue engineering to control the rate of solute transport based on solute size and hydrogel-solute affinity. Ongoing modeling efforts to quantify the relationship between hydrogel properties, solute properties, and solute transport contribute toward an increasingly efficient hydrogel design process and provide fundamental insight into the mechanisms relating hydrogel structure and function. However, here we clarify previous conclusions regarding the use of mesh size in hydrogel transport models. We use 3D geometry and hydrogel network visualizations to show that mesh size and junction functionality both contribute to the mesh radius, which determines whether a solute can diffuse within a hydrogel. Using mesh radius instead of mesh size to model solute transport in hydrogels will correct junction functionality-dependent modeling errors, improving hydrogel design predictions and clarifying mechanisms of solute transport in hydrogels.
Collapse
Affiliation(s)
- Nathan R. Richbourg
- Department of Biomedical Engineering, University of Texas, Austin, TX 78712, USA
| | - Akhila Ravikumar
- Department of Biomedical Engineering, University of Texas, Austin, TX 78712, USA
| | - Nicholas A. Peppas
- Department of Biomedical Engineering, University of Texas, Austin, TX 78712, USA
- McKetta Department of Chemical Engineering, University of Texas, Austin, TX 78712, USA
- Division of Molecular Therapeutics and Drug Delivery, College of Pharmacy, University of Texas, Austin, TX 78712, USA
- Departments of Surgery and Pediatrics, Dell Medical School, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
12
|
Toffoletto N, Salema-Oom M, Anguiano Igea S, Alvarez-Lorenzo C, Saramago B, Serro AP. Drug-Loaded Hydrogels for Intraocular Lenses with Prophylactic Action against Pseudophakic Cystoid Macular Edema. Pharmaceutics 2021; 13:976. [PMID: 34203367 PMCID: PMC8309109 DOI: 10.3390/pharmaceutics13070976] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 01/19/2023] Open
Abstract
Pseudophakic cystoid macular edema (PCME), caused by chronic inflammation, is the most common cause of visual impairment in the medium-term after cataract surgery. Therefore, the prophylactic topical administration of combined steroidal and non-steroidal anti-inflammatory drugs is commonly done. Drug-eluting intraocular lenses (IOLs) gained interest as an efficient way to overcome the compliance issues related to the use of ocular drops without the need for additional surgical steps. The incorporation of functional monomers and molecular imprinting were herein applied to design hydrogels suitable as IOLs and able to co-deliver steroidal (dexamethasone sodium phosphate) and non-steroidal (bromfenac sodium) drugs. The incorporation of N-(2-aminopropyl) methacrylamide (APMA) increased the drug uptake and improved the in vitro release kinetics. Imprinting with bromfenac resulted in a decreased drug release due to permanent drug bonding, while imprinting with dexamethasone increased the amount of dexamethasone released after dual-drug loading. The application of a mathematical model to predict the in vivo drug release behavior suggests the feasibility of achieving therapeutic drug concentrations of bromfenac and dexamethasone in the aqueous humor for about 2 and 8 weeks, respectively, which is compatible with the current topical prophylaxis after cataract surgery.
Collapse
Affiliation(s)
- Nadia Toffoletto
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Avenue Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
| | - Madalena Salema-Oom
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal;
| | - Soledad Anguiano Igea
- HGBeyond Materials Science S.L., Edificio EMPRENDIA, 15782 Santiago de Compostela, Spain;
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I + D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Benilde Saramago
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Avenue Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
| | - Ana Paula Serro
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Avenue Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal;
| |
Collapse
|
13
|
Zhao C, Si Y, Zhu S, Bradley K, Taha AY, Pan T, Sun G. Diffusion of Protein Molecules through Microporous Nanofibrous Polyacrylonitrile Membranes. ACS APPLIED POLYMER MATERIALS 2021; 3:1618-1627. [PMID: 34541542 PMCID: PMC8445001 DOI: 10.1021/acsapm.0c01394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Porous nanofibrous membranes have ultrahigh specific surface areas and could be broadly employed in protein purification, enzyme immobilization, and biosensors with enhanced selectivity, sensitivity, and efficiency. However, large biomolecules, such as proteins, have hindered diffusion behavior in the micro-porous media, significantly reducing the benefits provided by the nanofibrous membranes. The study of protein diffusion in polyacrylonitrile (PAN) nanofibrous membranes produced under varied humidity and polymer concentration of electrospinning revealed that heterogeneous structures of the nanofibrous membranes possess much smaller effective pore sizes than the measured pore sizes, which significantly affects the diffusion of large molecules through the system though sizes of proteins and pH conditions also have great impacts. Only when the measured membrane pore size is at least 1000 times higher than the protein size, the diffusion behavior of the protein is predictable in the system. The results provide insights into the design and applications of proper nanofibrous materials for improved applications in protein purification and immobilizations.
