1
|
Van Guyse JFR, Abbasi S, Toh K, Nagorna Z, Li J, Dirisala A, Quader S, Uchida S, Kataoka K. Facile Generation of Heterotelechelic Poly(2-Oxazoline)s Towards Accelerated Exploration of Poly(2-Oxazoline)-Based Nanomedicine. Angew Chem Int Ed Engl 2024; 63:e202404972. [PMID: 38651732 DOI: 10.1002/anie.202404972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
Controlling the end-groups of biocompatible polymers is crucial for enabling polymer-based therapeutics and nanomedicine. Typically, end-group diversification is a challenging and time-consuming endeavor, especially for polymers prepared via ionic polymerization mechanisms with limited functional group tolerance. In this study, we present a facile end-group diversification approach for poly(2-oxazoline)s (POx), enabling quick and reliable production of heterotelechelic polymers to facilitate POxylation. The approach relies on the careful tuning of reaction parameters to establish differential reactivity of a pentafluorobenzyl initiator fragment and the living oxazolinium chain-end, allowing the selective introduction of N-, S-, O-nucleophiles via the termination of the polymerization, and a consecutive nucleophilic para-fluoro substitution. The value of this approach for the accelerated development of nanomedicine is demonstrated through the synthesis of well-defined lipid-polymer conjugates and POx-polypeptide block-copolymers, which are well-suited for drug and gene delivery. Furthermore, we investigated the application of a lipid-POx conjugate for the formulation and delivery of mRNA-loaded lipid nanoparticles for immunization against the SARS-COV-2 virus, underscoring the value of POx as a biocompatible polymer platform.
Collapse
Affiliation(s)
- Joachim F R Van Guyse
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Saed Abbasi
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| | - Kazuko Toh
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| | - Zlata Nagorna
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Junjie Li
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan
| | - Anjaneyulu Dirisala
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| | - Sabina Quader
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| | - Satoshi Uchida
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
- Department of Medical, Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 606-0823, Kyoto, Japan
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 113-8510, Tokyo, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| |
Collapse
|
2
|
Glaive AS, Cœur CL, Guigner JM, Amiel C, Volet G. Amphiphilic Heterograft Copolymers Bearing Biocompatible/Biodegradable Grafts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2050-2063. [PMID: 38243903 DOI: 10.1021/acs.langmuir.3c02772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
The amphiphilic heterograft copolymers bearing biocompatible/biodegradable grafts [poly(2-methyl-2-oxazoline-co-2-pentyl-2-oxazoline)-g-poly(d-l-lactic acid)/poly(2-ethyl-2-oxazoline)] were synthesized successfully by the combination of cationic ring-opening polymerization and click chemistry via the ⟨"grafting to"⟩ approach. The challenge of this synthesis was to graft together hydrophobic and hydrophilic chains on a hydrophilic platform based on PMeOx. The efficiency of grafting depends on the chemical nature of the grafts and of the length of the macromolecular chains. The self-assembly of these polymers in aqueous media was investigated by DLS, cryo-TEM, and SANS. The results demonstrated that different morphologies were obtained from nanospheres and vesicles to filaments depending on the hydrophilic weight ratio in the heterograft copolymer varying from 0.38 until 0.84. As poly(2-ethyl-2-oxazoline) is known to be thermoresponsive, the influence of temperature rise on the nanoassembly stability was studied in water and in a physiological medium. SANS and DLS measurements during a temperature ramp allowed to show that nanoassemblies start to self-assemble in "raspberry like" primary structures at 50 °C, and these structures grow and get denser as the temperature is increased further. These amphiphilic heterograft copolymers may include hydrophobic drugs and should find important applications for biomedical applications which require stealth properties.
Collapse
Affiliation(s)
- Aline-Sarah Glaive
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, Thiais 94320, France
| | - Clémence Le Cœur
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, Thiais 94320, France
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA-CNRS UMR CEA Saclay, Gif sur Yvette 91191, France
| | - Jean-Michel Guigner
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, IRD, CNRS UMR7590, MNHN; 4 place Jussieu, Paris 75252, France
| | - Catherine Amiel
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, Thiais 94320, France
| | - Gisèle Volet
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, Thiais 94320, France
- Université d'Evry Val d'Essonne, Rue du Père Jarlan, Evry cedex 91025, France
| |
Collapse
|
3
|
Göppert NE, Quader S, Van Guyse JFR, Weber C, Kataoka K, Schubert US. Amphiphilic Poly(2-oxazoline)s with Glycine-Containing Hydrophobic Blocks Tailored for Panobinostat- and Imatinib-Loaded Micelles. Biomacromolecules 2023; 24:5915-5925. [PMID: 37987713 DOI: 10.1021/acs.biomac.3c00934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Aiming toward the development of tailored carrier materials for the cytostatics panobinostat and imatinib, an amphiphilic block copolymer composed of poly(2-ethyl-2-oxazoline) and a degradable poly(2-(3-phenylpropyl)-2-oxazoline) analogue (dPPhPrOx-b-PEtOx) was synthesized via a postpolymerization synthesis route based on reacylation of oxidized linear poly(ethylene imine). The obtained dPPhPrOx-b-PEtOx was found to readily self-assemble into well-defined micelles with a critical micelle concentration of 1 μg mL-1. The incubation of HUVEC cells with the blank micelles revealed their excellent cytocompatibility (up to 2 mg mL-1), thus confirming the polymers' suitability for potential drug delivery application. Subsequently, the encapsulation of the two cytostatics, panobinostat and imatinib, into the dPPhPrOx-b-PEtOx micelles was successfully demonstrated (Dh ≈ 80 nm, PDI ≈ 0.16), whereby the well-defined nature of the micelle was maintained upon extended incubation at 37 °C (36 h) and storage at 4 °C (1 month). Labeling of the micelles with Alexa Fluor 594 and Alexa Fluor 647, which form a Förster resonance energy transfer (FRET) pair, indicated the stability of loaded micelles upon dilution until the CMC. Finally, the cytotoxicity of the loaded micelles was investigated against three different cell lines: Medulloblastoma cell lines ONS-76 and DAOY as well as the glioblastoma cell line U87MG. While the panobinostat-loaded micelles displayed similar cytotoxicity compared to the pure drug in the cell lines, imatinib-loaded micelles were found to be more potent compared to the pristine drug, as significantly higher cytotoxicity was observed across all three cell lines.
