1
|
Yamamoto A, Ikarashi T, Fukuma T, Suzuki R, Nakahata M, Miyata K, Tanaka M. Ion-specific nanoscale compaction of cysteine-modified poly(acrylic acid) brushes revealed by 3D scanning force microscopy with frequency modulation detection. NANOSCALE ADVANCES 2022; 4:5027-5036. [PMID: 36504747 PMCID: PMC9680925 DOI: 10.1039/d2na00350c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/14/2022] [Indexed: 06/17/2023]
Abstract
Stimuli-responsive polyelectrolyte brushes adapt their physico-chemical properties according to pH and ion concentrations of the solution in contact. We synthesized a poly(acrylic acid) bearing cysteine residues at side chains and a lipid head group at the terminal, and incorporated them into a phospholipid monolayer deposited on a hydrophobic silane monolayer. The ion-specific, nanoscale response of polyelectrolyte brushes was detected by using three-dimensional scanning force microscopy (3D-SFM) combined with frequency modulation detection. The obtained topographic and mechanical landscapes indicated that the brushes were uniformly stretched, undergoing a gradual transition from the brush to the bulk electrolyte in the absence of divalent cations. When 1 mM calcium ions were added, the brushes were uniformly compacted, exhibiting a sharper brush-to-bulk transition. Remarkably, the addition of 1 mM cadmium ions made the brush surface significantly rough and the mechanical landscape highly heterogeneous. Currently, cadmium-specific nanoscale compaction of the brushes is attributed to the coordination of thiol and carboxyl side chains with cadmium ions, as suggested for naturally occurring, heavy metal binding proteins.
Collapse
Affiliation(s)
- Akihisa Yamamoto
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University Kyoto 606-8501 Japan
| | - Takahiko Ikarashi
- Division of Nano Life Science, Kanazawa University Kanazawa 920-1192 Japan
| | - Takeshi Fukuma
- Division of Nano Life Science, Kanazawa University Kanazawa 920-1192 Japan
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University Kanazawa 920-1192 Japan
| | - Ryo Suzuki
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University Kyoto 606-8501 Japan
| | - Masaki Nakahata
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University Osaka 560-8531 Japan
- Department of Macromolecular Science, Graduate School of Science, Osaka University Osaka 560-0043 Japan
| | - Kazuki Miyata
- Division of Nano Life Science, Kanazawa University Kanazawa 920-1192 Japan
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University Kanazawa 920-1192 Japan
| | - Motomu Tanaka
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University Kyoto 606-8501 Japan
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University 69120 Heidelberg Germany
| |
Collapse
|
2
|
Obeid S, Guyomarc'h F. Atomic force microscopy of food assembly: Structural and mechanical insights at the nanoscale and potential opportunities from other fields. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
3
|
Wu B, Liu G, Zhang G, Craig VSJ. Polyelectrolyte multilayers under compression: concurrent osmotic stress and colloidal probe atomic force microscopy. SOFT MATTER 2018; 14:961-968. [PMID: 29322154 DOI: 10.1039/c7sm02177a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Colloidal interactions have been characterised using both osmotic stress and surface forces. Here these methods are employed concurrently to measure the interaction forces of polyelectrolyte multilayers that when cross-linked form a dextran impermeable membrane. The force data, corrected for the thickness of the polyelectrolyte multilayer film, has been expressed as pressure versus separation enabling the interaction from osmotic stress measurements to be compared to the measured interaction from the colloid probe technique. The combined technique is valuable in evaluating the interaction forces associated with compression of polymer films at different rates and over a wide range of pressure and demonstrates features that are not revealed when just one technique is employed. The combination of the techniques allows both attractive forces and strongly repulsive forces to be measured and shows that the measured repulsion is greater in the force data than in the osmotic data. This is due to insufficient equilibration time in the AFM measurements, even at the slowest approach rates available, indicating that AFM force measurements between polyelectrolytes will always contain a dynamic component. That is we demonstrate that colloid probe measurements between polymer surfaces overestimate the equilibrium repulsive interaction due to the rate at which the measurement is performed.