Collapse
Affiliation(s)
- Cunyi Zhao
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA
| | - Yang Si
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA
| | - Shenghan Zhu
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA
| | - Kevin Bradley
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA
| | - Ameer Y Taha
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
| | - Tingrui Pan
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Gang Sun
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA
| |
Collapse
|
14
|
Steinegger A, Wolfbeis OS, Borisov SM. Optical Sensing and Imaging of pH Values: Spectroscopies, Materials, and Applications. Chem Rev 2020; 120:12357-12489. [PMID: 33147405 PMCID: PMC7705895 DOI: 10.1021/acs.chemrev.0c00451] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 12/13/2022]
Abstract
This is the first comprehensive review on methods and materials for use in optical sensing of pH values and on applications of such sensors. The Review starts with an introduction that contains subsections on the definition of the pH value, a brief look back on optical methods for sensing of pH, on the effects of ionic strength on pH values and pKa values, on the selectivity, sensitivity, precision, dynamic ranges, and temperature dependence of such sensors. Commonly used optical sensing schemes are covered in a next main chapter, with subsections on methods based on absorptiometry, reflectometry, luminescence, refractive index, surface plasmon resonance, photonic crystals, turbidity, mechanical displacement, interferometry, and solvatochromism. This is followed by sections on absorptiometric and luminescent molecular probes for use pH in sensors. Further large sections cover polymeric hosts and supports, and methods for immobilization of indicator dyes. Further and more specific sections summarize the state of the art in materials with dual functionality (indicator and host), nanomaterials, sensors based on upconversion and 2-photon absorption, multiparameter sensors, imaging, and sensors for extreme pH values. A chapter on the many sensing formats has subsections on planar, fiber optic, evanescent wave, refractive index, surface plasmon resonance and holography based sensor designs, and on distributed sensing. Another section summarizes selected applications in areas, such as medicine, biology, oceanography, bioprocess monitoring, corrosion studies, on the use of pH sensors as transducers in biosensors and chemical sensors, and their integration into flow-injection analyzers, microfluidic devices, and lab-on-a-chip systems. An extra section is devoted to current challenges, with subsections on challenges of general nature and those of specific nature. A concluding section gives an outlook on potential future trends and perspectives.
Collapse
Affiliation(s)
- Andreas Steinegger
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Otto S. Wolfbeis
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, D-93040 Regensburg, Germany
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| |
Collapse
|
15
|
Multi-region finite element modelling of drug release from hydrogel based ophthalmic lenses. Math Biosci 2020; 331:108497. [PMID: 33098846 DOI: 10.1016/j.mbs.2020.108497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/28/2022]
Abstract
Understanding the way in which drug is released from drug carrying hydrogel based ophthalmic lenses aids in the development of efficient ophthalmic drug delivery. Various solute-polymer interactions affect solute diffusion within hydrogels as well as hydrogel-bulk partitioning. Additionally, surface modifications or coatings may add to resistance of mass transfer across the hydrogel interface. It is necessary to consider both interfacial resistances as well as the appropriate driving force when characterizing interface flux. Such a driving force is induced by a difference in concentration which deviates from equilibrium conditions. We present a Galerkin finite element approach for solute transport in hydrogels which accounts for diffusion within the gel, storage effects due to polymer-solute interaction, as well as partitioning and mass transfer resistance effects at the interface. The approach is formulated using a rotational symmetric model to account for realistic geometry. We show that although the resulting global system is not symmetric in the case of partitioning, it is similar to a symmetric negative semidefinite system. Thus, it has non-positive real eigenvalues and is coercive, ensuring the validity of the finite element formulation as well as the numerical stability of the implicit backward Euler time integration method employed. Two models demonstrating this approach are presented and verified with release experimental data. The first is the release of moxifloxacin from intraocular lenses (IOLs) plasma grafted with different polyacrylates. The second accounts for both loading as well as the release of diclofenac from disc shaped IOL material loaded for varied time periods and temperature.