Collapse
Affiliation(s)
- Natalie E Göppert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Sabina Quader
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan
| | - Joachim F R Van Guyse
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
4
|
Oligo(2-alkyl-2-oxazoline)-Based Graft Copolymers for Marine Antifouling Coatings. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
5
|
Loose Semirigid Aromatic Polyester Bottle Brushes at Poly(2-isopropyl-2-oxazoline) Side Chains of Various Lengths: Behavior in Solutions and Thermoresponsiveness. Polymers (Basel) 2022; 14:polym14245354. [PMID: 36559721 PMCID: PMC9781464 DOI: 10.3390/polym14245354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
A polycondensation aromatic polyester with an oxygen spacer was synthesized and used as a macroinitiator for the grafting of linear poly(2-isopropyl-2-oxazoline) (PiPrOx) by the cationic polymerization method. The length of the thermosensitive side chains was varied by the initiator:monomer ratio. Using methods of molecular hydrodynamics, light scattering and turbidimetry, the copolymers were studied in organic solvents and in water. The molecular characteristics of the main chain and graft copolymers, the polymerization degree of side chains and their grafting density have been determined. The equilibrium rigidity of the macroinitiator and the conformations of grafted macromolecules were evaluated. In selective solvents, they take on a star-like conformation or aggregate depending on the degree of shielding of the main chain by side chains. The thermoresponsiveness of graft copolymers in aqueous solutions was studied, and their LCST were estimated. The results are compared with data for graft copolymers composed of PiPrOx side chains and flexible or rigid chain backbones of aromatic polyester type.
Collapse
|
6
|
Rodchenko S, Kurlykin M, Tenkovtsev A, Milenin S, Sokolova M, Yakimansky A, Filippov A. Amphiphilic Molecular Brushes with Regular Polydimethylsiloxane Backbone and Poly-2-isopropyl-2-oxazoline Side Chains. 3. Influence of Grafting Density on Behavior in Organic and Aqueous Solutions. Polymers (Basel) 2022; 14:5118. [PMID: 36501510 PMCID: PMC9740392 DOI: 10.3390/polym14235118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
Regular and irregular molecular brushes with polydimethylsiloxane backbone and poly-2-isopropyl-2-oxazoline side chains have been synthesized. Prepared samples differed strongly in the side chain grafting density, namely, in the ratio of the lengths of spacer between the grafting points and the side chains. The hydrodynamic properties and molecular conformation of the synthesized grafted copolymers and their behavior in aqueous solutions on heating were studied by the methods of molecular hydrodynamics and optics. It was found that the regularity and the grafting density do not affect the molecular shape of the studied samples of molecular brushes in the selective solvent. On the contrary, the grafting density is one of the most important factors determining the thermoresponsivity of grafted copolymers. It was shown that in analyzing self-organization and LCST values in aqueous solutions of poly-2-isopropyl-2-oxazolines with complex architecture, many factors should be considered. First is the molar fraction of the hydrophobic fragment and the intramolecular density. It was found that molar mass is not a factor that greatly affects the phase transition temperature of poly-2-isopropyl-2-oxazolines solutions at a passage from one molecular architecture to another.
Collapse
Affiliation(s)
- Serafim Rodchenko
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr., 31, 199004 Saint Petersburg, Russia
| | - Mikhail Kurlykin
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr., 31, 199004 Saint Petersburg, Russia
| | - Andrey Tenkovtsev
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr., 31, 199004 Saint Petersburg, Russia
| | - Sergey Milenin
- Research Laboratory of New Silicone Materials and Technologies, Tula State Lev Tolstoy Pedagogical University, Lenin Avenue, 125, 300026 Tula, Russia
- Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya, 70, 117393 Moscow, Russia
| | - Maria Sokolova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr., 31, 199004 Saint Petersburg, Russia
| | - Alexander Yakimansky
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr., 31, 199004 Saint Petersburg, Russia
| | - Alexander Filippov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr., 31, 199004 Saint Petersburg, Russia
| |
Collapse
|
7
|
Kirila TY, Razina AB, Ten’kovtsev AV, Filippov AP. Effect of the Structure of Arms and Way of Their Attachment to Calix[4]arene on Self-Assembly Processes in Aqueous Solutions of Thermoresponsive Star-Shaped Poly(2-alkyl-2-oxazolines) and Poly(2-alkyl-2-oxazines). POLYMER SCIENCE SERIES C 2022. [DOI: 10.1134/s1811238222700102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Wang WL, Kawai K, Sigemitsu H, Jin RH. Crystalline lamellar films with honeycomb structure from comb-like polymers of poly(2-long-alkyl-2-oxazoline)s. J Colloid Interface Sci 2022; 627:28-39. [PMID: 35841706 DOI: 10.1016/j.jcis.2022.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
Comb-like copolymers are usually structured by grafting polymeric side chains onto main polymer chain. There are few reports of comb-on-comb polymers in which dense secondary side chains are grafted onto primary side chain. In this work, we synthesized comb polymers with grafted-on-graft side chains (c-PEI-g-Acyl) via an effective acylation reaction of comb polymers possessing polyethyleneimine (PEI) side chain with long-alkyl acyl chlorides. For comparison, we also synthesized homopolymers l-PEI-g-Acyls via reaction of linear PEI with long-alkyl acyl chlorides. Then, we investigated their crystalline feature in the film formation by XRD, DSC and SEM, and found that the polymers tend to form hexagonal lamella structures with bilayer alkyl spacing. The comb polymers c-PEI-g-Acyls and linear polymers l-PEI-g-Acyls were used in preparation of honeycomb film by the "breath-figure" process by dropping chloroform solution of the polymers on substrate. Different to many honeycomb polymeric films which are supported by amorphous phase, interestingly, our polymers easily afford honeycomb films which are supported by crystalline lamellae frames under higher humidity condition. It was found that the comb polymers of c-PEI-g-Acyls with longer PEI primary side chain and long alkyl secondary side chain have advantages in producing honeycomb film than linear polymers of l-PEI-g-Acys.