Collapse
Affiliation(s)
- Bo Wu
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China. and Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China and Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200, Australia.
| | - Guangming Liu
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Vincent S J Craig
- Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
4
|
Yakubov GE, Bonilla MR, Chen H, Doblin MS, Bacic A, Gidley MJ, Stokes JR. Mapping nano-scale mechanical heterogeneity of primary plant cell walls. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2799-816. [PMID: 26988718 PMCID: PMC4861025 DOI: 10.1093/jxb/erw117] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nanoindentation experiments are performed using an atomic force microscope (AFM) to quantify the spatial distribution of mechanical properties of plant cell walls at nanometre length scales. At any specific location on the cell wall, a complex (non-linear) force-indentation response occurs that can be deconvoluted using a unique multiregime analysis (MRA). This allows an unambiguous evaluation of the local transverse elastic modulus of the wall. Nanomechanical measurements on suspension-cultured cells (SCCs), derived from Italian ryegrass (Lolium multiflorum) starchy endosperm, show three characteristic modes of deformation and a spatial distribution of elastic moduli across the surface. 'Soft' and 'hard' domains are found across length scales between 0.1 µm and 3 µm, which is well above a typical pore size of the polysaccharide mesh. The generality and wider applicability of this mechanical heterogeneity is verified through in planta characterization on leaf epidermal cells of Arabidopsis thaliana and L. multiflorum The outcomes of this research provide a basis for uncovering and quantifying the relationships between local wall composition, architecture, cell growth, and/or morphogenesis.
Collapse
Affiliation(s)
- Gleb E Yakubov
- Australian Research Council Centre of Excellence in Plant Cell Walls School of Chemical Engineering, The University of Queensland, Queensland, Australia
| | - Mauricio R Bonilla
- Australian Research Council Centre of Excellence in Plant Cell Walls School of Chemical Engineering, The University of Queensland, Queensland, Australia
| | - Huaying Chen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland, Australia
| | - Monika S Doblin
- Australian Research Council Centre of Excellence in Plant Cell Walls School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Antony Bacic
- Australian Research Council Centre of Excellence in Plant Cell Walls School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael J Gidley
- Australian Research Council Centre of Excellence in Plant Cell Walls Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Queensland, Australia
| | - Jason R Stokes
- Australian Research Council Centre of Excellence in Plant Cell Walls School of Chemical Engineering, The University of Queensland, Queensland, Australia
| |
Collapse
|
5
|
Li B, Yu B, Wang XL, Guo F, Zhou F. Correlation between conformation change of polyelectrolyte brushes and lubrication. CHINESE JOURNAL OF POLYMER SCIENCE 2014. [DOI: 10.1007/s10118-015-1564-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Huang Q, Yoon I, Villanueva J, Kim K, Sirbuly DJ. Quantitative mechanical analysis of thin compressible polymer monolayers on oxide surfaces. SOFT MATTER 2014; 10:8001-8010. [PMID: 25157609 DOI: 10.1039/c4sm01530d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A clear understanding of the mechanical behavior of nanometer thick films on nanostructures, as well as developing versatile approaches to characterize their mechanical properties, are of great importance and may serve as the foundation for understanding and controlling molecular interactions at the interface of nanostructures. Here we report on the synthesis of thin, compressible polyethylene glycol (PEG) monolayers with a wet thickness of <20 nm on tin dioxide (SnO2) nanofibers through silane-based chemistries. Nanomechanical properties of such thin PEG films were extensively investigated using atomic force microscopy (AFM). In addition, tip-sample interactions were carefully studied, with different AFM tip modifications (i.e., hydrophilic and hydrophobic) and in different ionic solutions. We find that the steric forces dominate the tip-sample interactions when the polymer film is immersed in solution with salt concentrations similar to biological media (e.g., 1x phosphate buffer solution), while van der Waals and electrostatic forces have minimal contributions. A Dimitriadis thin film polymer compression model shows that the linear elastic regime is reproducible in the initial 50% indentation of these films which have tunable Young's moduli ranging from 5 MPa for the low molecular weight films to 700 kPa for the high molecular weight PEG films. Results are compared with the same PEG films deposited on silicon substrates which helped quantify the structural properties and understand the relationship between the structural and the mechanical properties of PEG films on the SnO2 fibers.