Collapse
|
16
|
Mourdoukoutas AP, Grist SM, Herr AE. Rapid electrotransfer probing for improved detection sensitivity in in-gel immunoassays. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4638-4648. [PMID: 33030469 PMCID: PMC7552878 DOI: 10.1039/d0ay01203c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Protein electrotransfer in conventional western blotting facilitates detection of size-separated proteins by diffusive immunoprobing, as analytes are transferred from a small-pore sizing gel to a blotting membrane for detection. This additional transfer step can, however, impair detection sensitivity through protein losses and confound protein localization. To overcome challenges associated with protein transfer, in-gel immunoassays immobilize target proteins to the hydrogel matrix for subsequent in-gel immunoprobing. Yet, detection sensitivity in diffusive immunoprobing of hydrogels is determined by the gel pore size relative to the probe size, and in-gel immunoprobing results in (i) reduced in-gel probe concentration compared to surrounding free-solution, and (ii) slow in-gel probe transfer compared to immunocomplex dissociation. Here, we demonstrate electrotransfer probing for effective and rapid immunoprobing of in-gel immunoassays. Critically, probe (rather than target protein) is electrotransferred from an inert, large-pore 'loading gel' to a small-pore protein sizing gel. Electric field is used as a tuneable parameter for electromigration velocity, providing electrotransfer probing with a fundamental advantage over diffusive probing. Using electrotransfer probing, we observe 6.5 ± 0.1× greater probe concentration loaded in-gel in ∼82× time reduction, and 2.7 ± 0.4× less probe concentration remaining in-gel after unloading in ∼180× time reduction (compared to diffusive probing). We then apply electrotransfer probing to detect OVA immobilized in-gel and achieve 4.1 ± 3.4× greater signal-to-noise ratio and 30× reduction in total immunoprobing duration compared to diffusive probing. We demonstrate electrotransfer probing as a substantially faster immunoprobing method for improved detection sensitivity of protein sizing in-gel immunoassays.
Collapse
Affiliation(s)
- Andoni P Mourdoukoutas
- The UC Berkeley/UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, California 94720, USA.
| | | | | |
Collapse
|
17
|
Nguyen HT, Massino M, Keita C, Salmon JB. Microfluidic dialysis using photo-patterned hydrogel membranes in PDMS chips. LAB ON A CHIP 2020; 20:2383-2393. [PMID: 32510526 DOI: 10.1039/d0lc00279h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report the fabrication of permeable membranes for microfluidic dialysis applications in poly(dimethylsiloxane) (PDMS) channels. A maskless UV projection device was used to photo-pattern long hydrogel membranes (mm-cm) with a spatial resolution of a few microns in PDMS chips integrating also micro-valves. We show in particular that multi-layer soft lithography allows one to deplete oxygen from the PDMS walls using a nitrogen gas flow and therefore makes possible in situ UV-induced polymerization of hydrogels. We also report a simple surface modification of the PDMS channels leading to strongly anchored hydrogel membranes that can withstand trans-membrane pressure drops up to 1 bar without leakages. We then measured the Darcy permeability of these membranes and estimated their cut-off by measuring the kinetics of diffusion of macromolecules of different sizes through the membrane. Finally, we illustrate the opportunities offered by such microfluidic chips for dialysis applications by observing in real time the crystallization of a model protein in a chamber of a few nanoliters.
Collapse
|
18
|
Lee JH, Youm JS, Ju HT, Kim JC. Influence of
N
‐vinyl‐2‐pyrrolidone and methacrylic acid on thermal curing process of 2‐hydroxyethyl methacrylate hydrogel. J Appl Polym Sci 2020. [DOI: 10.1002/app.48622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jung Hyun Lee
- Doosan Corporation Electro‐Materials, 10 Suji‐ro 112‐gil, Suji‐gu Yongin‐si Gyeonggi‐do 16858 Republic of Korea
| | - Je Sung Youm
- Korea Institute of Industrial Technology, 6 Cheomdangwagi‐ro 208‐gil, Buk‐gu Gwangju 61012 Republic of Korea
| | - Hyoung Tae Ju
- WINIS Co. Ltd, 19‐5 Cheomdanventureso‐ro 38‐gil, Buk‐gu Gwangju 61007 Republic of Korea
| | - Jeong Cheol Kim
- Korea Institute of Industrial Technology, 6 Cheomdangwagi‐ro 208‐gil, Buk‐gu Gwangju 61012 Republic of Korea
| |
Collapse
|
19
|
Abstract