Collapse
Affiliation(s)
- Wen-Li Wang
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Yokohama 221-8686, Japan
| | - Kousuke Kawai
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Yokohama 221-8686, Japan
| | - Hiroaki Sigemitsu
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Yokohama 221-8686, Japan
| | - Ren-Hua Jin
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Yokohama 221-8686, Japan.
| |
Collapse
|
9
|
Smirnova AV, Tenkovtsev AV, Filippov AP. Effect of Annealing at High Temperatures on the Morphology of Aqueous Solutions of Star-Shaped Poly(2-Isopropyl-2-Oxazoline) and Linear Poly(2-Ethyl-5,6-Dihydrooxazine). POLYMER SCIENCE SERIES C 2022. [DOI: 10.1134/s1811238222700072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Thermoresponsive Molecular Brushes with a Rigid-Chain Aromatic Polyester Backbone and Poly-2-alkyl-2-oxazoline Side Chains. Int J Mol Sci 2021; 22:ijms222212265. [PMID: 34830139 PMCID: PMC8622345 DOI: 10.3390/ijms222212265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
A new polycondensation aromatic rigid-chain polyester macroinitiator was synthesized and used to graft linear poly-2-ethyl-2-oxazoline as well as poly-2-isopropyl-2-oxazoline by cationic polymerization. The prepared copolymers and the macroinitiator were characterized by NMR, GPC, AFM, turbidimetry, static, and dynamic light scattering. The molar masses of the polyester main chain and the grafted copolymers with poly-2-ethyl-2-oxazoline and poly-2-isopropyl-2-oxazoline side chains were 26,500, 208,000, and 67,900, respectively. The molar masses of the side chains of poly-2-ethyl-2-oxazoline and poly-2-isopropyl-2-oxazoline and their grafting densities were 7400 and 3400 and 0.53 and 0.27, respectively. In chloroform, the copolymers conformation can be considered as a cylinder wormlike chain, the diameter of which depends on the side chain length. In water at low temperatures, the macromolecules of the poly-2-ethyl-2-oxazoline copolymer assume a wormlike conformation because their backbones are well shielded by side chains, whereas the copolymer with short side chains and low grafting density strongly aggregates, which was visualized by AFM. The phase separation temperatures of the copolymers were lower than those of linear analogs of the side chains and decreased with the concentration for both samples. The LCST were estimated to be around 45 °C for the poly-2-ethyl-2-oxazoline graft copolymer, and below 20 °C for the poly-2-isopropyl-2-oxazoline graft copolymer.
Collapse
|
11
|
Warne NM, Finnegan JR, Feeney OM, Kempe K. Using
2‐isopropyl
‐2‐oxazine to explore the effect of monomer distribution and polymer architecture on the thermoresponsive behavior of copolymers. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Nicole M. Warne
- ARC Centre of Excellence in Convergent Bio‐Nano Science & Technology, and Drug Delivery, Disposition and Dynamics Monash Institute of Pharmaceutical Sciences, Monash University Parkville Victoria Australia
| | - John R. Finnegan
- ARC Centre of Excellence in Convergent Bio‐Nano Science & Technology, and Drug Delivery, Disposition and Dynamics Monash Institute of Pharmaceutical Sciences, Monash University Parkville Victoria Australia
| | - Orlagh M. Feeney
- ARC Centre of Excellence in Convergent Bio‐Nano Science & Technology, and Drug Delivery, Disposition and Dynamics Monash Institute of Pharmaceutical Sciences, Monash University Parkville Victoria Australia
| | - Kristian Kempe
- ARC Centre of Excellence in Convergent Bio‐Nano Science & Technology, and Drug Delivery, Disposition and Dynamics Monash Institute of Pharmaceutical Sciences, Monash University Parkville Victoria Australia
- Materials Science and Engineering Monash University Clayton Victoria Australia
| |
Collapse
|
12
|
Poly(2-ethyl-2-oxazoline) bottlebrushes: How nanomaterial dimensions can influence biological interactions. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110447] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Altunay N, Hazer B, Tuzen M, Elik A. A new analytical approach for preconcentration, separation and determination of Pb(II) and Cd(II) in real samples using a new adsorbent: Synthesis, characterization and application. Food Chem 2021; 359:129923. [PMID: 33964654 DOI: 10.1016/j.foodchem.2021.129923] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
A green and efficient analytical approach was reported for simultaneous preconcentration, and separation of Pb(II) and Cd(II) in water, vegetables, and barbecue samples by dispersive solid-phase microextraction prior to their determination using flame atomic absorption spectrometry. A new poly-3-hydroxy butyrate-polyvinyl triethyl ammonium chloride comb-type amphiphilic cationic block copolymer (PHBvbNCl) was synthesized and characterized. Main variables such as pH, sorbent amount, adsorption time, eluent type, desorption time, and sample volume were optimized. Detection limits and working ranges for Pb(II) and Cd(II) were 0.03 μg L-1, 0.15 μg L-1, 0.1-250 μg L-1 and 0.5-375 μg L-1, respectively. Enhancement factor for Pb (II) and Cd (II) were 114 and 98. The adsorption capacity of PHBvbNCl for Pb(II) and Cd(II) was 175.2 mg g-1 and 152.9 mg g-1. After the accuracy of the method was confirmed by the analysis of certified reference materials, it was successfully applied to real samples. Finally, the analytical performance of the present method was compared with other methods.