Collapse
Affiliation(s)
- Qian Huang
- Department of NanoEngineering, University of California, La Jolla, San Diego, CA 92093, USA.
| | | | | | | | | |
Collapse
|
7
|
Elmahdy MM, Drechsler A, Bittrich E, Uhlmann P, Stamm M. Interactions between silica particles and poly(2-vinylpyridine) brushes in aqueous solutions of monovalent and multivalent salts. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3291-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Murakami D, Takenaka A, Kobayashi M, Jinnai H, Takahara A. Measurement of the electrostatic interaction between polyelectrolyte brush surfaces by optical tweezers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:16093-16097. [PMID: 24325298 DOI: 10.1021/la404133e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We demonstrated an optical tweezers method to measure the electrostatic interaction between the strong polyelectrolyte brushes, poly(2-(methacryloyloxy)ethyltrimethylammonium chloride) (PMTAC), grafted on silica particles in aqueous media. The weak electrostatic interaction was successfully detected with a resolution of less than 0.1 μN m(-1). The apparent Debye length, including the charge distribution in the polymer brush and the surface potential, decreased as the salt concentration in the medium increased. The experimentally obtained surface charge density was much smaller than that estimated from the amount of polyelectrolyte on the surface. Furthermore, the dissociation of ionic groups was enhanced by decreasing the grafting density of the polyelectrolyte brush. The results suggest that the majority of chloride counterions was immobilized in the dense polyelectrolyte brush layer to neutralize the high charge density.
Collapse
Affiliation(s)
- Daiki Murakami
- Japan Science and Technology Agency (JST), ERATO, Takahara Soft Interfaces Project, and ‡Institute for Materials Chemistry and Engineering, CE80, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | | | | | | | | |
Collapse
|
9
|
Cuellar JL, Llarena I, Iturri JJ, Donath E, Moya SE. A novel approach for measuring the intrinsic nanoscale thickness of polymer brushes by means of atomic force microscopy: application of a compressible fluid model. NANOSCALE 2013; 5:11679-11685. [PMID: 24101034 DOI: 10.1039/c3nr02929h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The thickness of a poly(sulfo propyl methacrylate) (PSPM) brush is determined by Atomic Force Microscopy (AFM) imaging as a function of the loading force at different ionic strengths, ranging from Milli-Q water to 1 M NaCl. Imaging is performed both with a sharp tip and a colloidal probe. The brush thickness strongly depends both on the applied load and on the ionic strength. A brush thickness of 150 nm is measured in Millipore water when applying the minimal loading force. Imaging with an 8 μm silica particle as a colloidal probe results in a thickness of 30 nm larger than that measured with the tip. Increasing the ionic strength causes the well known reduction of the thickness of the brush. The apparent thickness of the brush decreases with increasing loading forces. An empirical model analogous to that of a compressible fluid is applied to describe the dependence of the apparent thickness of the brush with loading force. The model comprises three ionic strength dependent parameters for the brush: thickness at infinite compression, energy, and cohesive force. The meaning and significance of these parameters are discussed. A particular advantage of the model is that it allows for determination of the brush thickness at zero loading force.
Collapse
Affiliation(s)
- José Luis Cuellar
- Institute of Biophysics and Medical Physics, Faculty of Medicine, University of Leipzig, Leipzig, Germany.
| | | | | | | | | |
Collapse
|