Thermodynamic partitioning dictates solute loading and release from a hydrogel. Design of drug delivery vehicles, cell and tissue matrices, and immunoassay scaffolds that utilize hydrogel materials is informed by an understanding of the thermodynamic partitioning properties of those hydrogels. We develop aberration-compensated laser scanning confocal microscopy (AC-LSCM), a technique that can be applied to all fluorescence microscopy-based equilibrium partition coefficient measurements where the fluorescence is uniformly distributed in the reference material (e.g., many solutes in thermodynamic equilibrium). In this paper, we use AC-LSCM to measure spatially resolved in situ equilibrium partition coefficients of various fluorescently labeled solutes in single-layer and multilayer open hydrogels. In considering a dynamic material, we scrutinize solute interactions with a UV photoactive polyacrylamide gel that incorporates a benzophenone methacrylamide backbone. We observed strong agreement with an adjusted version of Ogston's ideal size-exclusion model for spatially resolved in situ equilibrium partition coefficients across a wide range of polyacrylamide hydrogel densities (R2 = 0.98). Partition coefficients of solutes differing in hydrodynamic radius were consistent with size-based theory in the photoactive hydrogels, but exceed those in unmodified polyacrylamide gels. This observation suggests a deviation from the size-exclusion model and a shift in the thermodynamic equilibrium state of the solutes toward the gel phase. AC-LSCM also resolves differential partitioning behavior of the model solute in two-layer gels, providing insight into the transport phenomena governing the partitioning in multilaminate gel structures. Furthermore, AC-LSCM identifies and quantifies depth-dependent axial aberrations that could confound quantitation, highlighting the need for the "aberration compensated" aspect of AC-LSCM.
Collapse
Affiliation(s)
- Alison Su
- The UC Berkeley/UCSF Graduate Program in Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Benjamin E. Smith
- Department of Vision Sciences, University of California Berkeley, Berkeley, California 94720, United States
| | - Amy E. Herr
- The UC Berkeley/UCSF Graduate Program in Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
20
|
Axpe E, Chan D, Offeddu GS, Chang Y, Merida D, Hernandez HL, Appel EA. A Multiscale Model for Solute Diffusion in Hydrogels. Macromolecules 2019; 52:6889-6897. [PMID: 31579160 PMCID: PMC6764024 DOI: 10.1021/acs.macromol.9b00753] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/13/2019] [Indexed: 12/27/2022]
Abstract
The number of biomedical applications of hydrogels is increasing rapidly on account of their unique physical, structural, and mechanical properties. The utility of hydrogels as drug delivery systems or tissue engineering scaffolds critically depends on the control of diffusion of solutes through the hydrogel matrix. Predicting or even modeling this diffusion is challenging due to the complex structure of hydrogels. Currently, the diffusivity of solutes in hydrogels is typically modeled by one of three main theories proceeding from distinct diffusion mechanisms: (i) hydrodynamic, (ii) free volume, and (iii) obstruction theory. Yet, a comprehensive predictive model is lacking. Thus, time and capital-intensive trial-and-error procedures are used to test the viability of hydrogel applications. In this work, we have developed a model for the diffusivity of solutes in hydrogels combining the three main theoretical frameworks, which we call the multiscale diffusion model (MSDM). We verified the MSDM by analyzing the diffusivity of dextran of different sizes in a series of poly(ethylene glycol) (PEG) hydrogels with distinct mesh sizes. We measured the subnanoscopic free volume by positron annihilation lifetime spectroscopy (PALS) to characterize the physical hierarchy of these materials. In addition, we performed a meta-analysis of literature data from previous studies on the diffusion of solutes in hydrogels. The model presented outperforms traditional models in predicting solute diffusivity in hydrogels and provides a practical approach to predicting the transport properties of solutes such as drugs through hydrogels used in many biomedical applications.
Collapse
Affiliation(s)
- Eneko Axpe
- Department
of Materials Science & Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
- Space
Biosciences Division, NASA-Ames Research Center, Moffett Field, California 94035, United States
| | - Doreen Chan
- Department
of Materials Science & Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| | - Giovanni S. Offeddu
- Department
of Biological Engineering, Massachusetts
Institute of Technology, 500 Technology Square, Cambridge, Massachusetts 02138, United States
| | - Yin Chang
- Department
of Engineering, Cambridge University, 11 JJ Thomson Ave., Cambridge CB3 0FF, U.K.