Collapse
Affiliation(s)
- Nail Altunay
- Department of Biochemistry, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Baki Hazer
- Department of Aircraft Airframe Engine Maintenance, Kapadokya University, Nevşehir, Turkey; Zonguldak Bülent Ecevit University, Department of Chemistry, 67100 Zonguldak, Turkey
| | - Mustafa Tuzen
- Department of Chemistry, Tokat Gaziosmanpasa University, Tokat, Turkey; King Fahd University of Petroleum and Minerals, Research Institute, Center for Environment and Water (CEW), Dhahran, 31261 Saudi Arabia
| | - Adil Elik
- Department of Chemistry, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
14
|
Kirila T, Smirnova A, Razina A, Tenkovtsev A, Filippov A. Influence of Salt on the Self-Organization in Solutions of Star-Shaped Poly-2-alkyl-2-oxazoline and Poly-2-alkyl-2-oxazine on Heating. Polymers (Basel) 2021; 13:1152. [PMID: 33916516 PMCID: PMC8038499 DOI: 10.3390/polym13071152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 11/24/2022] Open
Abstract
The water-salt solutions of star-shaped six-arm poly-2-alkyl-2-oxazines and poly-2-alkyl-2-oxazolines were studied by light scattering and turbidimetry. The core was hexaaza[26]orthoparacyclophane and the arms were poly-2-ethyl-2-oxazine, poly-2-isopropyl-2-oxazine, poly-2-ethyl-2-oxazoline, and poly-2-isopropyl-2-oxazoline. NaCl and N-methylpyridinium p-toluenesulfonate were used as salts. Their concentration varied from 0-0.154 M. On heating, a phase transition was observed in all studied solutions. It was found that the effect of salt on the thermosensitivity of the investigated stars depends on the structure of the salt and polymer and on the salt content in the solution. The phase separation temperature decreased with an increase in the hydrophobicity of the polymers, which is caused by both a growth of the side radical size and an elongation of the monomer unit. For NaCl solutions, the phase separation temperature monotonically decreased with growth of salt concentration. In solutions with methylpyridinium p-toluenesulfonate, the dependence of the phase separation temperature on the salt concentration was non-monotonic with minimum at salt concentration corresponding to one salt molecule per one arm of a polymer star. Poly-2-alkyl-2-oxazine and poly-2-alkyl-2-oxazoline stars with a hexaaza[26]orthoparacyclophane core are more sensitive to the presence of salt in solution than the similar stars with a calix[n]arene branching center.
Collapse
Affiliation(s)
- Tatyana Kirila
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy Pr. 31, 199004 Saint Petersburg, Russia; (A.S.); (A.R.); (A.T.); (A.F.)
| | | | | | | | | |
Collapse
|
15
|
Gao Y, Wu X, Xiang Z, Qi C. Amphiphilic Double-Brush Copolymers with a Polyurethane Backbone: A Bespoke Macromolecular Emulsifier for Ionic Liquid-in-Oil Emulsion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2376-2385. [PMID: 33554605 DOI: 10.1021/acs.langmuir.0c03322] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The study on ionic liquid (IL)-based emulsions is very interesting due to the "green" quality and potential wide applications of ILs, whereas the emulsifiers for the formation of IL-based emulsions are extremely limited and mainly centered on low molecular weight surfactants. In this work, synthesis of amphiphilic double-brush copolymers (DBCs) and their application as bespoke macromolecular emulsifiers for the formation of IL-containing non-aqueous emulsions are described. DBCs consisted of a polyurethane (PU) backbone and poly(N,N-dimethyl acrylamide) (PDMA) and poly(methyl methacrylate) (PMMA) chains that were grafted simultaneously at the same reactive site along the PU backbone (PU-g-PDMA/PMMA), which were synthesized through the combination of polyaddition and the reversible-deactivation radical polymerization reactions. Highly stable [Bmim][PF6]-in-benzene emulsions could be gained by adopting PU-g-PDMA/PMMA DBCs as macromolecular emulsifiers at a low content, such as 0.025 wt %. On the basis of the stability and the size of emulsion droplets, PU-g-PDMA/PMMA DBCs exhibited much better emulsifying performances than their analogues, including PU-g-PDMA, PU-g-PMMA, and PDMA-b-PMMA copolymers. Such excellent emulsifying performances of PU-g-PDMA/PMMA DBCs were due to high interfacial activities. PU-g-PDMA/PMMA DBCs exhibited higher capabilities in lowering the interfacial tension of the [Bmim][PF6]-benzene interface than their analogues. A large energy barrier to desorption of adsorbed PU-g-PDMA/PMMA DBCs from the interface contributed to high stability of the [Bmim][PF6]-in-benzene emulsion.
Collapse
Affiliation(s)
- Yong Gao
- Key Laboratory of Alternative Technologies for Fine Chemicals Process of Zhejiang Province, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
- College of Chemistry and Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education; Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Xionghui Wu
- College of Chemistry and Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education; Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Zhe Xiang
- College of Chemistry and Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education; Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Chenze Qi
- Key Laboratory of Alternative Technologies for Fine Chemicals Process of Zhejiang Province, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
| |
Collapse
|
16
|
Rodchenko S, Amirova A, Kurlykin M, Tenkovtsev A, Milenin S, Filippov A. Amphiphilic Molecular Brushes with Regular Polydimethylsiloxane Backbone and Poly-2-isopropyl-2-oxazoline Side Chains. 2. Self-Organization in Aqueous Solutions on Heating. Polymers (Basel) 2020; 13:E31. [PMID: 33374766 PMCID: PMC7796000 DOI: 10.3390/polym13010031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 01/18/2023] Open
Abstract
The behavior of amphiphilic molecular brushes in aqueous solutions on heating was studied by light scattering and turbidimetry. The main chain of the graft copolymers was polydimethylsiloxane, and the side chains were thermosensitive poly-2-isopropyl-2-oxazoline. The studied samples differed in the length of the grafted chains (polymerization degrees were 14 and 30) and, accordingly, in the molar fraction of the hydrophobic backbone. The grafting density of both samples was 0.6. At low temperatures, macromolecules and aggregates, which formed due to the interaction of main chains, were observed in solutions. At moderate temperatures, heating solutions of the sample with short side chains led to aggregation due to dehydration of poly-2-isopropyl-2-oxazoline and the formation of intermolecular hydrogen bonds. In the case of the brush with long grafted chains, dehydration caused the formation of intramolecular hydrogen bonds and the compaction of molecules and aggregates. The lower critical solution temperature for solutions of the sample with long side chains was higher than LCST for the sample with short side chains. It was shown that the molar fraction of the hydrophobic component and the intramolecular density are the important factors determining the LCST behavior of amphiphilic molecular brushes in aqueous solutions.