| | - David Merida
- Department
of Electricity and Electronics, University
of the Basque Country UPV/EHU, Sarriena s/n, Bilbao 48940, Spain
| | - Hector Lopez Hernandez
- Department
of Materials Science & Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| | - Eric A. Appel
- Department
of Materials Science & Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| |
Collapse
|
21
|
Optimization of intraocular lens hydrogels for dual drug release: Experimentation and modelling. Eur J Pharm Biopharm 2019; 141:51-57. [DOI: 10.1016/j.ejpb.2019.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023]
|
22
|
Rossi F, Masi M. On the ability of chromatographic mass balance to predict solute diffusivity in drug delivery systems. AIChE J 2019. [DOI: 10.1002/aic.16709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di Milano Milan Italy
| | - Maurizio Masi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di Milano Milan Italy
| |
Collapse
|
23
|
Parrish E, Caporizzo MA, Composto RJ. Network confinement and heterogeneity slows nanoparticle diffusion in polymer gels. J Chem Phys 2017; 146:203318. [DOI: 10.1063/1.4978054] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Emmabeth Parrish
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6272, USA
| | - Matthew A. Caporizzo
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6272, USA
| | - Russell J. Composto
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6272, USA
| |
Collapse
|
24
|
Controlled drug release from hydrogels for contact lenses: Drug partitioning and diffusion. Int J Pharm 2016; 515:467-475. [PMID: 27789366 DOI: 10.1016/j.ijpharm.2016.10.047] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/21/2016] [Accepted: 10/22/2016] [Indexed: 11/21/2022]
Abstract
Optimization of drug delivery from drug loaded contact lenses assumes understanding the drug transport mechanisms through hydrogels which relies on the knowledge of drug partition and diffusion coefficients. We chose, as model systems, two materials used in contact lens, a poly-hydroxyethylmethacrylate (pHEMA) based hydrogel and a silicone based hydrogel, and three drugs with different sizes and charges: chlorhexidine, levofloxacin and diclofenac. Equilibrium partition coefficients were determined at different ionic strength and pH, using water (pH 5.6) and PBS (pH 7.4). The measured partition coefficients were related with the polymer volume fraction in the hydrogel, through the introduction of an enhancement factor following the approach developed by the group of C. J. Radke (Kotsmar et al., 2012; Liu et al., 2013). This factor may be decomposed in the product of three other factors EHS, Eel and Ead which account for, respectively, hard-sphere size exclusion, electrostatic interactions, and specific solute adsorption. While EHS and Eel are close to 1, Ead>>1 in all cases suggesting strong specific interactions between the drugs and the hydrogels. Adsorption was maximal for chlorhexidine on the silicone based hydrogel, in water, due to strong hydrogen bonding. The effective diffusion coefficients, De, were determined from the drug release profiles. Estimations of diffusion coefficients of the non-adsorbed solutes D=De×Ead allowed comparison with theories for solute diffusion in the absence of specific interaction with the polymeric membrane.
Collapse
|
25
|
Liu DE, Dursch TJ, Taylor NO, Chan SY, Bregante DT, Radke CJ. Diffusion of water-soluble sorptive drugs in HEMA/MAA hydrogels. J Control Release 2016; 239:242-8. [PMID: 27565214 DOI: 10.1016/j.jconrel.2016.08.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/21/2016] [Accepted: 08/22/2016] [Indexed: 11/19/2022]
Abstract
We measure and, for the first time, theoretically predict four prototypical aqueous-drug diffusion coefficients in five soft-contact-lens material hydrogels where solute-specific adsorption is pronounced. Two-photon fluorescence confocal microscopy and UV/Vis-absorption spectrophotometry assess transient solute concentration profiles and concentration histories, respectively. Diffusion coefficients are obtained for acetazolamide, riboflavin, sodium fluorescein, and theophylline in 2-hydroxyethyl methacrylate/methacrylic acid (HEMA/MAA) copolymer hydrogels as functions of composition, equilibrium water content (30-90%), and aqueous pH (2 and 7.4). At pH2, MAA chains are nonionic, whereas at pH7.4, MAA chains are anionic (pKa≈5.2). All studied prototypical drugs specifically interact with HEMA and nonionic MAA (at pH2) moieties. Conversely, none of the prototypical drugs adsorb specifically to anionic MAA (at pH7.4) chains. As expected, diffusivities of adsorbing solutes are significantly diminished by specific interactions with hydrogel strands. Despite similar solute size, relative diffusion coefficients in the hydrogels span several orders of magnitude because of varying degrees of solute interactions with hydrogel-polymer chains. To provide a theoretical framework for the new diffusion data, we apply an effective-medium model extended for solute-specific interactions with hydrogel copolymer strands. Sorptive-diffusion kinetics is successfully described by local equilibrium and Henry's law. All necessary parameters are determined independently. Predicted diffusivities are in good agreement with experiment.
Collapse
Affiliation(s)
- D E Liu
- Chemical and Biomolecular Engineering Department, University of California, Berkeley, CA 94720, United States
| | - T J Dursch
- Chemical and Biomolecular Engineering Department, University of California, Berkeley, CA 94720, United States
| | - N O Taylor
- Chemical and Biomolecular Engineering Department, University of California, Berkeley, CA 94720, United States
| | - S Y Chan
- Chemical and Biomolecular Engineering Department, University of California, Berkeley, CA 94720, United States
| | - D T Bregante
- Chemical and Biomolecular Engineering Department, University of California, Berkeley, CA 94720, United States
| | - C J Radke
- Chemical and Biomolecular Engineering Department, University of California, Berkeley, CA 94720, United States; Vision Science Group, University of California, Berkeley, CA 94720, United States.
| |
Collapse
|
26
|
Olejniczak MN, Piechocki K, Kozanecki M, Koynov K, Adamus A, Wach RA. The influence of selected NSAIDs on volume phase transition in poly(2-(2-methoxyethoxy)ethyl methacrylate) hydrogels. J Mater Chem B 2016; 4:1528-1534. [DOI: 10.1039/c5tb02217g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogels exhibiting Volume Phase Transition (VPT) are considered as useful biomaterials for the preparation of various drug delivery systems.
Collapse
Affiliation(s)
| | - Krzysztof Piechocki
- Department of Molecular Physics
- Faculty of Chemistry
- Lodz University of Technology
- Lodz
- Poland
| | - Marcin Kozanecki
- Department of Molecular Physics
- Faculty of Chemistry
- Lodz University of Technology
- Lodz
- Poland
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research
- D-55021 Mainz
- Germany
| | - Agnieszka Adamus
- Institute of Applied Radiation Chemistry
- Lodz University of Technology
- 93-590 Lodz
- Poland
| | - Radosław A. Wach
- Institute of Applied Radiation Chemistry
- Lodz University of Technology
- 93-590 Lodz
- Poland
| |
Collapse
|
27
|
Khan M, Schuster S, Zharnikov M. Chemical derivatization and biofunctionalization of hydrogel nanomembranes for potential biomedical and biosensor applications. Phys Chem Chem Phys 2016; 18:12035-42. [DOI: 10.1039/c5cp07840g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
28
|
Rossi F, Castiglione F, Ferro M, Marchini P, Mauri E, Moioli M, Mele A, Masi M. Drug-Polymer Interactions in Hydrogel-based Drug-Delivery Systems: An Experimental and Theoretical Study. Chemphyschem 2015; 16:2818-2825. [DOI: 10.1002/cphc.201500526] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Indexed: 12/19/2022]
|
29
|
Abstract
PURPOSE We developed an in vitro model-blink cell that reproduces the mechanism of in vivo fouling of soft contact lenses. In the model-blink cell, model tear lipid directly contacts the lens surface after forced aqueous rupture, mirroring the pre-lens tear-film breakup during interblink. METHODS Soft contact lenses are attached to a Teflon holder and immersed in artificial tear solution with protein, salts, and mucins. Artificial tear-lipid solution is spread over the air/tear interface as a duplex lipid layer. The aqueous tear film is periodically ruptured and reformed by withdrawing and reinjecting tear solution into the cell, mimicking the blink-rupture process. Fouled deposits appear on the lenses after cycling, and their compositions and spatial distributions are subsequently analyzed by optical microscopy, laser ablation electrospray ionization mass spectrometry, and two-photon fluorescence confocal scanning laser microscopy. RESULTS Discrete deposit (white) spots with an average size of 20 to 300 μm are observed on the studied lenses, confirming what is seen in vivo and validating the in vitro model-blink cell. Targeted lipids (cholesterol) and proteins (albumin from bovine serum) are identified in the discrete surface deposits. Both lipid and protein occur simultaneously in the surface deposits and overlap with the white spots observed by optical microscopy. Additionally, lipid and protein penetrate into the bulk of tested silicone-hydrogel lenses, likely attributed to the bicontinuous microstructure of oleophilic silicone and hydrophilic polymer phases of the lens. CONCLUSIONS In vitro spoilation of soft contact lenses is successfully achieved by the model-blink cell confirming the tear rupture/deposition mechanism of lens fouling. The model-blink cell provides a reliable laboratory tool for screening new antifouling lens materials, surface coatings, and care solutions.