Collapse
Affiliation(s)
- Serafim Rodchenko
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr., 31, 199004 Saint Petersburg, Russia; (A.A.); (M.K.); (A.T.); (A.F.)
| | - Alina Amirova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr., 31, 199004 Saint Petersburg, Russia; (A.A.); (M.K.); (A.T.); (A.F.)
| | - Mikhail Kurlykin
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr., 31, 199004 Saint Petersburg, Russia; (A.A.); (M.K.); (A.T.); (A.F.)
| | - Andrey Tenkovtsev
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr., 31, 199004 Saint Petersburg, Russia; (A.A.); (M.K.); (A.T.); (A.F.)
| | - Sergey Milenin
- Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya, 70, 117393 Moscow, Russia;
| | - Alexander Filippov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr., 31, 199004 Saint Petersburg, Russia; (A.A.); (M.K.); (A.T.); (A.F.)
| |
Collapse
|
17
|
Tarabukina E, Fatullaev E, Krasova A, Kurlykin M, Tenkovtsev A, Sheiko SS, Filippov A. Synthesis, Structure, Hydrodynamics and Thermoresponsiveness of Graft Copolymer with Aromatic Polyester Backbone at Poly(2-isopropyl-2-oxazoline) Side Chains. Polymers (Basel) 2020; 12:polym12112643. [PMID: 33182803 PMCID: PMC7698206 DOI: 10.3390/polym12112643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 02/06/2023] Open
Abstract
New thermoresponsive graft copolymers with an aromatic polyester backbone and poly(2-isopropyl-2-oxazoline) (PiPrOx) side chains are synthesized and characterized by NMR and GPC. The grafting density of side chains is 0.49. The molar masses of the graft-copolymer, its backbone, side chains, and the modeling poly-2-isopropyl-2-oxaziline are 74,000, 19,000, 4300, and 16,600 g·mol−1, respectively. Their conformational properties in nitropropane as well as thermoresponsiveness in aqueous solutions are studied and compared with that of free side chains, i.e., linear PiPrOx with a hydrophobic terminal group. In nitropropane, the graft-copolymer adopts conformation of a 13-arm star with a core of a collapsed main chain and a PiPrOx corona. Similarly, a linear PiPrOx chain protects its bulky terminal group by wrapping around it in a selective solvent. In aqueous solutions at low temperatures, graft copolymers form aggregates due to interaction of hydrophobic backbones, which contrasts to molecular solutions of the model linear PiPrOx. The lower critical solution temperature (LCST) for the graft copolymer is around 20 °C. The phase separation temperatures of the copolymer solution were lower than that of the linear chain counterpart, decreasing with concentration for both polymers.
Collapse
Affiliation(s)
- Elena Tarabukina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 Saint-Petersburg, Russia; (A.K.); (M.K.); (A.T.); (S.S.S.); (A.F.)
- Correspondence:
| | - Emil Fatullaev
- School of Photonics, St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 199004 Saint-Petersburg, Russia;
| | - Anna Krasova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 Saint-Petersburg, Russia; (A.K.); (M.K.); (A.T.); (S.S.S.); (A.F.)
| | - Mikhail Kurlykin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 Saint-Petersburg, Russia; (A.K.); (M.K.); (A.T.); (S.S.S.); (A.F.)
| | - Andrey Tenkovtsev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 Saint-Petersburg, Russia; (A.K.); (M.K.); (A.T.); (S.S.S.); (A.F.)
| | - Sergei S. Sheiko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 Saint-Petersburg, Russia; (A.K.); (M.K.); (A.T.); (S.S.S.); (A.F.)
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Alexander Filippov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 Saint-Petersburg, Russia; (A.K.); (M.K.); (A.T.); (S.S.S.); (A.F.)
| |
Collapse
|
18
|
Bandelli D, Muljajew I, Scheuer K, Max JB, Weber C, Schacher FH, Jandt KD, Schubert US. Copolymerization of Caprolactone Isomers to Obtain Nanoparticles with Constant Hydrophobicity and Tunable Crystallinity. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Damiano Bandelli
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Irina Muljajew
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Karl Scheuer
- Chair of Materials Science (CMS), Department of Materials Science and Technology, Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Johannes B. Max
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Felix H. Schacher
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Klaus D. Jandt
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Chair of Materials Science (CMS), Department of Materials Science and Technology, Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
19
|
Kirila T, Smirnova A, Razina A, Tenkovtsev A, Filippov A. Synthesis and Conformational Characteristics of Thermosensitive Star-Shaped Six-Arm Polypeptoids. Polymers (Basel) 2020; 12:polym12040800. [PMID: 32260090 PMCID: PMC7240544 DOI: 10.3390/polym12040800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/25/2020] [Accepted: 03/28/2020] [Indexed: 11/16/2022] Open
Abstract
Star-shaped six-arm poly-2-alkyl-2-oxazine and poly-2-alkyl-2-oxazoline with hexaaza [26]orthoparacyclophane derivative core were synthesized successfully using cationic ring-opening polymerization. Conformational behavior of prepared polymer stars were investigated by the methods of molecular hydrodynamics and optics in molecular dispersed solutions. It was shown that conformation characteristics of star-shaped polypeptoids depends on arm length, while the chemical structure weakly affects the behavior of the studied polymers in solutions. This behavior is caused by the close equilibrium rigidity of arms. The star-shaped polypeptoids have relatively high intramolecular density. All synthesized stars exhibit LCST behavior. Phase separation temperature depends on arm structure. It is lower for poly-2-alkyl-2-oxazines, monomer units of which contains one methylene group more than monomers of poly-2-alkyl-2-oxazoline.