Collapse
|
30
|
Equilibrium water and solute uptake in silicone hydrogels. Acta Biomater 2015; 18:112-7. [PMID: 25725471 DOI: 10.1016/j.actbio.2015.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/05/2015] [Accepted: 02/19/2015] [Indexed: 11/21/2022]
Abstract
Equilibrium water content of and solute partitioning in silicone hydrogels (SiHys) are investigated using gravimetric analysis, fluorescence confocal laser-scanning microscopy (FCLSM), and back extraction with UV/Vis-absorption spectrophotometry. Synthesized silicone hydrogels consist of silicone monomer, hydrophilic monomer, cross-linking agent, and triblock-copolymer macromer used as an amphiphilic compatibilizer to prevent macrophase separation. In all cases, immiscibility of the silicone and hydrophilic polymers results in microphase-separated morphologies. To investigate solute uptake in each of the SiHy microphases, equilibrium partition coefficients are obtained for two hydrophilic solutes (i.e., theophylline and caffeine dissolved in aqueous phosphate-buffered saline) and two oleophilic solutes (i.e., Nile Red and Bodipy Green dissolved in silicone oil), respectively. Measured water contents and aqueous-solute partition coefficients increase linearly with increasing solvent-free hydrophilic-polymer volume fraction. Conversely, oleophilic-solute partition coefficients decrease linearly with rising solvent-free hydrophilic-polymer volume fraction (i.e., decreasing hydrophobic silicone-polymer fraction). We quantitatively predict equilibrium SiHy water and solute uptake assuming that water and aqueous solutes reside only in hydrophilic microdomains, whereas oleophilic solutes partition predominately into silicone microdomains. Predicted water contents and solute partition coefficients are in excellent agreement with experiment. Our new procedure permits a priori estimation of SiHy water contents and solute partition coefficients based solely on properties of silicone and hydrophilic homopolymer hydrogels, eliminating the need for further mixed-polymer-hydrogel experiments.
Collapse
|
31
|
Dursch TJ, Liu DE, Oh Y, Radke CJ. Fluorescent solute-partitioning characterization of layered soft contact lenses. Acta Biomater 2015; 15:48-54. [PMID: 25484335 DOI: 10.1016/j.actbio.2014.11.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/04/2014] [Accepted: 11/25/2014] [Indexed: 11/28/2022]
Abstract
Partitioning of aqueous packaging, wetting, and care-solution agents into and out of soft contact lenses (SCLs) is important for improving wear comfort and also for characterizing lens physico-chemical properties. We illustrate both features of partitioning by application of fluorescent-solute partitioning into DAILIES TOTAL1® (delefilcon A) water-gradient SCLs, which exhibit a layered structure of a silicone-hydrogel (SiHy) core sandwiched between thin surface-gel layers. Two-photon fluorescence confocal laser-scanning microscopy and attenuated total-reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) characterize the lens and assess uptake profiles of six prototypical fluorescent solutes. Comparison of solute uptake in a SiHy-core prototype lens (i.e., O2OPTIX(TM)) validates the core SiHy structure of DAILIESTOTAL1®. To establish surface-layer charge, partition coefficients and water contents are obtained for aqueous pH values of 4 and 7.4. Solute fluorescence-intensity profiles clearly confirm a layered structure for the DAILIES TOTAL1® lenses. In all cases, aqueous solute partition coefficients are greater in the surface layers than in the SiHy core, signifying higher water in the surface gels. ATR-FTIR confirms surface-layer mass water contents of 82±3%. Water uptake and hydrophilic-solute uptake at pH 4 compared with that at pH 7.4 reveal that the surface-gel layers are anionic at physiologic pH 7.4, whereas both the SiHy core and O2OPTIX™ (lotrafilcon B) are nonionic. We successfully confirm the layered structure of DAILIES TOTAL1®, consisting of an 80-μm-thick SiHy core surrounded by 10-μm-thick polyelectrolyte surface-gel layers of significantly greater water content and aqueous solute uptake compared with the core. Accordingly, fluorescent-solute partitioning in SCLs provides information on gel structure and composition, in addition to quantifying uptake and release amounts and rates.