Collapse
|
20
|
Poly(2-oxazoline) macromonomers as building blocks for functional and biocompatible polymer architectures. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109258] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
21
|
|
22
|
Filippov A, Tarabukina E, Kudryavtseva A, Fatullaev E, Kurlykin M, Tenkovtsev A. Molecular brushes with poly-2-ethyl-2-oxazoline side chains and aromatic polyester backbone manifesting double stimuli responsiveness. Colloid Polym Sci 2019. [DOI: 10.1007/s00396-019-04558-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Drain BA, Becer CR. Synthetic approaches on conjugation of poly(2-oxazoline)s with vinyl based polymers. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Engel N, Dirauf M, Seupel S, Leiske MN, Schubert S, Schubert US. Utilization of 4-(trifluoromethyl)benzenesulfonates as Counter Ions Tunes the Initiator Efficiency of Sophisticated Initiators for the Preparation of Well-Defined poly(2-oxazoline)s. Macromol Rapid Commun 2019; 40:e1900094. [PMID: 30968504 DOI: 10.1002/marc.201900094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/27/2019] [Indexed: 12/22/2022]
Abstract
During the last decades, poly(2-oxazoline)s (POx) have gained increased interest due to their versatility. In particular, cationic ring-opening polymerization (CROP) enables the synthesis of well-defined polymers bearing quantitative α- and ω-functionalities. In contrast to small initiating groups, the introduction of more sophisticated, respectively demanding groups remains challenging. To fulfill this challenge, the initiator should comply with one major requirement in order to yield well-defined polymers: a fast and complete initiation. The straight forward two-step synthesis of a novel initiator containing a 4-(trifluoromethyl)benzenesulfonate (fluorylate, TosCF3 ) counter-ion is herein presented to accomplish the introduction of a sophisticated functional 3-(2-(2-ethoxy)ethoxy)ethoxy)prop-1-ene (TEG) initiating group. Kinetic studies are conducted in acetonitrile and chlorobenzene using the hydrophilic 2-ethyl-2-oxazoline (EtOx) as well as the hydrophobic 2-octyl-2-oxazoline (OctOx) as monomers to examine the influences of the solvent as well as the different monomers. In particular, the initiator efficiency is determined by 1 H and 19 F nuclear magnetic resonance spectroscopy and compared to the corresponding tosylate (TEGTos) and triflate (TEGTf). It is shown that the fluorylate combines the stability of the tosylate and an enhanced propagation rate comparable to the triflate.
Collapse
Affiliation(s)
- Nora Engel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Michael Dirauf
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Susanne Seupel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Meike N Leiske
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany.,[+]Present address: Monash Institute of Pharmaceutical Sciences, 399 Royal Parade, Parkville, VIC, 3052, Australia
| | - Stephanie Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany.,Pharmaceutical Technology and Biopharmacy, Friedrich Schiller University Jena, Lessingstraße 8, 07743, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
25
|
Synthesis of block/graft copolymers based on vinyl benzyl chloride via reversible addition fragmentation chain transfer (RAFT) polymerization using the carboxylic acid functionalized Trithiocarbonate. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1763-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Bandelli D, Alex J, Helbing C, Ueberschaar N, Görls H, Bellstedt P, Weber C, Jandt KD, Schubert US. Poly(3-ethylglycolide): a well-defined polyester matching the hydrophilic hydrophobic balance of PLA. Polym Chem 2019. [DOI: 10.1039/c9py00875f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel lactide isomer 3-ethyl-1,4-dioxane-2,5-dione (3-ethylglycolide, EtGly) represented the basis for the development of polyesters varying crystallinity.
Collapse
Affiliation(s)
- Damiano Bandelli
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Julien Alex
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Christian Helbing
- Chair of Materials Science (CMS)
- Department of Materials Science and Technology
- Otto Schott Institute of Materials Research
- Faculty of Physics and Astronomy
- Friedrich Schiller University Jena
| | - Nico Ueberschaar
- Mass Spectrometry Platform
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| | - Helmar Görls
- Institute of Inorganic and Analytical Chemistry (IAAC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| | - Peter Bellstedt
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Klaus D. Jandt
- Chair of Materials Science (CMS)
- Department of Materials Science and Technology
- Otto Schott Institute of Materials Research
- Faculty of Physics and Astronomy
- Friedrich Schiller University Jena
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| |
Collapse
|
27
|
Chu Y, Li H, Huang H, Zhou H, Chen Y, Andreas B, Liu L, Chen Y. Uni-molecular nanoparticles of poly(2-oxazoline) showing tunable thermoresponsive behaviors. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yuehuan Chu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education; Sun Yat-sen University, No. 135, Xingang Xi Road; Guangzhou 510275 China
| | - Huaan Li
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education; Sun Yat-sen University, No. 135, Xingang Xi Road; Guangzhou 510275 China
| | - Huahua Huang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education; Sun Yat-sen University, No. 135, Xingang Xi Road; Guangzhou 510275 China
| | - Houbo Zhou
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education; Sun Yat-sen University, No. 135, Xingang Xi Road; Guangzhou 510275 China
| | - Yi Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education; Sun Yat-sen University, No. 135, Xingang Xi Road; Guangzhou 510275 China
| | - Böckler Andreas
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education; Sun Yat-sen University, No. 135, Xingang Xi Road; Guangzhou 510275 China
| | - Lixin Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education; Sun Yat-sen University, No. 135, Xingang Xi Road; Guangzhou 510275 China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education; Sun Yat-sen University, No. 135, Xingang Xi Road; Guangzhou 510275 China
| |
Collapse
|
28
|
Kudryavtseva AA, Kurlykin MP, Tarabukina EB, Tenkovtsev AV, Filippov AP. Behavior of thermosensitive graft copolymer with aromatic polyester backbone and poly-2-ethyl-2-oxazoline side chains in aqueous solutions. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2017. [DOI: 10.1080/1023666x.2017.1342188] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- A. A. Kudryavtseva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - M. P. Kurlykin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - E. B. Tarabukina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - A. V. Tenkovtsev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - A. P. Filippov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|
29
|
Korchia L, Lapinte V, Travelet C, Borsali R, Robin JJ, Bouilhac C. UV-responsive amphiphilic graft copolymers based on coumarin and polyoxazoline. SOFT MATTER 2017; 13:4507-4519. [PMID: 28584886 DOI: 10.1039/c7sm00682a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A series of amphiphilic photo-responsive heterografted copolymers have been successfully synthesized. The random copolymers were composed of a methacrylate backbone, with various compositions of hydrophilic oligomeric 2-methyl-2-oxazoline side chains (OMOx) and hydrophobic long alkyl chains terminated by a coumarin moiety (Cm). Using dynamic (DLS) and static light scattering (SLS), and transmission electron microscopy (TEM), their self-assembling behavior was studied in water using the nanoprecipitation method. Depending on the system, one, two or three particle size distributions co-exist in solution. However, DLS measurements showed that monomodal and slightly polydisperse self-assemblies were obtained with the more hydrophobic copolymers (i.e., 85% of hydrophobic monomers with a long alkyl chain terminated by a coumarin moiety (MCm) per molecule) with hydrodynamic diameters ranging from ca. 130 to 300 nm. Morphological information on these self-assembly structures was obtained using SLS: a Gaussian behavior has thus been evidenced. Finally, these heterografted copolymers were illuminated using UV light at λ = 350 nm inducing photo-crosslinking of the coumarin units. The influence of UV illumination on the thus-formed nanoparticles was investigated by carrying out complementarily DLS-measurements and UV spectroscopy.
Collapse
Affiliation(s)
- Laetitia Korchia
- Institut Charles Gerhardt, UMR 5253 CNRS/UM/ENSCM, Ingénierie et Architectures Macromoléculaires, Université Montpellier, CC1702, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France.
| | | | | | | | | | | |
Collapse
|
30
|
Kempe K. Chain and Step Growth Polymerizations of Cyclic Imino Ethers: From Poly(2‐oxazoline)s to Poly(ester amide)s. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kristian Kempe
- ARC Centre of Excellence in Convergent Bio‐Nano Science & Technology Monash Institute of Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
| |
Collapse
|
31
|
Rayeroux D, Travelet C, Lapinte V, Borsali R, Robin JJ, Bouilhac C. Tunable amphiphilic graft copolymers bearing fatty chains and polyoxazoline: synthesis and self-assembly behavior in solution. Polym Chem 2017. [DOI: 10.1039/c7py00632b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis and self-assembly behavior in solution of tunable copolymers with amphiphilic grafts based on fatty chain polymethacrylate and polyoxazoline.
Collapse
Affiliation(s)
- David Rayeroux
- Institut Charles Gerhardt - UMR 5253 CNRS/UM/ENSCM - Ingénierie et Architectures Macromoléculaires
- Université Montpellier
- F-34095 Montpellier Cedex 5
- France
| | | | - Vincent Lapinte
- Institut Charles Gerhardt - UMR 5253 CNRS/UM/ENSCM - Ingénierie et Architectures Macromoléculaires
- Université Montpellier
- F-34095 Montpellier Cedex 5
- France
| | | | - Jean-Jacques Robin
- Institut Charles Gerhardt - UMR 5253 CNRS/UM/ENSCM - Ingénierie et Architectures Macromoléculaires
- Université Montpellier
- F-34095 Montpellier Cedex 5
- France
| | - Cécile Bouilhac
- Institut Charles Gerhardt - UMR 5253 CNRS/UM/ENSCM - Ingénierie et Architectures Macromoléculaires
- Université Montpellier
- F-34095 Montpellier Cedex 5
- France
| |
Collapse
|
32
|
Zhou Y, Tang H, Wu P. Intra-molecular interactions dominating the dehydration of a poly(2-isopropyl-2-oxazoline)-based densely grafted polymer comb in aqueous solution and hysteretic liquid–liquid phase separation. Phys Chem Chem Phys 2017; 19:6626-6635. [DOI: 10.1039/c6cp08574a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Temperature-induced association and hysteretic LLPS process of a poly(2-isopropyl-2-oxazoline) (PiPOx)-based polymer comb in water.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- The State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science and Laboratory for Advanced Materials
- Fudan University
- Shanghai 200433
| | - Hui Tang
- The State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science and Laboratory for Advanced Materials
- Fudan University
- Shanghai 200433
| | - Peiyi Wu
- The State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science and Laboratory for Advanced Materials
- Fudan University
- Shanghai 200433
| |
Collapse
|
33
|
Yildirim I, Bus T, Sahn M, Yildirim T, Kalden D, Hoeppener S, Traeger A, Westerhausen M, Weber C, Schubert US. Fluorescent amphiphilic heterografted comb polymers comprising biocompatible PLA and PEtOx side chains. Polym Chem 2016. [DOI: 10.1039/c6py01130f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The comb polymers are synthesized in three independent steps by ROP, CROP, and RAFT.