Collapse
Affiliation(s)
- T J Dursch
- Chemical and Biomolecular Engineering Department, University of California, 101E Gilman, Berkeley, CA 94720-1462, USA
| | - D E Liu
- Chemical and Biomolecular Engineering Department, University of California, 101E Gilman, Berkeley, CA 94720-1462, USA
| | - Y Oh
- Chemical and Biomolecular Engineering Department, University of California, 101E Gilman, Berkeley, CA 94720-1462, USA
| | - C J Radke
- Chemical and Biomolecular Engineering Department, University of California, 101E Gilman, Berkeley, CA 94720-1462, USA; Vision Science Group, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
32
|
Durán-Lobato M, Carrillo-Conde B, Khairandish Y, Peppas NA. Surface-modified P(HEMA-co-MAA) nanogel carriers for oral vaccine delivery: design, characterization, and in vitro targeting evaluation. Biomacromolecules 2014; 15:2725-34. [PMID: 24955658 PMCID: PMC4504688 DOI: 10.1021/bm500588x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oral drug delivery is a route of choice for vaccine administration because of its noninvasive nature and thus efforts have focused on efficient delivery of vaccine antigens to mucosal sites. An effective oral vaccine delivery system must protect the antigen from degradation upon mucosal delivery, penetrate mucosal barriers, and control the release of the antigen and costimulatory and immunomodulatory agents to specific immune cells (i.e., APCs). In this paper, mannan-modified pH-responsive P(HEMA-co-MAA) nanogels were synthesized and assessed as carriers for oral vaccination. The nanogels showed pH-sensitive properties, entrapping and protecting the loaded cargo at low pH values, and triggered protein release after switching to intestinal pH values. Surface decoration with mannan as carbohydrate moieties resulted in enhanced internalization by macrophages as well as increasing the expression of relevant costimulatory molecules. These findings indicate that mannan-modified P(HEMA-co-MAA) nanogels are a promising approach to a more efficacious oral vaccination regimen.
Collapse
Affiliation(s)
- Matilde Durán-Lobato
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, C0800, Austin, Texas 78712-0238, United States
- Department of Chemical Engineering, University of Texas at Austin, 1 University Station, C0800, Austin, Texas 78712-0238, United States
| | - Brenda Carrillo-Conde
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, C0800, Austin, Texas 78712-0238, United States
| | - Yasmine Khairandish
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, C0800, Austin, Texas 78712-0238, United States
| | - Nicholas A. Peppas
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, C0800, Austin, Texas 78712-0238, United States
- Department of Chemical Engineering, University of Texas at Austin, 1 University Station, C0800, Austin, Texas 78712-0238, United States
- Division of Pharmaceutics, University of Texas at Austin, 1 University Station, C0800, Austin, Texas 78712-0238, United States
| |
Collapse
|
33
|
Water-soluble drug partitioning and adsorption in HEMA/MAA hydrogels. Biomaterials 2014; 35:620-9. [DOI: 10.1016/j.biomaterials.2013.09.109] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 09/26/2013] [Indexed: 11/20/2022]
|
34
|
Liu DE, Kotsmar C, Nguyen F, Sells T, Taylor NO, Prausnitz JM, Radke CJ. Macromolecule Sorption and Diffusion in HEMA/MAA Hydrogels. Ind Eng Chem Res 2013. [DOI: 10.1021/ie402148u] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- D. E. Liu
- Department
of Chemical and Biomolecular Engineering and ‡Vision Science Group, University of California, Berkeley, Berkeley, California, 94720-1462, United States
| | - C. Kotsmar
- Department
of Chemical and Biomolecular Engineering and ‡Vision Science Group, University of California, Berkeley, Berkeley, California, 94720-1462, United States
| | - F. Nguyen
- Department
of Chemical and Biomolecular Engineering and ‡Vision Science Group, University of California, Berkeley, Berkeley, California, 94720-1462, United States
| | - T. Sells
- Department
of Chemical and Biomolecular Engineering and ‡Vision Science Group, University of California, Berkeley, Berkeley, California, 94720-1462, United States
| | - N. O. Taylor
- Department
of Chemical and Biomolecular Engineering and ‡Vision Science Group, University of California, Berkeley, Berkeley, California, 94720-1462, United States
| | - J. M. Prausnitz
- Department
of Chemical and Biomolecular Engineering and ‡Vision Science Group, University of California, Berkeley, Berkeley, California, 94720-1462, United States
| | - C. J. Radke
- Department
of Chemical and Biomolecular Engineering and ‡Vision Science Group, University of California, Berkeley, Berkeley, California, 94720-1462, United States
| |
Collapse
|
35
|
Hagel V, Haraszti T, Boehm H. Diffusion and interaction in PEG-DA hydrogels. Biointerphases 2013; 8:36. [DOI: 10.1186/1559-4106-8-36] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 11/07/2013] [Indexed: 11/10/2022] Open
|