Collapse
|
34
|
Rueda JC, Asmad M, Ruiz V, Komber H, Zschoche S, Voit B. Synthesis and characterization of new bi-sensitive copoly(2-oxazolines). Des Monomers Polym 2015. [DOI: 10.1080/15685551.2015.1078109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Juan Carlos Rueda
- Polymer Laboratory, Physics Section, Science Department, DGI, Pontifical Catholic University of Peru (PUCP), Box 1761, Lima, Peru
| | - Miguel Asmad
- Polymer Laboratory, Physics Section, Science Department, DGI, Pontifical Catholic University of Peru (PUCP), Box 1761, Lima, Peru
| | - Valeria Ruiz
- Polymer Laboratory, Physics Section, Science Department, DGI, Pontifical Catholic University of Peru (PUCP), Box 1761, Lima, Peru
| | - Hartmut Komber
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, Dresden 01069, Germany
| | - Stefan Zschoche
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, Dresden 01069, Germany
| | - Brigitte Voit
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, Dresden 01069, Germany
- TU Dresden, Center of Excellence cfaed, Dresden 01062, Germany
| |
Collapse
|
35
|
Korchia L, Bouilhac C, Lapinte V, Travelet C, Borsali R, Robin JJ. Photodimerization as an alternative to photocrosslinking of nanoparticles: proof of concept with amphiphilic linear polyoxazoline bearing coumarin unit. Polym Chem 2015. [DOI: 10.1039/c5py00834d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photo-dimerization of the coumarinated inner compartment of the nanoparticles is investigated.
Collapse
Affiliation(s)
- Laetitia Korchia
- Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM-ENSCM
- Equipe Ingénierie et Architectures Macromoléculaires
- F-34095 Montpellier cedex 5
- France
| | - Cécile Bouilhac
- Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM-ENSCM
- Equipe Ingénierie et Architectures Macromoléculaires
- F-34095 Montpellier cedex 5
- France
| | - Vincent Lapinte
- Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM-ENSCM
- Equipe Ingénierie et Architectures Macromoléculaires
- F-34095 Montpellier cedex 5
- France
| | | | | | - Jean-Jacques Robin
- Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM-ENSCM
- Equipe Ingénierie et Architectures Macromoléculaires
- F-34095 Montpellier cedex 5
- France
| |
Collapse
|
36
|
Gieseler D, Jordan R. Poly(2-oxazoline) molecular brushes by grafting through of poly(2-oxazoline)methacrylates with aqueous ATRP. Polym Chem 2015. [DOI: 10.1039/c5py00561b] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Well defined molecular brushes of poly(2-oxazoline)s were synthesized by ATRP of oligo- and poly(2-methyl-, 2-ethyl- and 2-isopropyl-2-oxazoline) macromonomers in aqueous solution.
Collapse
Affiliation(s)
- Dan Gieseler
- Professur für Makromolekulare Chemie
- Department Chemie
- Technische Universität Dresden
- 01069 Dresden
- Germany
| | - Rainer Jordan
- Professur für Makromolekulare Chemie
- Department Chemie
- Technische Universität Dresden
- 01069 Dresden
- Germany
| |
Collapse
|
37
|
Wagner M, Holzschuh S, Traeger A, Fahr A, Schubert US. Asymmetric flow field-flow fractionation in the field of nanomedicine. Anal Chem 2014; 86:5201-10. [PMID: 24802650 DOI: 10.1021/ac501664t] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Asymmetric flow field-flow fractionation (AF4) is a widely used and versatile technique in the family of field-flow fractionations, indicated by a rapidly increasing number of publications. It represents a gentle separation and characterization method, where nonspecific interactions are reduced to a minimum, allows a broad separation range from several nano- up to micrometers and enables a superior characterization of homo- and heterogenic systems. In particular, coupling to multiangle light scattering provides detailed access to sample properties. Information about molar mass, polydispersity, size, shape/conformation, or density can be obtained nearly independent of the used material. In this Perspective, the application and progress of AF4 for (bio)macromolecules and colloids, relevant for "nano" medical and pharmaceutical issues, will be presented. The characterization of different nanosized drug or gene delivery systems, e.g., polymers, nanoparticles, micelles, dendrimers, liposomes, polyplexes, and virus-like-particles (VLP), as well as therapeutic relevant proteins, antibodies, and nanoparticles for diagnostic usage will be discussed. Thereby, the variety of obtained information, the advantages and pitfalls of this emerging technique will be highlighted. Additionally, the influence of different fractionation parameters in the separation process is discussed in detail. Moreover, a comprehensive overview is given, concerning the investigated samples, fractionation parameters as membrane types and buffers used as well as the chosen detectors and the corresponding references. The perspective ends up with an outlook to the future.
Collapse
Affiliation(s)
- Michael Wagner
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena , Humboldtstrasse 10, 07743 Jena, Germany
| | | | | | | | | |
Collapse
|
38
|
Tang D, Jiang X, Liu H, Li C, Zhao Y. Synthesis and properties of heterografted toothbrush-like copolymers with alternating PEG and PCL grafts and tunable RAFT-generated segments. Polym Chem 2014. [DOI: 10.1039/c4py00332b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Novel (A-g-D)(B-alt-C)mD-type heterografted toothbrush-like copolymers with great potential in smart drug delivery systems and thermo-responsive surface materials are investigated.
Collapse
Affiliation(s)
- Dandan Tang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Xiao Jiang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Huanhuan Liu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Cangxia Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Youliang Zhao
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
39
|
Breul AM, Rabelo de Moraes I, Menzel R, Pfeffer M, Winter A, Hager MD, Rau S, Dietzek B, Beckert R, Schubert US. Light-harvesting of polymerizable 4-hydroxy-1,3-thiazole monomers by energy transfer toward photoactive Os(ii) metal complexes in linear polymers. Polym Chem 2014. [DOI: 10.1039/c3py00915g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A dye-based polymeric antenna system for energy transfer towards a photoactive Os(ii) metal complex is described.
Collapse
Affiliation(s)
- Alexander M. Breul
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | | | - Roberto Menzel
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Michael Pfeffer
- Institute of Inorganic Chemistry I
- University of Ulm
- 89081 Ulm
- Germany
| | - Andreas Winter
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Martin D. Hager
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Sven Rau
- Institute of Inorganic Chemistry I
- University of Ulm
- 89081 Ulm
- Germany
| | - Benjamin Dietzek
- Jena Center for Soft Matter (JCSM)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Leibniz Institute of Photonic Technology (IPHT)
| | - Rainer Beckert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| |
Collapse
|